Publications pdfreaders.org
(see [html] for selected publications)

  1. Groups of Worldview Transformations Implied by Einstein’s Special Principle of Relativity over Arbitrary Ordered Fields
    The Review of Symbolic Logic online first (2021)
    Coauthors: J. X. Madarász, and M. Stannett.
    [doi]

  2. Groups of Worldview Transformations Implied by Isotropy of Space
    Journal of Applied Logics - IfCoLog Journal forthcoming (2021)
    Coauthors: J. X. Madarász, and M. Stannett.

  3. Algebras of concepts and their networks
    In: T. Allahviranloo, S. Salahshour, N. Arica (Eds.)
    Progress in Intelligent Decision Science, Proceeding of IDS 2020
    Springer, pp.611-622. (2021)
    Coauthor: Mohamed Khaled

  4. Distances Between Formal Theories
    The Review of Symbolic Logic 13:(3) pp. 633-654.(2020)
    Coauthors: Mohamed Khaled, Koen Lefever, and Michèle Friend.
    [doi] [philsci-archive] [arXiv]

  5. On Generalization of Definitional Equivalence to Non-Disjoint Languages
    Journal of Philosophical Logic 48:(4) pp. 709-729. (2019)
    Coauthor: Koen Lefever.
    [doi] [springer] [arXiv] [philsci-archive]

  6. Does Negative Mass Imply Superluminal Motion? An Investigation in Axiomatic Relativity Theory
    Journal of Applied Logics 5(4): pp. 907-925. (2018)
    Coauthors: J. X. Madarász, and M. Stannett.

  7. Comparing Classical And Relativistic Kinematics In First-Order Logic
    Logique & Analyse 61(241): pp. 57-117 (2018)
    Coauthor: Koen Lefever.
    [arXiv] [philsci-archive]

  8. Relativistic Computation
    In: M. E. Cuffaro and S. C. Fletcher (Eds.),
    Physical Perspectives on Computation, Computational Perspectives on Physics,
    Cambridge University Press, pp. 195-216. (2018)
    Coauthors: H. Andréka, J. X. Madarász I. Németi and P. Németi.

  9. Three Different Formalisations of Einstein’s Relativity Principle
    The Review of Symbolic Logic 10:(3) pp. 530-548. (2017)
    Coauthors: J. X. Madarász, and M. Stannett.
    [pdf] [arXiv]

  10. On some symmetry axioms in relativity theories
    Symmetry: Culture and Science 26:(4) pp. 405-420. (2015)
    [arXiv]
  11. Axiomatizing Relativistic Dynamics using Formal Thought Experiments
    Synthese: 192:(7) pp. 2183-2222 (2015)
    Coauthor: Attila Molnár.
    [Springer] [philsci-archive]

  12. What properties of numbers are needed to model accelerated observers in relativity?
    In: Beziau J-Y, Krause D, Arenhart J B (eds.)
    Conceptual Clarifications: Tributes to Patrick Suppes (1922-2014)
    London: College Publications, pp. 161-174. (2015)
    [arXiv]

  13. Logic and relativity theory
    Synthese 192:(7) pp. 1937-1938. (2015)
    [Springer]

  14. The Existence of Superluminal Particles is Consistent with Relativistic Dynamics
    Journal of Applied Logic 12:(4) pp. 477-500. (2014)
    Coauthor: J. X. Madarász.
    [ScienceDirect] [arXiv]

  15. Faster than light motion does not imply time travel
    Classical and Quantum Gravity 31:(9) Paper 095005. 11 pp. (2014)
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and M. Stannett.
    [IOP Publishing] [arXiv] [pdf]

  16. Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
    Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 10(005): 21 pages (2014)
    Coauthors: M. Stannett and J. X. Madarász.
    [SIGMA] [arXiv]

  17. A note on ``Einstein's special relativity beyond the speed of light by James M. Hill and Barry J. Cox''
    Proceedings of the Royal Society A 469(2154):6pp. (2013)
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Royal Society Publishing] [arXiv]

  18. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity
    Reports on Mathematical Physics 72(2): pp. 133-152 (2013)
    [arXiv]

  19. Special Relativity over the Field of Rational Numbers
    International Journal of Theoretical Physics 52(5): pp. 1706-1718 (2013)
    Coauthor: J. X. Madarász.
    [Springer] [arXiv]

  20. Existence of Faster Than Light Signals Implies Hypercomputation Already in Special Relativity
    Lecture Notes in Computer Science 7318: pp. 528-538. (2012)
    Coauthor: P. Németi.
    [Springer] [arXiv]

  21. Closed Timelike Curves in Relativistic Computation
    Parallel Process. Lett. 22(03): 15pp. (2012)
    Coauthors: H. Andréka and I. Németi.
    [worldscientific] [arXiv]

  22. A logic road from special relativity to general relativity
    Synthese 186(3): pp. 633-469 (2012)
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Springer] [arXiv] [pdf]

  23. On Logical Analysis of Relativity Theories
    Hungarian Phil. Review 54(2010/4): pp.204-222 (2011)
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [arXiv]

  24. A Geometrical Characterization of the Twin Paradox and its Variants
    Studia Logica 95(1-2): pp. 161-182 (2010)
    Special Issue: The Contributions of Logic to the Foundations of Physics.
     [Springer] [arXiv] [pdf]

  25. New Challenges in the Axiomatization of Relativity Theory
    In: Á. Poroszlai, G. Poroszlai, Z. Petrák (eds.)
    Proceedings of the New Challenges in the Field of Military Sciences
    Budapest, Bolyai János Military Foundation 8pp. (2010)
    [pdf]

  26. On Why-Questions in Physics
    In: A. Máté, M. Rédei, F. Stadler, (Eds.)
    The Vienna Circle in Hungary
    Springer, Wien, pp.181-189. (2011)
     [Springer] [pdf]

  27. Vienna Circle and Logical Analysis of Relativity Theory
    In: A. Máté, M. Rédei, F. Stadler, (Eds.)
    The Vienna Circle in Hungary
    Springer, Wien, pp.147-267. (2011)
    Coauthors: H. Andréka, J. X. Madarász, I. Németi and P. Németi.
    [Springer] [pdf]

  28. Comparing Relativistic and Newtonian Dynamics in First-Order Logic
    In: A. Máté, M. Rédei, F. Stadler, (Eds.)
    The Vienna Circle in Hungary
    Springer, Wien, pp.155-179. (2011)
    Coauthor: J. X. Madarász
    [Springer] [pdf]

  29. Closed Timelike Curves in Relativistic Computation
    In: Stannet, Mike, Makowiec, Danuta, Lwniczak, Anna T, Di Stefano, Bruno N (Eds.)
    4th International Workshop on Physics and Computation (P&C 2011) and the 3rd International Hypercomputation Workshop (HyperNet 11)
    Combined Pre-proceedings, Turku, Finland: University of Turku, pp.155-171. (2011)
    Coauthors: H. Andréka and I. Németi.

  30. First-Order Logic Investigation of Relativity Theory with an Emphasis on Accelerated Observers
    PhD thesis ELTE, Budapest, (2009)
    [doktori.hu] [pdf] [html]

  31. Axiomatizing relativistic dynamics without conservation postulates
    Studia Logica 89(2): pp. 163-186 (2008)
    Coauthors: H. Andréka, J. X. Madarász and I. Németi.
    [Springer] [arXiv]

  32. First-Order Logic Foundation of Relativity Theories
    In: D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.),
    New Logics for the XXI-st Century II, Mathematical Problems from Applied Logics,
    International Mathematical Series Vol 5, Springer, (2007)
    Coauthors: J. X. Madarász and I. Németi.
    [arXiv]

  33. Twin Paradox and the logical foundation of relativity theory
    Foundations of Physics 36(5): pp. 681-714 (2006)
    Coauthors: J. X. Madarász and I. Németi.
    [Springer] [arXiv]

  34. A First Order Logic Investigation of the Twin Paradox and Related Subjects
    Master's thesis, ELTE University, 47pp., (2004)
    [pdf]

  35. A logical investigation of inertial and accelerated observers in flat space-times
    Logic and Computer Science. Proceedings of the Kalmár Workshop (Eds: Gécseg F, Csirik J, Turán Gy)
    Department of Informatics, JATE University of Szeged, Szeged, Hungary, (2003), pp. 45-57.
    Coauthors: H. Andréka, J. X. Madarász and I. Németi. [pdf]

  36. Az óraparadoxon elsôrendû logikai tárgyalásban
    TDK paper, ELTE University, 23pp., (2003)
    [pdf]



Work in progress: