Publications
(see [html] for selected publications)
- Groups of Worldview Transformations Implied by Einstein’s Special Principle of Relativity over Arbitrary Ordered Fields
The Review of Symbolic Logic online first (2021)
Coauthors: J. X. Madarász, and M. Stannett.
[doi]
- Groups of Worldview Transformations Implied by Isotropy of
Space
Journal of Applied Logics - IfCoLog
Journal forthcoming (2021)
Coauthors: J. X. Madarász,
and M. Stannett.
-
Algebras of concepts and their networks
In: T. Allahviranloo, S. Salahshour,
N. Arica (Eds.)
Progress in Intelligent Decision Science,
Proceeding of IDS 2020
Springer, pp.611-622. (2021)
Coauthor: Mohamed
Khaled
-
Distances Between Formal Theories
The Review of Symbolic Logic 13:(3) pp. 633-654.(2020)
Coauthors: Mohamed
Khaled, Koen Lefever,
and Michèle Friend.
[doi]
[philsci-archive]
[arXiv]
-
On Generalization of Definitional Equivalence to Non-Disjoint
Languages
Journal of Philosophical Logic 48:(4)
pp. 709-729. (2019)
Coauthor: Koen
Lefever.
[doi]
[springer]
[arXiv]
[philsci-archive]
- Does Negative Mass Imply Superluminal Motion? An Investigation in Axiomatic Relativity Theory
Journal of Applied Logics 5(4): pp. 907-925. (2018)
Coauthors: J. X. Madarász, and M. Stannett.
-
Comparing Classical And Relativistic Kinematics In First-Order
Logic
Logique & Analyse 61(241): pp. 57-117 (2018)
Coauthor: Koen Lefever.
[arXiv] [philsci-archive]
-
Relativistic Computation
In: M. E. Cuffaro and
S. C. Fletcher (Eds.),
Physical Perspectives on Computation,
Computational Perspectives on Physics,
Cambridge University
Press, pp. 195-216. (2018)
Coauthors: H. Andréka, J. X. Madarász
I. Németi and P. Németi.
-
Three Different Formalisations of Einstein’s Relativity Principle
The Review of Symbolic Logic 10:(3) pp. 530-548. (2017)
Coauthors: J. X. Madarász, and M. Stannett.
[pdf] [arXiv]
-
On some symmetry axioms in relativity theories
Symmetry: Culture and Science 26:(4) pp. 405-420. (2015)
[arXiv]
-
Axiomatizing Relativistic Dynamics using Formal Thought Experiments
Synthese: 192:(7) pp. 2183-2222 (2015)
Coauthor: Attila Molnár.
[Springer]
[philsci-archive]
-
What properties of numbers are needed to model accelerated observers in relativity?
In: Beziau J-Y, Krause D, Arenhart J B (eds.)
Conceptual Clarifications: Tributes to Patrick Suppes (1922-2014)
London: College Publications, pp. 161-174. (2015)
[arXiv]
-
Logic and relativity theory
Synthese 192:(7) pp. 1937-1938. (2015)
[Springer]
-
The Existence of Superluminal Particles is Consistent with
Relativistic Dynamics
Journal of Applied Logic 12:(4) pp. 477-500. (2014)
Coauthor: J. X. Madarász.
[ScienceDirect]
[arXiv]
-
Faster than light motion does not imply time travel
Classical and Quantum Gravity 31:(9) Paper 095005. 11 pp. (2014)
Coauthors: H. Andréka, J. X. Madarász, I. Németi and M. Stannett.
[IOP Publishing]
[arXiv]
[pdf]
-
Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 10(005): 21 pages (2014)
Coauthors: M. Stannett and J. X. Madarász.
[SIGMA]
[arXiv]
-
A note on ``Einstein's special relativity beyond the speed of light
by James M. Hill and Barry J. Cox''
Proceedings of the Royal Society A 469(2154):6pp. (2013)
Coauthors: H. Andréka, J. X. Madarász and I. Németi.
[Royal Society Publishing]
[arXiv]
-
The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity
Reports on Mathematical Physics 72(2): pp. 133-152 (2013)
[arXiv]
-
Special Relativity over the Field of Rational Numbers
International Journal of Theoretical Physics 52(5): pp. 1706-1718 (2013)
Coauthor: J. X. Madarász.
[Springer] [arXiv]
-
Existence of Faster Than Light Signals Implies Hypercomputation Already in Special Relativity
Lecture Notes in Computer Science 7318: pp. 528-538. (2012)
Coauthor: P. Németi.
[Springer] [arXiv]
-
Closed Timelike Curves in Relativistic Computation
Parallel Process. Lett. 22(03): 15pp. (2012)
Coauthors: H. Andréka and I. Németi.
[worldscientific] [arXiv]
- A logic road from special relativity to general relativity
Synthese 186(3): pp. 633-469 (2012)
Coauthors: H. Andréka, J. X. Madarász
and I. Németi.
[Springer] [arXiv] [pdf]
-
On Logical Analysis of Relativity Theories
Hungarian Phil. Review 54(2010/4): pp.204-222 (2011)
Coauthors: H. Andréka, J. X. Madarász
and I. Németi.
[arXiv]
- A Geometrical Characterization of the Twin Paradox and its Variants
Studia Logica 95(1-2): pp. 161-182 (2010)
Special Issue: The Contributions of Logic to the Foundations of Physics.
[Springer] [arXiv] [pdf]
- New Challenges in the Axiomatization of Relativity Theory
In: Á. Poroszlai, G. Poroszlai, Z. Petrák (eds.)
Proceedings of the New Challenges in the Field of Military Sciences
Budapest, Bolyai János Military Foundation 8pp. (2010)
[pdf]
-
On Why-Questions in Physics
In: A. Máté, M. Rédei,
F. Stadler, (Eds.)
The Vienna Circle in Hungary
Springer, Wien, pp.181-189. (2011)
[Springer] [pdf]
-
Vienna Circle and Logical Analysis of Relativity Theory
In: A. Máté, M. Rédei, F. Stadler, (Eds.)
The Vienna
Circle in Hungary
Springer, Wien, pp.147-267. (2011)
Coauthors: H. Andréka, J. X. Madarász,
I. Németi and P. Németi.
[Springer] [pdf]
-
Comparing Relativistic and Newtonian Dynamics in First-Order
Logic
In: A. Máté, M. Rédei, F. Stadler, (Eds.)
The Vienna Circle in Hungary
Springer, Wien,
pp.155-179. (2011)
Coauthor: J. X. Madarász
[Springer]
[pdf]
-
Closed Timelike Curves in Relativistic Computation
In: Stannet, Mike, Makowiec, Danuta, Lwniczak, Anna T, Di Stefano, Bruno N (Eds.)
4th International Workshop on Physics and Computation (P&C 2011) and the 3rd International Hypercomputation Workshop (HyperNet 11)
Combined Pre-proceedings, Turku, Finland: University of Turku, pp.155-171. (2011)
Coauthors: H. Andréka and I. Németi.
-
First-Order Logic Investigation of Relativity Theory with an
Emphasis on Accelerated Observers
PhD thesis ELTE, Budapest, (2009)
[doktori.hu]
[pdf]
[html]
-
Axiomatizing relativistic dynamics without conservation
postulates
Studia Logica 89(2): pp. 163-186 (2008)
Coauthors: H. Andréka, J. X. Madarász
and I. Németi.
[Springer]
[arXiv]
-
First-Order Logic Foundation of Relativity
Theories
In: D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.),
New Logics for the XXI-st Century II, Mathematical Problems from Applied Logics,
International Mathematical Series Vol 5, Springer, (2007)
Coauthors: J. X. Madarász and I. Németi.
[arXiv]
-
Twin
Paradox and the logical foundation of relativity
theory
Foundations of Physics 36(5): pp. 681-714
(2006)
Coauthors: J. X. Madarász
and I. Németi.
[Springer] [arXiv]
-
A First Order Logic Investigation of the Twin Paradox and
Related Subjects
Master's
thesis, ELTE University, 47pp., (2004)
[pdf]
-
A logical investigation of inertial and accelerated observers in flat space-times
Logic and Computer Science. Proceedings of the Kalmár Workshop (Eds: Gécseg F, Csirik J, Turán Gy)
Department of Informatics, JATE University of Szeged, Szeged, Hungary, (2003), pp. 45-57.
Coauthors: H. Andréka, J. X. Madarász and I. Németi.
[pdf]
-
Az óraparadoxon elsôrendû logikai tárgyalásban
TDK paper, ELTE University, 23pp., (2003)
[pdf]
Work in progress: