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Abstract: Einstein’s theory of relativity not just had but still has a great impact on 
science. It has an impact even on military sciences, e.g., via GPS technology (which 
cannot exist without relativity theory). Any theory with such an impact is also interesting 
from the point of view of axiomatic foundations. The aim of this paper is to outline the 
new challenges of the axiomatic approach to relativity theory developed by our research 
group led by Hajnal Andréka and István Németi. 
 
 
1. Cutting edge engineering based on the two theories of relativity 
 
Einstein’s formulated his theory of special relativity in 1905 a decade later he generalized 
special relativity and introduced his theory of general relativity in 1915. Even Einstein's 
special theory of relativity radically changed our way of thinking about space and time, 
because among other things it states that there are no such things as observer independent 
concepts of time and space. However, the two theories of relativity not just had a great impact 
on our way of thinking about space and time but on engineering sciences and even on our 
every day life.  
 
GPS technology is a famous cutting edge technology of today, which greatly depends on the 
two theories of relativity, which were theories of pure basic research a hundred years ago.    
 
It depends on special relativity because according to special relativity relatively moving 
clocks slow down and a typical NAVSTAR GPS satellite orbits around the Earth with speed 3 
km/s, see [1]. According to special relativity, if a clock is moving with relative speed v, it 
slows down by factor 22 /1 cv− , where c = 299792 km/s is the speed of light in vacuum. So 
the clock of a typical GPS satellite slows down by 4 µs every day.  
 
It also depends on general relativity because of the gravitational potential difference between 
the ground level and the level of the GPS satellites. According to general relativity gravitation 
slows clocks down. Therefore, the clocks of GPS satellites are faster because they are farther 
from the source of gravitation. The ratio of the time differences between two clocks at 
distance R0 and R1 from the center of a planet of mass M is given by the following formula: 
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where G is the gravitational constant and c is the speed of light, see section 9.4 of [10]. A 
typical NAVSTAR GPS satellite orbits around the Earth at altitude 21000 km, see [1]. 
Therefore, the clocks of GPS satellites are 46 µs ahead of time every day because of this 
effect. 
 
Consequently, GPS satellites have to make 42 µs correction every day because of these two 
effects of relativity theory. 42 microsecond correction seems to be a tiny amount at first sight. 
However, it is more than 10 km in distance, which is a huge correction in navigation. 
Obviously, without these relativistic corrections, the GPS navigation system would be 
completely useless.  
 
GPS technology has a great many applications in areas ranging from agriculture to 
architecture through aviation. So via GPS technology, relativity theory has an effect even on 
our everyday life. 
 
Application of relativity theory in GPS technology is a good example to that something which 
was pure basic research 100 years ago can be a fundamental basis of todays cutting edge 
engineering technology. 
 
 
2. Why do we axiomatize relativity theories? 
 
Relativity theory had and still has a great impact on several areas of science. Any theory with 
such an impact is also interesting from the point of view of axiomatic foundations. Therefore, 
it is not surprising that there are several axiomatizations of both special and general relativity 
in the literature, see, e.g., the references of [3], [13]. Some of the axiomatizations are based on 
mathematical logic or even first-order logic, which is considered the best logic for logical 
foundations, see, e.g., [4], [13]. However, as far as we know, all of them stops at presenting 
the axioms and none of them goes further doing a logical and conceptual analysis of the 
theory and none of them tries to connect the axioms of general relativity to that of special 
relativity. 
 
A novelty in our approach is that we try to keep the transition from special relativity to 
general relativity logically transparent and illuminating. We “derive” the axioms of general 
relativity from that of special relativity in two natural steps. First we extend our axiom system 
of special relativity to accelerated observers. Then we eliminate the differences between 
inertial and accelerated observers in the level of axioms, see [5]. 
 
Another thing why relativity theory is interesting from the point of view of logic is that it has 
many models with rather fancy and surprising properties, e.g., black holes, Gödel's rotating 
universe, worm holes, etc. Several of these interesting spacetimes contain closed timelike 
curves (possibility of time-travel) another interesting class of spacetime models makes 
hypercomputation possible, i.e., in these spacetimes it is possible that a programmer may wait 
only a couple of hours for the result of an infinitely long computation, see, e.g., [7]. We are 
interested in the logical investigation of these spacetimes not because we want to build time-
machines or hypercomputers in the near future, but because we would like to understand these 
spacetimes from the point of view of logic, e.g., the possible resolution of the paradoxes risen 
by them or the feedback that spacetime theory could give to logic by “deciding” some 
undecidable questions (such as the consistency of mathematics) by hypercomputers.  



 
Axiomatic foundation of physical theories is important not only because they lead to a deeper 
logical understanding of the theory but also because in physics the role of the axioms 
(statements that we assume without proofs) is more fundamental than in mathematics. That is 
why we aim to axiomatize relativity theory using simple, comprehensible and logically 
transparent axioms only.  
 
In some sense the axioms are only our beliefs on which we base our theories. That is why, we 
aim to prove all the surprising or unusual predictions of spacetime theories from a few 
convincing axioms. For example, the statement “no observer can move faster than light” is a 
theorem in our approach and not an axiom, see, e.g., [5].  
 
Some of the questions we study to clarify the logical structure of relativity theory are:  

• What is believed and why?  
• Which axioms are responsible for certain predictions?  
• What happens if we discard some axioms?  
• Can we change the axioms and at what price?  

 
Let us note here that a similar kind of axiomatic investigation led to the discovery of the 
famous Bolyai-Lobachevsky Geometry; namely the investigation of the logical connection of 
the axiom of parallels and the rest of the assumptions. This is a good example showing that 
basic axiomatic investigations can lead to discoveries of new, interesting and physically 
relevant theories. 
 
 
3. An axiom system of special relativity 
 
To axiomatize any theory, first we have to fix a language (set of basic concepts) which will be 
used to formulate our axioms. Here we will use the following two-sorted2 first-order logic 
language: 
 

{ Q, +, *, <; B, IOb, Ph; W }, 
 

where Q is the sort of quantities and B is the sort of bodies; * and + (multiplication and 
addition) are binary function symbols and < (ordering) is a binary relation symbol of sort Q; 
IOb (inertial observers) and Ph (light signals or photons) are unary relation symbols of sort B; 
and W (the worldview relation) is a 6-ary relation symbol of the type BBQQQQ. Relations 
IOb(o) and Ph(b) are translated as “o is an inertial observer,” and “b is a light signal,” 
respectively. The worldview relation W is used to speak about coordinatization by translating 
W(o,b,x,y,z,t) to natural language as “observer o coordinatizes body b at spacetime location 
(x,y,z,t),” (that is, at space location (x,y,z) and at instant t). 
 
Of course, this choice of basic concepts is only one of the many possibilities. One important 
method of conceptual analysis of relativity theory is axiomatizing it choosing different sets of 
basic concepts and then logically comparing these different axiomatizations. These kinds of 
investigations also lead to a deeper understanding of relativity theories. For investigation of 
the logical connections between axiom systems of special relativity in the language above and 
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opposed to, e.g., set theory where there is only one type of basic objects (sets). 



in the language of Minkowski geometry, see [11]. 
 
Because of lack of space, here we do not present the formalized versions of our axioms just 
their informal readings. However, all the axioms can be formalized in the simple language 
above, see, e.g., [5]. 
 
Here we will base special relativity on the light axiom which is a consequence of Einstein's 
two original (non-formalized) postulates, see [9].   
 

 AxPh: For any inertial observer, the speed of light is the same in every direction 
everywhere, and it is finite. Furthermore, it is possible to send out a light signal in any 
direction everywhere. 

 
Axiom AxPh is well supported by experiments, such as the Michelson-Morley experiment. 
Moreover, it has been continuously tested ever since then. Nowadays it is tested by GPS 
technology. 
 
To make the statement of AxPh unambiguous we have to state explicitly what we assume for 
the structure of quantities which ensures that the concepts of distance, speed, etc. are 
meaningful and behave as we desire them to. Therefore, we assume some usual properties of 
addition + and multiplication * true for real numbers by the next axiom.  
 

 AxFd: The quantity part (Q, +, *, <) is a Euclidean ordered field, i.e., it is an ordered 
field in the sense of algebra in which every positive number has a square root.  

 
Our next axiom, called the event axiom, is also needed to make the light axiom meaningful. 
 

 AxEv: All inertial observers coordinatize the same set of events. 
 
This axiom is very natural and tacitly assumed in the non-axiomatic approaches to special 
relativity, too. 
 
In principle, we do not need more axioms for capturing the essence of special relativity, but 
let us introduce two more simplifying ones. We could leave them out without losing the 
essence of our theory but they make life easier.  
 

 AxSf: Any inertial observer sees himself on the time axis.  
 
The role of axiom AxSf is nothing more than that it makes easier to speak about the motion of 
reference frames via the motion of their time axes. Identifying the motion of reference frames 
with the motion of their time axes is a standard simplification in literature. AxSf is a way to 
formally capture this simplifying identification. 
 
Our last axiom is a symmetry axiom saying that all inertial observers use the same units of 
measurements. 
 

 AxSm: Any two inertial observers agree as to the spatial distance between two events 
if these two events are simultaneous for both of them. Furthermore, the speed of light 
is 1: 

 



Let us see how axiom AxSm states that “all inertial observers use the same units of 
measurements.” That “the speed of light is 1” means only that observers are using units 
measuring time distances compatible with the units measuring spatial distances, such as light 
years or light seconds. The first part of axiom AxSm means that different observers use the 
same unit measuring spatial distances. This is so because, if two events are simultaneous for 
both observers, they can measure their spatial distance and the outcome of their measurements 
are the same if and only if the two observers are using the same units to measure spatial 
distances. 
 
Our axiom system for special relativity contains these five simple axioms only: 
 

SpecRel = { AxFd, AxPh, AxEv, AxSf, AxSm }. 
 
In an axiom system, the axioms are the “price” we pay, and the theorems are the “goods” we 
get for them. Therefore, we strive for putting only simple, transparent, easy-to-believe 
statements in our axiom systems. We want to get all the hard-to-believe predictions as 
theorems. For example, we prove from SpecRel that it is impossible for inertial observers to 
move faster than light relative to each other, see [5].  
 
The five simple axioms of SpecRel perfectly capture the kinematics of special relativity. This 
is so because, it implies that the transformations connecting the worldviews of different 
inertial observers (reference frames) are Poincaré transformations, see, e.g, [2], [3]. An 
important corollary of this theorem is that all the predictions (concerning kinematics) of the 
official version of special relativity are provable from the five simple axioms of SpecRel. So 
SpecRel implies that “relatively moving clocks get out of synchronism,” “relatively moving 
clocks slow down by the Lorentzian time dilation factor,” etc. Nevertheless, in our approach 
the direct proofs of these predictions from the axioms are also important because they show 
the roles of the particular axioms. For direct proofs of these predictions from the axioms, see, 
e.g., [2]. 
 
If we would like to capture more from special relativity (not only the kinematics), we have to 
add new basic concepts and assume axioms for these concepts. For example, in the case of 
relativistic dynamics this kind of extension of SpecRel is already started in [6], where we 
have introduced an axiom system SpecRelDyn containing axioms formulated in the spirit of 
the axioms of SpecRel. The axioms of SpecRelDyn are strong enough to imply the 
relativistic formula connecting the rest and the relativistic masses and to give a support to 
Einstein's famous insight E=mc2. 
 
 
4. An axiom system of general relativity 
 
Using the same set of basic concepts we extend SpecRel to a theory of accelerated observers 
called AccRel. Our key axiom on accelerated observers is the following: 
 

 AxCmv: At each moment of his life, every accelerated observer sees (coordinatizes) 
the nearby world for a short while in the same way as an inertial observer does. 

 
For the formalized version of axiom AxCmv, see [13]. AccRel is SpecRel extended with 
AxCmv and some auxiliary axioms: 
 



AccRel = SpecRel U { AxCmv, AxEv-, AxSf-, AxDf, AxCont }. 
 
This extension (AccRel) can be considered as a first step toward providing an axiom system 
of general relativity, which is only one natural step from AccRel. The only thing we have to 
do with AccRel to get an axiom system of general relativity (GenRel) is eliminating the 
differences between inertial and accelerated observers in the level of axioms. The natural idea 
making all the observers equal in the level of basic assumptions goes back to Einstein, see [8]. 
The elimination of the differences between inertial and accelerated observers is done by 
searching consequences of AccRel corresponding to each axiom of SpecRel which are true 
for all the observers. After this process, we get generalized (localized) versions of the axioms 
of SpecRel assumed for all the observers (and not just for inertial observers).  
 
Let us now see the axioms of GenRel. Its first axiom is the localized version of the light 
axiom of SpecRel. 
 

 AxPh-: The velocity of photons an observer “meets” is 1 when they meet, and it is 
possible to send out a photon in each direction where the observer “stands.”  

 
The second axiom is the localized version of the event axiom of SpecRel stating only that, if 
an observer is seen in an event, he hast to encounter that event.  
 

 AxEv-: If an observer is seen in a certain event, he also has to see this event. 
 
For practical reasons, we localize an equivalent version of the symmetry axiom of SpecRel. 
 

 AxSm-: Meeting observers see each other's clocks behaving in the same way.  
 
The next axiom is the localized version of the self axiom of SpecRel.  
 

 AxSf-: Any observer sees himself in an interval of the time axis. 
 
In SpecRel, it was a theorem that the worldview transformations are affine transformations. In 
our axiom system for general relativity we assume the localized version of this theorem as an 
axiom.  
 

 AxDf: The worldview transformations have affine approximations at each point of 
their domains (i.e., they are differentiable). 

 
In SpecRel the simple assumption AxFd was perfectly enough, surprisingly even in AccRel 
we need to assume more about the quantities, see [13]. The assumption we need is the 
following first-order logic approximation of the supremum axiom of real numbers. 
 

 AxCont: Every definable, bounded and nonempty subset of the quantities has a 
supremum. 

 
Our axiom system GenRel contains these seven basic assumptions only. 
 

GenRel = { AxFd, AxPh-, AxEv-, AxSf-, AxSm-, AxDf, AxCont }. 
 
Let us note that there is no axiom requiring the existence of observers in GenRel. Sometimes 



for example, if we would like to investigate geodesics, we require the existence of several 
observers by the following assumption: 
 

 AxCompr: For any parametrically definable timelike curve in any observer’s 
worldview, there is another observer whose worldline is the range of this curve. 

 
Axiom system GenRel together with AxCompr is strong enough to capture Einstein's field 
equations, see. [5]. 
 
 
5. New challenges in our axiomatic approach 
 
We have laid down the first brick of the logical and conceptual analysis of relativity theories, 
i.e., we have presented axiom systems for special and general relativity. Moreover, we have 
“derived” the axioms of general relativity from that of special relativity. However, this is only 
the first step in the logical investigation of spacetime theories.  
 
This first step generates many new and interesting questions, which is important because 
science not only advances by new answers but also by new questions. Some of these new 
questions are: 

• Which axioms are responsible for a certain theorem? 
• How are the possible axioms/axiomatizations related to each other? 
• How can these axiomatizations be extended, e.g., towards Quantum Theory? 
• How are the independent statements of our axiomatizations related to each other? 

 
Let us note here that investigating these kinds of questions is not just a beloved game of 
logicians. The question which have led to the discovery of hyperbolic geometry was also a 
question of logical independence of some axioms, namely the question whether the axiom of 
parallels is independent or not from the other axioms of Euclid. The logical fact that the 
axiom of parallels is independent from the rest of the axioms of Euclid made the discovery of 
Bolyai and Lobachevsky possible.    
 
Investigating the axioms that are responsible for a certain theorem or prediction is a way to 
answer why-type questions of relativity theory. Fore more details on the subject of why-type 
questions in relativity, see [4], [12]. 
 
The investigation of these questions may give us a better and deeper logical understanding of 
the fundamental concepts and assumptions of spacetime theories and the logical connections 
between these concepts and assumptions. It may also help in the unification of relativity 
theory with quantum theory.  
 
A new challenge in the axiomatization of spacetime theories is to continue building our axiom 
systems by extending and generalizing them continuously investigating the logical 
connections of the new axiom systems and the old ones. A high reaching new aim of our 
research project is building a flexible hierarchy of axioms systems (instead of one axiom 
system only) and analyzing the logical connections between the different axioms and 
axiomatizations.  
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