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Abstract. Seeing the many examples in the literature of causality violations based on

faster-than-light (FTL) signals one naturally thinks that FTL motion leads inevitably

to the possibility of time travel. We show that this logical inference is invalid by

demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which

FTL motion is permitted (in every direction without any limitation on speed) yet

which does not admit time travel. Moreover, the Principle of Relativity is true in this

model in the sense that all observers are equivalent. In short, FTL motion does not

imply time travel after all.
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1. Introduction

The idea that faster-than-light (FTL) motion leads to causality violations goes back

at least as far as Einstein [1] and Tolman [2, pp. 54–55], although Recami [3] has

pointed out that most of the related paradoxes do not involve a valid sequence of causal

influences because some of the observers involved disagree as to whether a given event

represents the emission or receipt of a signal. Nonetheless, Newton has described a

convincing scenario in which two observers o1 and o2 can send FTL signals s1, s2 to one

another, they agree on the temporal order of the times of sending and receiving these

two signals, yet each of them receives a reply to their signal before it is sent (see Figure

1). Encoding messages within these signals (assuming this arrangement to be valid)

would therefore enable the observers to create a logically paradoxical formation. These

FTL-based paradoxes can in principle be resolved by analogy with similar paradoxes

proposed in relation to closed timelike curves (CTCs), e.g., by appealing to Novikov’s

self-consistency principle [4, 5], but nonetheless it is natural to ask whether sending

information back to the past (which we will simply call ‘time travel’) must be possible

if particles can move faster than light relative to one another.
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Figure 1. Newton’s example of a “closed causal cycle” [6] generated using FTL signals.

At event B observer o1 sends out FTL signal s1. This is received by observer o2 at

event C, who later sends out FTL signal s2. This is received by o1 at event A, which

is earlier than B from o1’s point of view. The dashed lines illustrate the simultaneities

of o1 and o2 where they send and receive these signals.

The ‘time travel’ capabilities suggested by scenarios like that in Newton’s example

give force to several results at the interface between physics and computation. For

example, Deutsch’s seminal quantum computational analysis of CTCs [7] is based on

their use as a mechanism for time travel, and his analysis applies (with some restrictions)

to any system in which negative time-delay components can be implemented for use in

otherwise standard circuits. Likewise, several remarkable complexity theoretic results

based on various formulations of CTC computation become relevant [8, 9, 10], as do

related classical formulations of phenomena like wormholes [5] that are of considerable
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interest in classical computability theory [11, 12, 13]. Akl, for example, has re-opened

the debate on universal computation by showing that even when equipped with the

capacity for time travel there are basic problems that cannot be solved using a pre-

programmed machine [14]. At the other extreme, various authors have shown how the

existence of wormholes, CTCs, Malament-Hogarth spacetimes and the like can boost

computational power to the extent that formally undecidable problems become solvable

[15, 16, 17]. Conversely, computational considerations can be used to indicate certain

information theoretic features of CTCs, including both their likely ability to act as

information-storage devices and their limitations in this regard [18].

These results cannot be reduced to the existence of FTL particles, however, because

as we demonstrate here, a logical analysis of (n+1)-dimensional Minkowski spacetime

shows – subject to a small number of reasonable assumptions identified below – that,

even if we allow the existence of interacting observers/particles traveling FTL relative

to one another, this is not in itself enough to entail the possibility of time travel. We

first show in (1+1)-dimensional spacetime (Theorem 1) that time travel is possible

using FTL observers/particles (in the sense of sending information back to their own

pasts) only if it is also possible without using them. The proof of Theorem 1 gives

us an extension of the standard model of special relativity with FTL observers on all

spacelike lines, in which Einstein’s Principle of Relativity holds but time travel is not

possible. We then generalize this model to include each (n+1)-dimensional spacetime

(n = 1, 2, 3, . . .), thereby showing (Theorem 2) that FTL motion does not in itself

introduce the possibility of time travel after all. This does not invalidate the results

cited above; it merely rules out the existence of FTL motion as a logically sufficient

mechanism for explaining or implementing them in practice.

We have tried to keep the following discussion rather informal, but it should be

emphasized that our results can also be derived in the context of the first-order axiomatic

theory AccRel of special relativity with accelerating observers; for formal discussions of

AccRel and the related theory SpecRel of inertial observers, see, e.g., [19, 20, 21, 22].

2. FTL motion without time travel

We begin by working in (1+1)-dimensional Minkowski spacetime. We enrich this

spacetime with a large number of FTL observers (each non-light-like line will be a

worldline) in such a way that time travel is still not possible. Then we extend this

model to (n+1)-dimensional Minkowski spacetime, for all n ≥ 1.

2.1. The (1+1)-dimensional case

We focus initially on (1+1)-dimensional Minkowski spacetime, R1
1, where for the sake of

argument we will assume a priori that it is possible for observers with reference frames

attached to them to move FTL relative to one another. We can make this assumption

since it is both well-known and indeed easy to prove that FTL motion of observers is



Faster than light motion does not imply time travel 4

compatible with special relativity in R
1
1, because there is no real geometric (and hence

no physically relevant) distinction between the ‘inside’ and ‘outside’ of a lightcone in

this setting. For a formal construction, see, e.g., [19, § 2.7].

As usual, we will think of R1
1 in terms of a spacetime diagram (coordinatized initially

by the reference frame of some inertial observer, o, whose identity need not concern us),

and note that any lightcone divides R1
1 into 4 quadrants, which we will refer to informally

in the obvious way using the terms left , right , top and bottom. Since we want to compare

how different observers experience the direction of time’s arrow, we identify observers in

terms of their worldlines. Technically, we regard each worldline as a smooth path in R
1
1

(i.e. a smooth function w:R → R
1
1 parametrized by arc length) swept out (as observed

by o) by the associated observer as it moves continuously into (what it considers to be)

its unfolding future.

We now impose the usual inertial approximation condition, where an inertial

observer in R
1
1 is one whose worldline is a straight line that is not tangential to a

lightcone – inertial observers neither accelerate, nor travel at light speed (though they

might travel FTL). The following is an informal version of the corresponding formal

axiom in [20]:

• AxCoMoving

At each event along an observer’s worldline, there exists precisely one co-moving

inertial observer.

Consequently, not only does the slope of w’s tangent vary continuously as we move along

w (because w is assumed to be smooth), but w is never tangential to a lightcone. This

also implies that no worldline can accelerate from below the speed of light to above the

speed of light.

Suppose, then, that e is an event on some worldline w. Since w’s tangent at e is

a straight line which is not tangential to the lightcone at e, it must either lie in the

region vertical = top ∪{e}∪ bottom or else in the region horizontal = left ∪{e}∪ right .

Supposing for the sake of argument that the tangent at e lies in vertical , it will also

lie in vertical at every other point along w, since otherwise – by application of the

Intermediate Value Theorem to the tangent’s slope – there would necessarily exist some

event on w where the motion is light-like. Having established that the tangent lies in

vertical , the same reasoning then allows us to identify uniquely whether w (viewed as

an evolving trajectory) unfolds into top or bottom, and once again the smoothness of

motion ensures that this determination will be the same at all events along w.

It is therefore meaningful to identify one of the quadrants left , right , top or bottom

as w’s future quadrant, viz. the quadrant into which the w’s unfolding trajectory takes

it at every event along its worldline. When we say that ‘time flows in the same direction’

for two observers, we mean simply that they have the same future quadrant. We call

two observers slower than light (STL) relative to each other if they are both in vertical

or in horizontal as defined above. They are called FTL otherwise. We say that time

flows in the opposite direction for two observers if these two observers are STL relative
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to each other and time does not flow in the same direction for them. We note that these

notions are all Lorentz-invariant (or, in other words, observer-independent) in the sense

that if two observers are, e.g., STL relative to each other, then they remain so after any

Lorentz transformation.

We also make the following assumption, which follows from a natural generalization

of axiom Ax5+ from [19, p. 297]:

• AxSTLMotion

For any observer o1 and worldline w which is STL with respect to o1, there is an

observer o2 whose time flows in the same direction as o1’s, and whose worldine and

w have the same range.

This axiom allows us to demonstrate formally that if two observers moving STL with

respect to one another see time moving in opposite directions, we can trivially generate

a time travel situation (see figure 2, right hand side).

Suppose, then, that o1 and o2 are observers moving STL relative to o, and that

the future quadrant of o1 is top (say). If o2 moves STL relative to o1, its own future

quadrant will necessarily be either top or bottom, depending on the direction in which it

considers time to flow. Of course, if o2’s future quadrant is bottom (i.e. time for o2 ‘flows

backwards’ as far as o1 is concerned), we can trivially construct a time travel scenario

by AxSTLMotion. Consequently, since we are interested in whether FTL motion entails

the possibility of time travel in an otherwise well-behaved setting, we will assume that

the future quadrant for o2 is also top. Analogous arguments apply for other choices of

o1’s future quadrant, so we will make the blanket assumption:

• AxSameFuture

Whenever two observers travel slower than light relative to one another, they agree

as to the direction of time’s flow (they have the same future quadrant).

A simple argument now shows that FTL observers (with respect to o) also agree

with one another as to the direction of time’s arrow. For suppose that observers o1
and o2 are both traveling FTL relative to o. As before, we can assume that o’s future

quadrant is top, and since o1 and o2 are moving FTL relative to o, their own future

quadrants must be either left or right . They are therefore moving slower than light

relative to one another, and AxSameFuture applies.

Since the direction in which time flows is fixed along any given worldline,

any manifestation of time travel or its associated causality violations must involve

interactions between two or more observers. So we say that time travel is possible

(Figure 2) to mean there is a sequence o1, o2, . . . , on of (at least 2 distinct) observers,

and a sequence e0, e1, . . . , en of events, such that for each 1 ≤ i ≤ n,

• o1 6= on;

• e0 = en;

• ei−1 and ei are both events on oi’s worldline;

• ei−1 chronologically precedes ei according to oi.
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Figure 2. A general time travel scenario (left), and the particular case involving just

two observers (right).

We say that time travel can be implemented using FTL observers if not all of the

observers occurring in o1, . . . , on move STL relative to one another.

We can now state and prove our first theorem. The fact that its conditions do not

make Theorem 1 vacuously true is explained in Remark 1 below.

Theorem 1 Assume AxCoMoving. Then in R
1
1,

(a) AxSameFuture implies that time travel is impossible; and hence,

(b) if AxSTLMotion holds, time travel can be implemented using FTL observers only if

it is already possible without them.

Proof. (a) By AxSameFuture, we may assume, without loss of generality, that the

future quadrant of STL observers is top, and that of FTL observers is right . (Here, STL

and FTL are understood relative to our fixed observer o.) Suppose observers o1, . . . , on
and events e0, . . . , en can be chosen which implement a time travel situation (we will

show that this assumption contradicts AxSameFuture). Let oi be any of the observers

(1 ≤ i ≤ n), and consider the lightcone at the event ei−1 on oi’s worldline. This cone

comprises two lines, one going ‘up to the right’ (from bottom-left to top-right), the other

going up to the left. We will call the latter the “main axis” at ei−1 (see figure 3 for

the main axis at e0). We will write di to mean the perpendicular (Euclidean) distance

from ei to this main axis, assigning it a positive sign if ei is above the main axis and a

negative sign if it is below. Notice that all main axes are parallel, and that distance is

additive (if a, b and c are events, the distance from c to a’s main axis can be calculated

by summing b’s distance from a’s axis with c’s distance from b’s axis).

By assumption, the future quadrant of oi at ei−1 is either top or right , from which

it follows that ei must lie in the interior of one of these two quadrants. Both of these

quadrants are bounded below/to the left by the main axis, so in each case we will have

di > 0. It follows from the additivity of distances that the perpendicular distance from

en to e0’s axis is equal to d1 + . . . + dn, which (being a sum of positive terms) is again

positive. But this contradicts the requirement that e0 = en in a time travel scenario.

Hence time travel is impossible if AxSameFuture and AxCoMoving are assumed at the

same time, as claimed.
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Figure 3. An observer’s motion always acts to increase the perpendicular Euclidean

distance from the main axis, regardless of whether it is FTL or STL (illustration for

the proof of Theorem 1).

(b) If time travel is possible, then (a) tells us that AxSameFuture must be violated,

so there must be two observers traveling slower than light relative to one another who

disagree on the direction of time’s flow. However, if time flows in different directions for

two observers, then time travel is already trivially possible by AxSTLMotion. �

In the following discussions, by a model, we understand R
1
1 together with some

distinguished set of worldlines. By an automorphism P of this model, we understand

a permutation of R1
1 that preserves the absolute value of Minkowski metric as well as

distinguished worldlines (i.e. w is distinguished if and only if P ◦ w is distinguished).

We say that Einstein’s Special Principle of Relativity (SPR) is satisfied in a model if any

inertial observer in this model can be taken to any other by an automorphism (recall

that an inertial observer is one with a straight non-light-like worldline).

Remark 1. We can construct a model in which both AxSameFuture and AxCoMoving

are true, in which Einstein’s Special Principle of Relativity (SPR) is satisfied, and in

which all kinds of STL as well as FTL relative motion are possible. In this model, there

is no time travel by Theorem 1.

Briefly, this model is as follows. Take the (1+1)-dimensional spacetime for special

relativity with all kinds of directed worldlines, timelike as well as spacelike, inertial as

well as non-inertial. Of these, keep only those worldlines that respect the (absolute value

of the) Minkowski metric of R1
1. This way AxCoMoving is satisfied in the resulting model.

Take any coordinate system (for R
1
1), and of these observers, keep only those timelike

ones whose future quadrant is top, of the spacelike observers keep only those whose

future quadrant is right . This way AxSameFuture is satisfied, too. This model satisfies

SPR because of the following. Any two spacelike or timelike inertial observers can be

taken to each other by a Poincaré transformation P , and any timelike observer can be

taken to a spacelike one by a Poincaré transformation composed with the transformation

T which just interchanges the first coordinate with the second one in our fixed coordinate

system for R1
1. It is easy to check that both P and T are automorphisms of our model.
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Let us fix an arbitrary inertial observer; what does the world look like in its

coordinate system? (By SPR, the world looks exactly the same in all other inertial

worldviews.) As far as STL observers are concerned, the world is completely normal,

it is as we know it from special relativity: moving clocks run slow, etc. But there is

also a time-dilation effect for FTL observers: the closer their speed is to the speed

of light the slower their clocks run, but the greater their speed is, the faster their

clocks run. In addition to this, in one of the two spatial directions (call it −x) FTL

clocks run backwards. How can we interpret this phenomenon? If we consider the time

orientation of an observer to be the direction in which his own future unfolds, we can

say that information can be communicated between events on his worldline only in the

direction of this unfolding future (for a discussion of this kind of intuition, see, e.g., [6]).

Expressing this in spacetime terminology, the “causal past” of an event e0 in our model

is the region “below” its main axis (see the shaded area in Figure 3). The unusual thing

here is that this causal past does not lie entirely within the observer’s temporal past

(i.e. the half-space below the simultaneity).

Keeping this description in mind, let’s see how we can resolve the paradox described

by Newton [6] (see Figure 1). In the model we constructed above, the “reading” of

Figure 1 is as follows. At event B observer o1 sends out FTL signal s1. This is received

by observer o2 at event C, who later at event D receives another signal, s2 from o1.

(The only unusual thing is that o2 receives the two signals in reverse time-order from

o1’s point of view.) If o2 wishes to send o1 a reply to s1 at event D, this reply has to be

an STL signal. �

2.2. The general (n+1)-dimensional case

We now turn to generalizing our model to the (n+1)-dimensional case, for all n ≥ 1. We

will have to make some adjustments because (n+1)-dimensional Minkowski spacetime

R
n

1 is very different from R
1
1 when n > 1. Here, unlike in R

1
1, it makes sense to distinguish

between STL and FTL motion in absolute terms, because the interior of a lightcone is

geometrically (and hence physically) distinguishable from its outside. Because STL

inertial motion is geometrically distinguishable from FTL inertial motion, we cannot

attach reference frames to FTL objects in a way that respects SPR. (A strictly axiomatic

derivation of this fact can be found, e.g., in [21, Thm. 2.1]). Nonetheless, we will define

spacelike smooth functions w:R → R
n

1 parametrized by their arc lengths to be worldlines

of FTL particles (or signals). Thus, particles can “move FTL”, they have “clocks”,

but they do not have reference frames attached to them. Timelike smooth functions

remain worldlines of observers. With this terminology, our previous definitions of time

travel, model, etc., remain meaningful in R
n

1 for n > 1. In particular, by a model, we

understand R
n

1 together with some distinguished set of worldlines. By an automorphism

of a model, we understand a permutation of Rn

1 that respects both the Minkowski metric

and distinguished worldlines. By an inertial observer, we mean an observer whose

worldline is a timelike straight line. We say that a model satisfies Einstein’s SPR if any
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Figure 4. The construction in the proof of Theorem 2 for (2+1)-dimensions.

inertial observer can be taken to any other by an automorphism. By the standard model

of special relativity, we understand R
n

1 together with all smooth future-directed timelike

curves w:R → R
n

1 parametrized by their arc lengths as worldlines of observers.

Theorem 2 There is an enrichment of the (n+1)-dimensional standard model of special

relativity with FTL particles in which

• Einstein’s SPR is satisfied;

• each spacelike line is the worldline of an FTL particle;

but time travel is impossible.

Proof. For simplicity, we only prove the n = 3 case because it is straightforward

to generalize this proof for arbitrary n. Informally, the construction is a generalization

of the (1+1)-dimensional one outlined in Remark 1, in which we replace the light-like

line {(t,−t) : t ∈ R} (the main axis) with a Robb hyperplane R (namely, the hyperplane

Minkowski-orthogonal to this light-like line), and we orient the lines within the Robb

hyperplane so that there cannot be any time-travel within it. Then we define the

orientation on a line ℓ such that “it goes from below R to above it” if it is not parallel

to R, and otherwise we copy the orientation of R to the line ℓ.

We write down the construction formally, writing µ for the ((3+1)-dimensional)

Minkowskian scalar product. For fixed vector u, the set {v : µ(u, v) = 0} is a hyperplane

(just as in the Euclidean case), and {v : µ(u, v) > 0} is an open half-space – we can

think of it as the half of the space “above” the hyperplane.

To formalize our construction, let g, h, s be three mutually orthogonal vectors

(i.e. µ(g, h) = µ(g, s) = µ(h, s) = 0) such that g is light-like, and h, s are spacelike.

The Robb hyperplane in our construction will be determined by g, and we will use h, s

for giving a ‘good’ orientation in this Robb hyperplane. We define the set C of positive

vectors as follows: we define v to be positive (v ∈ C) if and only if

µ(g, v) > 0, or

µ(g, v) = 0 and µ(h, v) > 0, or

µ(g, v) = µ(h, v) = 0 and µ(s, v) > 0, or
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v = λg for some λ > 0.

Intuitively, a vector is positive if and only if it (points from the origin to a point that)

is above the Robb hyperplane determined by g, or it is in the open half of this Robb

hyperplane which is above the hyperplane determined by h, or it is in the half of the

intersection of the Robb hyperplane and the one determined by h which is above the

hyperplane determined by s, or it lies on the half-line determined by g. See Figure 4.

We include in our model as worldlines exactly those smooth functions w:R →

R
3
1 whose tangent vectors are positive in the above-defined sense, and which are

parametrized by their arc lengths. For example, each spacelike straight line is a

worldline, as it is not difficult to see that C together with its central inversion −C

cover the whole space except the zero-vector.

To check that SPR holds, we have to find an automorphism P for any two timelike

lines ℓ and ℓ′ which takes ℓ to ℓ′. Take any point p on ℓ. Let x, y and z be the lines going

through p, orthogonal to ℓ, and lying in the planes ℓg, ℓh and ℓs respectively (where

we write ℓv for the plane that is parallel to vector v and contains ℓ if there is only one

such plane, i.e. if ℓ and v are not parallel); define x′, y′ and z′ analogously to be lines

orthogonal to ℓ′ in the planes ℓ′g, ℓ′h and ℓ′s. Then the lines ℓ, x, y and z are mutually

orthogonal, as are the lines ℓ′, x′, y′ and z′. Now, let P be the Poincaré transformation

that takes ℓ, x, y, z to ℓ′, x′, y′, z′ and respects the orientation determined by C

(such a P clearly exists). This P respects the Minkowski metric since it is a Poincaré

transformation. It also respects time-orientation because it takes any plane parallel to

the plane gh to another such plane (because gh, xy and x′y′ are all the same plane),

and similarly for planes parallel to gs.

Now, time travel is not possible in this model for essentially the same reason it

is not possible in our (1+1)-dimensional model. For suppose we have a time-travel

scenario linking the events e0, . . . , en. We will show that if w is any observer/particle,

then w(b) − w(a) ∈ C whenever a < b. It will then follow that each ei+1 − ei
is in C, and hence (because C is closed under vector addition) that en − e0 =

(en − en−1) + (en−1 − en−2) + . . .+ (e1 − e0) is in C. Since C does not contain the zero

vector, it follows that en 6= e0, contradicting the definition of a time-travel scenario, and

the result follows.

It remains to show that w(b) − w(a) ∈ C whenever a < b and w is one of the

worldlines included in our model. We can assume without loss of generality that a = 0,

and we know that the “component of w orthogonal to R” is non-decreasing (its derivative

is non-negative by positivity of tangent vectors). Consequently, it is enough to prove

that for all v > 0: if w(u) ∈ R
n

1 whenever 0 < u < v, then w(u) ∈ C whenever

0 < u < v. We will argue by induction on n. We have already shown the result to be

true in the (1+1)-dimensional case, i.e. for n = 1, so let us assume that the result is

valid in (k+1)-dimensional spacetime for some k ≥ 1, and consider the case n = k + 1.

Choose any b > 0. If the component of w orthogonal to R is non-constant on [0, b],

then w(b) is obviously in C. On the other hand, if this component is constant on [0, b],

then w(t) lies entirely in the (k+1)-dimensional space R for all t ∈ [0, b], and the result
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follows by induction. �

Remark 2. We describe how the world looks in the coordinate system Fo of an

arbitrary STL inertial observer o in the (3+1)-dimensional model constructed in the

proof of Theorem 2. From the point of view of STL motion everything is normal in

this world view, i.e. everything is as special relativity prescribes. The novelty is that

there are particles moving FTL, and they have “clocks” inducing a time orientation

on their worldlines. Following Newton [6], let us call them signals (objects able to

carry information in the direction of their time orientation). Some of these signals are

such that their time orientation is opposite to the one of our chosen coordinate system

Fo. Seen from this reference frame, information flows backwards in these signals. Or,

in other words, the clock of this FTL signal runs backward as seen by Fo. Newton [6]

explains how this may be possible, and he even gives clues for how one could detect such

a backward information-flow experimentally. Let us call such signals inverse signals.

We now describe how FTL signals behave in terms of space and motion, in our

coordinate system Fo. We will see that the inverse signals distinguish three pairwise

orthogonal directions x, y, z in space. First, there is a unique spatial direction, call

it −x, in which there is a maximal effect of backward-flow: in direction −x each FTL

signal is an inverse one (this means that all FTL signals on a line parallel to x go

in direction x). On the other hand, in spatial directions orthogonal to x there is a

minimal effect of backward-flow: only an infinitely rapid signal can be an inverse one.

What happens in between? In any other direction u, there is a threshold FTL speed v

such that backward-flow can occur only in one of the directions u and −u, and in this

direction exactly the signals faster than v are inverse ones. In fact, there is a simple

formula for the threshold speed in direction u: we may assume that |u| = 1 and also

|x| = 1, and now the threshold speed in direction u is −1/(u · x), where u · x denotes

the Euclidean scalar product of u and x and we have taken the speed of light to be 1.

Figure 5 provides an illustration for the threshold velocity in direction u.

To complete the description of FTL signals in Fo, it only remains to describe the

time orientations of infinite-speed clocks in directions orthogonal to x. Let S denote the

spatial plane orthogonal to x. Lines in S are directed as in our construction: there are

two orthogonal vectors in S, call them y and z, and lines in S are directed to go from

one half-plane determined by y to the other, while lines parallel to z are directed to go

in direction z.

We can summarize this picture as saying that Einstein’s simultaneity is an

appropriate one for STL motion, while for FTL motion the Robb hyperplane of our

construction seems more appropriate as a simultaneity. �

3. Concluding remarks

In this paper, we have exhibited a model of Rn

1 which is inhabited by observers/particles

moving at all (non-light) speeds relative to one another, but in which time travel is
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Figure 5. The threshold velocity in direction u.

not possible – it follows that the existence of FTL signals does not logically entail the

existence of ‘time travel’ scenarios. Nor, therefore, does it inevitably lead to the causality

paradoxes arising from those scenarios. Our model is, moreover, physically sensible since

it satisfies Einstein’s Special Principle of Relativity – each inertial observer can be taken

to any other by an automorphism.

On the other hand, it is certainly possible to construct logically sensible models

of spacetime in which observers can disagree as to the direction of time’s arrow. Our

results do not undermine those constructions, but they do force us to re-examine which

aspects of these models are actually responsible for any apparent paradoxes.
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