
A logical investigation of inertial and accelerated

observers in flat space-time (logic and relativity

theory)∗
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Abstract

We study relativity theory as a theory in the sense of mathematical logic. We
use first-order logic (FOL) as a framework for this. We aim at an “analysis of
the logical structure of relativity theories”. First we build up (the kinematics of)
special relativity, then analyze it, and then we experiment with generalizations in
the direction of general relativity. The present note gives samples from an ongoing
broader research project (which in turn is part of a research direction going back
to Reichenbach and others in the 1920’s).

In sections 2,3 we recall a complete FOL-axiomatization Specrel of special rel-
ativity from [2],[13]. In section 4 we answer questions from papers by Ax and
Mundy concerning the logical status of faster than light motion (FTL) in relativ-
ity. We claim that already very small/weak fragments of Specrel prove “No FTL ”.
In section 5 we give a sketchy outlook for the possibility of generalizing Specrel to
theories permitting accelerated observers (gravity).

1 Introduction

The interplay between logic and relativity theory goes back for 80 years by now and
has been playing a non-negligible role in works of researchers like Reichenbach, Carnap,
Suppes, Ax, Szekeres, Malament, and many other contemporaries.

The present paper intends to give samples from the area called analysis of the logical
structure of relativity theories. The first step in this analysis is building up relativity
theory as a theory in the sense of first-order logic (FOL).1 Axiomatizations of special
relativity have been extensively studied in the literature, cf. our list of references. These
works usually stop with a kind of completeness theorem for their axiomatizations. As a
contrast, what we call the analysis of logical structure of relativity theory begins with
proving such a completeness theorem but the real work comes afterwards during which
one often concludes that we have to change the axioms.2 In the present work we try to
illustrate what we understand by this analysis of logical structure.

∗Research supported by the Hungarian National Foundation for scientific research grants No’s
T30314, T43242, T35192.

1The reason why we chose FOL and not e.g. second-order logic is presented in detail in [2, App.1]
as well as in Ax [5], but the reasons in Väänänen [30] also apply.

2Very roughly, one could phrase this as “we start off where the others stopped (namely, at complete-
ness)”.
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To this end we have to start with a list of axioms and a completeness theorem but
the emphasis is on what comes beyond these. To illustrate what we mean by the logical
analysis of relativity, we choose the much debated topic of faster than light motion. We
refer to this as the No FTL conjecture where “No FTL ” abbreviates the conjecture
that faster than light motion is impossible (in relativity). A large part of the literature
claims that No FTL is an axiom (of relativity) while another substantial part wants
to get rid of No FTL and they maintain that No FTL is not true (i.e. that FTL is
possible). This controversy in the literature3 makes No FTL an ideal testing-ground
for logic in relativity. E.g. we can study which potential axioms of (special) relativity
imply No FTL , what is implied by No FTL , how to obtain the most “conservative”
modification of the axiom system such that it will not imply No FTL etc.

Mundy [20] gives an axiomatization of special relativity, and he claims that his ax-
ioms do not imply No FTL . From this Mundy concludes that No FTL is not a theorem
of special relativity. We will return to quoting Mundy verbatim above Theorem 4.3.4

At the same time, in the area of connecting relativity with quantum mechanics, the
No FTL conjecture plays an essential role, e.g. the so called Einstein-Podolsky-Rosen
paradox is based on assuming No FTL . Many authors think that No FTL is the essence
of relativity as is suggested by the subtitle “Physics according to Newton – A world
with no speed limit” in Kogut’s book on relativity. As a further contrast, Ax [5] adds
No FTL to his list of axioms for special relativity and he raises the question whether
his axiom system is redundant.

Here we will give an answer to Ax’s question which at the same time will refute
Mundy’s claim for space-times of more than 2 dimensions. Namely, we will prove that
No FTL is a logical consequence of Ax’s remaining axioms (Theorem 4.2 herein), and
will prove that Mundy’s axioms do entail No FTL (Theorem 4.3 herein). Briefly, we
conclude that No FTL is not an axiom but a theorem of (special) relativity. In [13,
pp.89-90] we also show that No FTL does not follow from Einstein’s Special Principle
of Relativity (SPR) going back to Galileo, in 2-dimensional space-time, contrary to what
Einstein claims in [7, pp.126-127]. In [2],[13] we also study how to refine the axioms
of special relativity in order to make No FTL independent from the rest of the axioms.
I.e. there we elaborated variants of special relativity in which FTL is possible (i.e. where
No FTL is no more a theorem). This way we intend to contribute to those works, too,
which want to experiment with permitting FTL motion in relativity.5

We hope the above example (of No FTL ) illustrates how analyzing the logical struc-
ture works in the theory of inertial observers (special relativity proper). In the last
section of this work we give a brief outlook in the direction of general relativity, as
follows. The theory of accelerated observers is a proper generalization of the theory of
inertial observers and, as explained in the classic textbook [18, pp.163-165], the study
of accelerated observers can be regarded as a natural first step towards general rela-
tivity. (It is true that accelerated observers “live” in flat space-time, but still this is a
natural first step.) In our opinion, the logic based axiomatic approach outlined above
and quoted from the literature (e.g. Ax, Mundy) can be extended to the theory of ac-
celerated observers. Further, we think that such an extension would be most fruitful
since it provides a first step towards analyzing general relativity. E.g. in the theory
of accelerated observers (i) the Twin Paradox admits a more natural formulation than

3The above-mentioned controversy is documented in [13, §2.7]. Cf. also Lewis [12, pp.67-80] and
Novikov [21].

4Mundy’s work “comes” from the seminars of Suppes on the topic of logic and relativity. Suppes
(1974) credits his motivation in this line to interactions with Tarski.

5For a thorough discussion of the status and literature of FTL cf. e.g. [13, §2.7, pp.70-73 (especially
footnote 163)], and Lewis [12, pp.67-80, 212-213].
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in the theory of inertial observers, hence more refined analysis is possible and (ii) the
effect of gravity on clocks can be modeled and studied. The last section will be more
sketchy than the previous ones for two reasons: (1) While the literature of the axiomatic
approach to inertial observers is extensive as we quote below, the same is not true for
accelerated observers. Hence we lack a background in the literature from which we could
“destill” the notion of e.g. a standard model of the theory (i.e. intended model). So in
this direction more work is needed. (2) We intended to give only a hint indicating that
the “analysis of logical structure” can be naturally extended from inertial observers to
accelerated ones.

To place the present work in context: The interplay between logic and relativity has
been extensively investigated in the literature. E.g. axiomatizations of special relativity
have been studied e.g. in Robb 1914 [23], Reichenbach 1924 [22], Carathéodory 1924
[6], Suppes 1959-1972 [26],[27],[28], Szekeres 1968 [29], Ax 1978 [5], Friedman 1983 [8],
Mundy 1986 [20], Goldblatt 1987 [11], Schutz 1997 [25]. (This is only a small sample.)
Although most of these works use the framework of logic, only Ax [5] and Goldblatt [11]
are purely in first-order logic. Ax thoroughly presents the intuitive, physical motivation
for his approach, his choice of framework, his axioms etc. which are satisfactory even
on the level of abstraction of philosophy of physics (and philosophy of science). The
motivation for the present work coincides with the motivation given by Ax (and is
very close to the one in Suppes [27]), therefore for further motivation, introduction,
background etc. we refer the reader to Ax [5] as well as to the related paper Madarász-
Tőke [15] submitted to the present workshop.6

László Kalmár was interested in broadening the scope of interactions between math-
ematical logic on one side and the sciences on the other. His pioneering activities in
computer science and in artificial intelligence are examples for this interest. The subject
matter of the present paper connecting logic with the philosophy of physics/space-time
is a further example in which Kalmár expressed interest in personal communication
with two of the present authors. The current trends connected to the present work are
represented e.g. by the upcoming Conference on Philosophy of Space-time (Oxford, May
2004), or by e.g. Muis [19].

2 The vocabulary of the first-order language of our
investigations

In this paper we will deal with kinematics of relativity only, i.e. we will deal with
motion of bodies (or test-particles). The motivation for our choice of vocabulary (for
special relativity) is summarized as follows. We will represent motion as changing spatial
location in time. For this, we will have reference-frames for co-ordinatizing events and,
for simplicity, we will represent reference-frames as special bodies which we will call
observers. We visualize an observer-as-a-body as “sitting” in the origin of its reference
frame, or equivalently, “living” on the time-axis of the reference frame. There will be
another special kind of bodies which we will call photons, and we will distinguish inertial
bodies from the non-inertial ones. We will use the word “accelerated” as a synonym for
“non-inertial”. For co-ordinatizing events we will use an arbitrary ordered field in place
of the field of the real numbers. Thus the elements of this field will be the “quantities”

6More generally, the interplay between logic and relativity has remained the main “testing-ground”
for logical positivism throughout its history, cf. e.g. Friedman [9]. Gödel, a part-time participant of
the Vienna Circle, did some revolutionary work in relativity, too (besides logic), cf. his collected works
(volumes II, III). Further substantial motivation is elaborated e.g. in [2], [28], [27].
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which we will use for measuring time and space.

n will be a natural number, the number of space-time dimensions.

Motivated by the above, our first-order language contains the following symbols:

unary relation symbols B, Ob, Ph, Ib, F
(for bodies, observers, photons, inertial bodies, and quantities, i.e. elements of the
field, respectively)

binary function symbols +, ·, constants 0, 1 and a binary relation symbol <
(for the field-operations and ordering on F)

a 2 + n-ary relation symbol W

(for co-ordinatizing events, i.e. for the world-view relation).

We will read “B(x)” as “x is a body” etc., and we will read
“W(m, b, x1, x2, . . . , xn)” as “observer m sees (or observes) the body b at time x1 at
location (x2, . . . xn)”. This “seeing” or “observing” has nothing to do with seeing via
photons or observing via experiments, it simply means that b is present in the event
which has co-ordinates (x1, . . . , xn) in m’s co-ordinatization.

We assume, tacitly, throughout this paper that Ob, Ph, Ib ⊆ B. These statemens are
all expressible by first-order formulas, e.g. Ob ⊆ B is expressed by ∀x[Ob(x) → B(x)].

3 A (complete) first-order axiom system for inertial

observers

We will formulate each axiom on three levels. First we give a very intuitive formulation,
then we give a precise formalization using notions that will be useful later, too (like
life-line), and finally, for completeness, we give a concrete first-order formula without
using the introduced notions.

First we introduce some notions (but one could omit these and read the first-order
formalizations of the axioms right away).

We will use the vector-space structure of nF. I.e. if p, q ∈ nF and λ ∈ F, then
p + q, λp ∈ nF, and 0 = (0, . . . , 0) is the origin. When p ∈ nF we assume that p =
(p1, . . . , pn). Let q, v ∈ nF, v 6= 0. The (straight) line going through q, with squared
speed7 (or slope) (v2

2 + · · · + v2
n)/v2

1 and in the spatial direction (v2, . . . , vn) is

{q + λv : λ ∈ F}.

The set of straight lines is then

Lines = {{q + λv : λ ∈ F} : q, v ∈ nF, v 6= 0}.

The life-line, or trace of a body b in observer m’s world-view, or as seen by m, is the
set of co-ordinate points at which m sees b:

trm(b) = {p ∈ nF : W(m, b, p)}.

The slope of a vector p = (p1, . . . , pn) ∈ nF is defined as slope(p) = (p2
2 + · · ·+p2

n)/p2
1

if p1 6= 0, and slope(p) is infinite othewise. If ℓ ∈ Lines, then

slope(ℓ) = slope(p − q) for some (and then for all) p, q ∈ ℓ, p 6= q.

We are ready now for formulating the axioms on all three levels.

7For technical reasons, we use the square of the speed instead of speed throughout.
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Ax1 Photons are inertial bodies, i.e.

Ph ⊆ Ib. The first-order formula expressing this is

∀x(Ph(x) → Ib(x)).

Ax2 Inertial observers “see” inertial bodies move at a steady speed along straight lines,
i.e. the life-lines of inertial bodies are straight lines in an inertial observer’s world-
view,

trm(b) ∈ Lines if m, b ∈ Ib, m ∈ Ob. A first-order formula expressing this is

Ob(m) ∧ Ib(m) ∧ Ib(b) → (∃q, v ∈ nF)(v 6= 0∧
(∀p ∈ nF)[W(m, b, p) ↔ (∃λ ∈ F)p = q + λv]) .

Ax3 Each inertial observer sees himself standing still at the origin, i.e. the life-line of
m in m’s world-view is the time-axis t = {(t, 0, . . . , 0) : t ∈ F},

trm(m) = t, if m ∈ Ob ∩ Ib. A first-order formula expressing this is

Ob(m) ∧ Ib(m) ∧ p ∈ nF → [W(m, m, p) ↔ p2 = · · · = pn = 0].

Ax4 It is possible to move with any given speed less than 1, and it is possible to send
out a photon with speed 1, at each point and in each direction, i.e. for all straight
lines ℓ ∈ Lines and m ∈ Ob ∩ Ib

slope(ℓ) < 1 ⇒ (∃k ∈ Ob ∩ Ib)ℓ = trm(k) and
slope(ℓ) = 1 ⇒ (∃ph ∈ Ph)ℓ = trm(ph) .
A first-order formula expressing this without abbreviations is

(∀q, v ∈ nF)(∀m)[Ob(m) ∧ Ib(m) ⇒
(v0 6= 0 ∧ v2

2 + · · · + v2
n < v2

1 ⇒
(∃k)(Ob(k) ∧ Ib(k) ∧ (∀p ∈ nF)[W(m, k, p) ↔ (∃λ ∈ F)p = q + λv]) ∧
(v 6= 0 ∧ v2

2 + · · · + v2
n = v2

1 ⇒
(∃ph)(Ph(ph) ∧ (∀p ∈ nF)[W(m, k, p) ↔ (∃λ ∈ F)p = q + λv] ) ].

Ax5 All inertial observers see the same events,

Eventsm = Eventsk for m, k ∈ Ob ∩ Ib, where
ev(m, p) = {b : W(m, b, p)}, the event seen by m at p, and
Eventsm = {ev(m, p) : p ∈ nF}, the set of events seen by m.
By a first-order formula without abbreviations this is

Ob(m) ∧ Ib(m) ∧ Ob(k) ∧ Ib(k) → (∀p ∈ nF)(∃q ∈ nF)
(∀b)[W(m, b, p) ↔ W(k, b, q)].

AxE All photons move with speed 1 in an inertial observer’s world-view,

slope(trm(ph)) = 1 when m ∈ Ob ∩ Ib and ph ∈ Ph. The first-order formula is
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Ob(m) ∧ Ib(m) ∧ Ph(ph) ∧ W(m, ph, p) ∧ W(m, ph, q) →
(p1 − q1)

2 = (p2 − q2)
2 + · · · + (pn − qn)2.

The world-view transformation fmk between two observers m, k is defined as

fmk = {(p, q) : ev(m, p) = ev(k, q) 6= ∅} .

From our previous axioms it follows that fmk is a transformation of nF (and not only
an arbitrary binary relation) if m, k are inertial observers. Therefore we wil use fmk as
a function. Then fmk(p) is the place where k sees the same event that m sees at p, i.e.

ev(m, p) = ev(k, fmk(p)) .

Let p, q ∈ nF. Then p1 − q1 is the time passed between the events ev(m, p) and ev(m, q)
as seen by m and fmk(p)1 − fmk(q)1 is the time passed between the same two events as
seen by k. Hence (fmk(p)1− fmk(q)1)/(p1− q1) is the rate with which k’s clock is slowed
down as seen by m.

Ax(sym) All inertial observers see each other’s clocks show the wrong time to the same
extent,

fmk(p)1− fmk(q)1= fkm(p)1− fkm(q)1, when m, k ∈ Ob∩ Ib and p, q ∈ t. The first-order
formula is

(∀b)[W(m, b, p) ↔ W(k, b, p′)] ∧ (∀b)[W(m, b, q) ↔ W(k, b, q′)] ∧
(∀b)[W(m, b, p′′) ↔ W(k, b, p)] ∧ (∀b)[W(m, b, q′′) ↔ W(k, b, q′)]) →
p′1 − q′1 = p′′1 − q′′1 .

Ax(field) The usual first-order axioms saying that (F, +, ·, 0, 1, <) is an ordered field.

Specrel = {Ax1,Ax2,Ax3,Ax4,Ax5,AxE,Ax(sym),Ax(field)} .

Specrel is a first-order axiomatization of special relativity theory. It is complete in the
sense that the models of Specrel are basically the standard models for special relativity,
except that the ordered field (F, +, ·, 0, 1, <) is not necessarily the ordered field of the
real numbers. This completeness statement is carefully formulated and proved in [2,
Thm.3.8.14, p.301] and [1, Thm.4, p.15]. As we said in the introduction, there are
several axiomatizations of the kinematics of special relativity (usually under the name
“space-time”) in the literature, e.g. Carathéodory [6], Szekeres [29], Schutz [25], Ax [5],
Goldblatt [11]. Of these, Ax [5] is very close in spirit to ours. The first truly first-order
logic axiomatizations of the kinematics of special relativity (or of space-time) are the
ones in Ax [5], Goldblatt [11] and in works of the present team, e.g. [2], [1], [13], present
work. Actually, the structures axiomatized by Ax and Goldblatt do not contain the
(relativistic) information carried by the so-called Minkowski-metric8 while those of the
present team do. Hence in some sense the presently reported work seems to provide the
first full, complete first-order axiomatization of the kinematics of special relativity or of
the space-time of special relativity (together with its special metric).9

8The square of the Minkowski-distance of p, q ∈ n
F is (p1 − q1)2 −

P

i>1
(pi − qi)2.

9We note that the relativistic metric will play an important role in the theory of accelerated observers,
cf. e.g. [2] or [13, §4.7].

6



4 A piece of conceptual analysis: faster than light
motion

Our main aim is more ambitious than providing a complete axiomatization for the
kinematics of special relativity. Our complete axiomatization is only a byproduct. Our
aim is to provide an analysis of the logical structure of special relativity (or in other
words, giving a conceptual analysis in a precise, mathematical logical framework). Below
we illustrate what we mean by this analysis on the example of faster than light movement
in relativity.

“No FTL ” abbreviates the formula saying that no observer m can move faster than
light relative to any other observer k, formally it abbreviates

slope(trm(k)) ≤ 1 when m, k ∈ Ob ∩ Ib.

The issue whether faster than light (FTL) observers can, in principle, exist is being
seriously debated even today, cf. what we said in the introduction or e.g. [10], Matolcsi-
Rodrigues [17]. In this connection we proved in [2, Thm.3.4.1, p.203.] the following.
Let Specrel− = Specrel \ {Ax(sym)}.

Theorem 4.1. Specrel− |= No FTL , if n > 2.

The above theorem implies that if we do not want to have No FTL as a theorem
in special relativity, then we have to give up or weaken at least one of the axioms in
Specrel−. However, even those authors who debate the status of “No FTL ” accept
all axioms of Specrel−. Theorem 4.1 above can be considerably improved. Namely,
if we derive “No FTL ” from a weaker subsystem S0 of Specrel−, we get a stronger,
more interesting theorem. In particular, we get information about what other usually
accepted axioms we also have to give up if we want to permit “FTL” travel in special
relativity. Indeed, Specrel− can be replaced by a much weaker subsystem S0 in Thm.4.1
above, as was proved in Madarász-Tőke [15, Thm.4],[16], [13, Thm.3.2.13, p.118.], [2,
Thm.4.3.24, p.497]. It was also studied in [2] how to weaken Specrel

− so that “No FTL ”
be no more implied by it (i.e. FTL be permitted by it), cf. also Madarász-Németi [14]
and [2, section 3.4.2, Thm.3.4.22, Thm.4.3.25.].

Now we turn to applying Thm.4.1 to answering questions in Ax [5], Mundy [20] as
was promised in the introduction. Ax [5] contains a finite first-order axiomatization
Σ of special relativity. In this axiom system, one of the axioms, namely AxC4 states
explicitly that all observers move slower than light.

Theorem 4.2. In the axiom-system Σ in Ax [5], the axiom AxC4 stating that all
observers move slower than light is superfluous, i.e.

Σ \ {AxC4} |= AxC4.

Proof-outline: Let U = (U, P, S, T, R) be a model of Σ\{AxC4}. Here, P denotes the
set of “particles” and S denotes the set of “light-signals”. These correspond, roughly,
to our Ob and Ph. Using Tarski’s first-order axiomatization of Euclidean geometry, on
pp. 531-532 Ax constructs a Euclidean ordered field F and to any a ∈ P a bijection
σa : 4F −→ Events, where Events corresponds roughly to our set of events. In this
construction, Ax uses AxC4 three times. With some ingenuity, one can replace the
first and last uses of AxC4 by the use of the axioms T1 and AxC1 of Σ respectively.
The second use of AxC4 is not needed for the construction itself, only to ensure a specific
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property. Now, using the above σa, one can construct a model M = (F, B, Ob, . . . , W) of
our language and check that M |= Specrel−. By Theorem4.1 then M |= No FTL . Using
the definition of M, this means that U |= AxC4.

On the other hand, the axiomatization in Mundy [20] does not contain an axiom
explicitly stating “No FTL ”. But then, Mundy claims that there are models of his
axioms in which there exist FTL observers. On p.43 he writes: “Therefore the only
line-type information left open by the theories T and T ′ is which if any of the lines on
or outside of the light cone are of type T, i.e. are possible paths of inertial motion. In
physical terms this amounts to asking whether inertial motion can proceed at a speed
equal to or greater than that of light10. My contention is that nothing in either the
classical or the special relativistic space-time theories provides any answer to this ques-
tion. The evidence for this is that the theories T and T ′ seem to formalise adequately
the physical content of those space-time theories, and yet do not fix an answer to this
question.” (He then goes on and gives more explanation.)

Theorem 4.3. Let T be the axiom system in Mundy [20]. In any model of T all the
lines in T (i.e. the so-called time-like lines) are within the light-cones. When c 6= 0, they
are strictly within the light-cones. Hence T |=“No FTL ”.

Proof-outline: The proof-idea is very similar to the previous one. Let M be a model
of T . (Assume that c 6= 0. Mundy does not seem to be aware of the fact that T
allows c = 0. But if c = 0 in a model of T , then the time-like and light-like lines
coincide, hence we are done.) In Section 5, on pp. 40-42, Mundy constructs co-ordinate
systems for each time-like line in T , based on which one can construct a model M′ of
our language. One can check then that M′ |= Specrel−, and so M′ |= No FTL by our
Theorem 4.1. This means that there are no time-like lines outside the light-cones. That
there are no time-like lines on the light-cone follows from [1, Prop.1].

5 Axioms for accelerated observers

In Specrel we restricted attention to inertial observers. It is a natural idea to generalize
the theory to including accelerated ovservers, too. We will refer to such a generalized
theory as theory of accelerated observers. As explained in the classic textbook [18,
pp.163-165], the study of accelerated observers can be regarded as a natural first step
(from special relativity) towards general relativity.

While first-order logic axiomatizations for the theory of inertial observers can be
found in the literature (Ax, Goldblatt), for accelerated observers it is in the works of
the present team where the first-order logic axiomatizations and analysis seem to appear
first (as far as we know), cf. [2, chapter 8], [4], [3].

A general overview for a first-order logic approach to accelerated observers was
outlined in [2, chapter 8], where not only axiomatization but some conceptual analysis
was also provided, e.g. “gravity slows down time”. Here we concentrate on spelling out
the axioms because our experience e.g. with [2] suggests that this is an important aspect
of the theory. E.g. at first sight one might guess that the formalism of mathematical
analysis will dominate the axioms, but it turns out that they can be presented in a
geometry oriented intuitive style. From [2] one can conclude that the key axiom for

10Italics by the present authors.
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accelerated observers is what we denote by Axg below. Hence below we concentrate on
giving this axiom a geometric and intuitively convincing form.

The most important axiom for accelerated observers will state that at each moment
of his life-time, the accelerated observer “sees” the world near him and for a short time
like an inertial observer does, co-moving with him. We now begin to formalize this.

We will use the following convention: If we write Tp where T is an arbitrary
relation, we will mean that there is a unique element b which is in relation with p
according to T (i.e. (p, b) ∈ T ) and Tp denotes this unique element b. We will need this
convention because for accelerated observers, in general, fmk is not everywhere defined
even when it is a function.

We recall the notion of (total) differential from e.g. Rudin [24, items 9.10-9.15], but
we do so in a generalized situation when we replace the ordered field of reals with an
arbitrary ordered field F and we talk of the differential of an arbitrary relation T , not
only of a function T . The usual (Euclidean) length of p ∈ nF is |p| =

√

p2
1 + . . . p2

n, and
for ε ∈ F, the sphere with center p and radius ε is S(p, ε) = {q ∈ nF : |q − p| ≤ ε}. F+

denotes the set of strictly positive members of F. From now on we always assume that
the ordered field F is Euclidean, i.e. ∀x > 0∃y[x = y · y] is valid in F.

Definition 5.1. (differential of a relation) Let n, m be natural numbers, T ⊆ nF × mF

a relation and q ∈ nF. A linear function H : nF → mF is called the differential of T in
q iff

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ S(q, δ) |Tp − Tq − H(p − q)| ≤ ε |p − q| .

If there is such a linear function H , then it is unique, and we denote it by (dT )q.

Definition 5.2. (local-injection at a point) A relation T ⊆ nF × mF is called a local-
injection at q ∈ nF iff there is δ ∈ F+ such that T is an injective function on S(q, δ),
i.e. if ∀p, r ∈ S(q, δ)[∃!b((p, b) ∈ T ) ∧ (r 6= p ⇒ Tp 6= Tr)]. Here ∃! denotes that “there
exists a unique”.

Definition 5.3. (m ∼q k) Let q ∈ nF and m, k be observers. We say that m and k see
the event at q the same way, in symbol m ∼q k, iff fmk is a local transformation at q
and

(dfmk)q = Id ∧ fmk(q) = q.

Then ∼q is a binary relation on Ob for every q ∈ nF. In the above, Id is the identity
function, which is linear.

If we write out the above definition without using the defined terms, we get the
following.

Claim 5.4. m ∼q k iff fmk is an injective function on S(q, δ) for some δ ∈ F+ and

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ S(q, δ) |p − fmk(p)| ≤ ε |p − q| .

Remark 1. We could have defined the binary relation ∼q without requiring that the
world-view transformation fmk be an injective function in a neighbourhood of q. I.e.,
we could have defined m ∼q k as

∀ε ∈ F+ ∃δ ∈ F+ ∀p ∈ S(q, δ) ∀r[(p, r) ∈ fmk ⇒ |p − r| ≤ ε |p − q|].

We did not do so because the above definition allows that m sees every event at most
once in all neighbourhoods of q while, say, k sees every event that it sees at least twice
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in all neighbourhoods of q. This does not match our intuition when m and k see the
world the same way at q.

∼q is an equivalence relation, for all q ∈ nF. We note that k ∼q m implies that
ev(m, q) = ev(k, q) (since k ∼q m implies fmk(q) = q ).

Definition 5.5. (co-moving observers) If m ∼q k and m, k ∈ ev(m, q) = ev(k, q), we say
that m and k are co-moving at q, and comove(m, k, q) will denote this.

The following lemma gives the intuition behind the above definition. We will need
the notion of life-curve of an observer. The difference between life-line and life-curve
is that the life-line is a subset of nF, while the life-curve is a function mapping F into
nF, as curves do: the life-curve of an observer k is the life-line of k parametrized by the
proper time of k.

Definition 5.6. (life-curve) We define the life-curve Trm(k) of the observer k as seen by
m to be i ◦ fkm where i : F → nF is the function for which i(t) = (t, 0, . . . , 0) for
every t ∈ F. This notion covers our intuition when trk(k) = t ∩ Dom(fkm) and fkm is a
partial function on t ∩ Dom(fkm). Then Trm(k) is the life-line trm(k) parametrized by
the “proper time” of k.

Lemma 5.7. Assume that m and k are co-moving observers at q ∈ nF and trm(m) =
t ∩ Dom(fmm). Then the life-curve γ = Trm(k) of k is a local injection at q, it is
differentiable at t = q1 (in the ordinary sense) and γ′(t) = (1, 0, . . . , 0). I.e. Trm(m) and
Trm(k) are curves in a neighbourhood of t, they have the same tangent, and the inner
clocks of m and k tick with the same rate at t.

We are ready now for stating our main axiom for accelerated observers.

Axg At any point of the life-line of an observer k there is a co-moving inertial observer,
i.e.

(∀k ∈ Ob)(∀q ∈ trk(k))(∃m ∈ Ob ∩ Ib)comove(k, m, q) .

Claim 5.8. Assume Specrel. The co-moving inertial observer is unique in the following
sense. Assume that m and k are co-moving inertial observers at a point q. Then the
life-curves of m and k co-incide (i.e. m and k are always at the same place [at the origin]
and their clocks tick the same way), and moreover their coordinatizations of the world
differ only in an isometry of nF.

Lemma 5.9. Assume Specrel + Axg. Assume that h, k are co-moving observers at q.
Then, for any inertial observer m, the life-curves γ = Trm(h) and η = Trm(k) of h and k
respectively are “touching” curves at t = q1 with the same derivative γ′(t) = η′(t) = v
where the Minkowski-length of v is 1, i.e. |v2

1 − v2
2 − · · · − v2

n| = 1.

We note that v above is basically the so-called four-velocity (of e.g. k). By the above
lemma, the co-moving inertial observer is in intimate connection with the four-velocity.
(The four-velocity of an observer k at point q is defined as the space-time displacement
per unit of proper time along a straight-line approximation of the life-curve, see [18,
pp.49,50].)

Specrel+Axg is at the heart of the theory of accelerated observers, in some sense, cf.
e.g. [2, chapter 8] together with [18, chapter 6]. Some interesting statements of relativity
can be derived already from Specrel + Axg. Let Ax3+ be the extension of Ax3 to all
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observers, i.e. Ax3+ says that trk(k) ⊆ t for all observers k. Now, the Twin Paradox
can be naturally formulated and proved in Specrel + Ax3+ + Axg, if we assume that
our field F is the real line. Generalizing the last condition is up to future work. (Note
that the Twin Paradox does involve accelerated observers.) Similar observation applies
to the effect of gravity on clocks (also known as the Tower Paradox). For the time
being, more concrete formulations, details etc. are available in [2] using some axioms
extra to our present Specrel + Ax3+ + Axg. We conjecture that the axioms extra to
Specrel+Ax3+ +Axg can be either eliminated or significantly simplified. (Concerning
the above effect of gravity on clocks, we note that this effect is at the heart of the
“science-fiction”-like behaviour of certain black holes.)
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helpful comments on an earlier version. Thanks go to Victor Pambuccian for helpful
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