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1. Introduction

In his invited address at the 1912 International Congress of Mathematicians,
held in Cambridge, Edmund Landau (1912) gave a survey about developments
in the theory of prime numbers and the Riemann zeta-function. Besides this he
mentioned (without any further discussion) four specific problems about primes
which he considered as “unattackable at the present state of science”. The four
problems (in the original order) were the following

(1) Does the function u2 + 1 represent infinitely many primes for integer values
of u?

(2) Does the equality m = p + p′ have for any even m > 2 a solution?
(3) Does the equality 2 = p − p′ have infinitely many solutions in primes?
(4) Does there exist at least one prime between n2 and (n + 1)2 for any positive

integer n?
In the present work we will begin with some historical remarks referring to these

problems including the few results known in 1912 about those problems and analyse
the connections between the four problems. After this we will give a survey of the
most important results of the past nearly 100 years. We will discuss the results in
connection with Problems (2)–(4) in more detail and briefly those connected with
Problem 1 (Section 19), with special emphasis to recent developments concerning
various approximations of the Goldbach and Twin Prime Problems.

2. History of the problems and related results before 1912

Whereas the conjecture that there are infinitely many twin primes may originate
from the time of Euclid and Eratosthenes, it seems that it appeared first in print in
the work of de Polignac (1849), although in a more general form already. We know
much more about the origin of Goldbach’s Conjecture, however there are some
interesting (and partly not well known) facts to mention concerning its origin. In
a letter to Euler, written June 7, 1742, Goldbach formulated his conjecture in two
different forms. The first one asserted that

(2.1)
if a number N is the sum of two primes, then it
can be written as a sum of arbitrarily many primes.

In these formulations we have to keep in mind that in his time the number one was
considered to be a prime. The second formulation was interestingly found on the
margin of the same letter. This states that

(2.2) every number greater than 2 can be written as the sum of three primes.

Euler pointed out in his answer of June 30 that the first formulation of Goldbach’s
Conjecture follows from the conjecture that every even number can be written as
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the sum of two primes. As Euler remarks in his letter this latter conjecture was
communicated to him earlier orally by Goldbach himself. So it is really justified
to attribute the Binary Goldbach Conjecture to Goldbach. The correspondence of
Euler and Goldbach appeared already in 1843 (cf. Fuss (1843)). While the second
formulation (2.2) of Goldbach is clearly equivalent to the usual Binary Goldbach
Conjecture, this is not obvious with the first formulation (2.1). However, surpris-
ingly, this is really the case. Let us suppose namely that an even number 2k is the
sum of two primes. Then 2k is also a sum of three primes. One of it has to be even,
so 2k − 2 is also a sum of two primes. Continuing the procedure we see that every
even integer below 2k is the sum of two primes. Since all numbers of the form 2p
are sums of two primes, the usual Binary Goldbach Conjecture follows from the
existence of arbitrarily large primes.

Waring stated Goldbach’s Problem in 1770 (Waring (1770)) and added that
every odd number is either a prime or is a sum of three primes.

It is much less well known that Descartes formulated a related but not equivalent
conjecture much earlier than Goldbach since he died already in 1650. According
to this every even number is the sum of at most 3 primes. It is unclear why he
formulated this only for even integers, but it is very easy to show that this is
equivalent to the following, more natural version (where we do not consider one to
be prime):

Descartes’ Conjecture. Every integer greater than one can be written as the sum
of at most 3 primes.

Let us introduce the following

Definition. An even number is called a Goldbach number (their set will be denoted
by G further on) if it can be written as the sum of two primes.

Then it is easy to see that the Descartes’ Conjecture is equivalent to

(2.3) If N > 2 is even, then N ∈ G or N − 2 ∈ G.

It is worth remarking that (as one can easily derive from (2.3)) Descartes’ Con-
jecture is equivalent to a stronger form of it, namely

(2.4)
Every integer greater than 1 can be written as a sum of three primes,
where the third summand, if it exists, can be chosen as 2, 3 or 5.

Although Descartes’ Conjecture is not equivalent to Goldbach’s, the question
arises: could Euler or Goldbach be aware of Descartes’ Conjecture? Theoretically
yes, since some copies of his notes and manuscripts circulated in Europe. However,
the above two-line long conjecture was not included in his collected works which
appeared in 1701 in Amsterdam. It is only contained in the edition of Descartes
(1908), under Opuscula Posthuma, Excerpta Mathematica (Vol. 10, p. 298).

Apart from a numerical verification by Desboves (1855) up to 10,000 and Ripert
(1903) up to 50,000 actually no result was proved before Landau’s lecture. We have
to mention however the conjectural asymptotic formula of J. J. Sylvester (1871) for
the number P2(n) of representation of an even n as the sum of two primes:

(2.5) P2(n) ∼ 4e−γC0
n

log2 n

∏

p|n
p>2

(

1 +
1

p − 2

)

,
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where C0 is the so-called twin prime constant,

(2.6) C0 =
∏

p>2

(

1 − 1

(p − 1)2

)

= 0.66016 . . . .

Here and later p (as further on p′, p′′, pi) will always denote primes, P will denote
the set of all primes.

It was proved later by Hardy and Littlewood (1923) that this formula is definitely
not correct. They expressed the same conjecture with 4e−γC0 replaced by 2C0. By
now, we know that the analogue of (2.5) with 2C0 is true for almost all even
numbers.

The only area where some non-trivial results existed before Landau’s lecture was
Problem 4 about large gaps between primes. Bertrand (1845) stated the assertion
– called Bertrand’s Postulate – that there is always a prime between n and 2n. The
same assertion – also without any proof – appeared about 100 years earlier in one of
the unpublished manuscripts of Euler (see Narkiewicz (2000), p. 104). Bertrand’s
Postulate was proven already 5 years later by Čebyšev (1850). He used elementary
tools to show

(2.7) 0.92129
x

log x
< π(x) < 1.10555

x

log x
for x > x0,

where π(x) denotes the number of primes not exceeding x. Further on we will use
the notation

(2.8) dn = pn+1 − pn.

Čebyšev’s proof implies

(2.9) dn <

(

6

5
+ ε

)

pn for n > n0(ε).

The next step

(2.10) dn = o(pn)

was a consequence of the Prime Number Theorem (PNT)

(2.11) π(x) ∼ x

log x
∼ li x :=

x
∫

0

dt

log t
,

shown simultaneously using different arguments by J. Hadamard (1896) and de la
Vallée Poussin (1896).

The last step before 1912, the inequality

(2.12) dn < pn exp
(

−c
√

log pn

)

was a consequence of the Prime Number Theorem with remainder term

(2.13) π(x) = li x + O
(

x exp
(

−c
√

log x
)

)

,

proved by de la Vallée Poussin (1899).
Finally we mention that H. Brocard (1897) gave an incorrect proof of the closely

related conjecture that there exists a prime between any two consecutive triangular
numbers. This shows that Problem 4 of Landau was examined before 1912, although
in a slightly different form.
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As we mentioned already, the Twin Prime Conjecture appeared in print already
the first time in a more general form, due to de Polignac (1849):

(2.14)
Every even number can be written in an infinitude
of ways as the difference of two consecutive primes.

Kronecker (1901) mentioned the same conjecture (with reference to an unnamed
writer) in a weaker form as

(2.15)
Every even number can be expressed in an infinitude
of ways as the difference of two primes.

Maillet (1905) commented on de Polignac’s conjecture that

(2.16) Every even number is the difference of two primes.

When the even number is 2 or 4 then (2.14) and (2.15) are equivalent, otherwise
(2.15) is weaker than (2.14), while (2.16) is weaker than (2.15). The form (2.16) is
trivial for every concrete small even number and today we know its truth for almost
all even numbers. In strong contrast to this we do not know whether there is any
number for which (2.15) or (2.14) is true.

The Goldbach and Twin Prime Conjecture were mentioned in the celebrated
address of Hilbert at the International Congress of Mathematicians in Paris, 1900
(see Hilbert (1935)). In his Problem No. 8 he mentioned them together with the
Riemann Hypothesis, using the following words:

“After a comprehensive discussion of Riemann’s prime number formula we might
be some day in the position to give a rigorous answer on Goldbach’s Problem,
whether every even number can be expressed as the sum of two primes, further on
the problem whether there exist infinitely many primes with difference 2 or on the
more general problem whether the diophantine equation

(2.17) ax + by + c = 0

is always solvable in primes x, y if the coefficients a, b, c are given pairwise relatively
prime integers.”

There are close ties between Landau’s problems. These connections depend
strongly upon which formulation of the Conjectures (2.14)–(2.16) we consider. The
first two are really generalizations of the Twin Prime Conjecture, the third one,
(2.16) is obviously trivial if the difference is two. As the cited lines of Hilbert’s
lecture also indicate, both Goldbach’s Conjecture and the Twin Prime Conjecture
are special cases of linear equations of type (2.17) for primes. Using the formulation
of (2.16) there is really a very strong similarity between the equations p + p′ = N
and p − p′ = N for even values of N . In fact, most of the results for Goldbach’s
Conjecture are transferable to the other equation, too.

On the other hand, the Twin Prime Conjecture is also connected with Problem 4.
The former one refers to the smallest possible gaps between consecutive primes, the
latter one for the largest possible gaps.

Finally, the Twin Prime Conjecture and Problem 1 admit a common general-
ization, formulated first by A. Schinzel (Schinzel, Sierpiński 1958): if f1, . . . , fk are
irreducible polynomials in Z[X] and their product does not have a fixed factor, then
for infinitely many integers n all values fi(n) are prime. Bateman and Horn (1962)
formulated a quantitative form of it. The special case fi(x) = x + hi, hi ∈ Z of
Schinzel’s conjecture was formulated by L. E. Dickson (1904) more than a hundred
years ago, while the quantitative version of it is due to Hardy and Littlewood (1923).
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In the simplest case k = 2, Dickson’s conjecture is clearly equivalent to (2.15). On
the other hand, if k = 1 and f(x) = ax + h, then this is Dirichlet’s theorem (see
Dirichlet (1837). Landau’s Problem No. 1 is the simplest case of Schinzel’s conjec-
ture if k = 1 and deg f > 1. There is no single non-linear polynomial for which
we would know the answer for Schinzel’s conjecture, even for k = 1. However, if
primes are substituted by almost primes, then Schinzel’s conjecture is true in case
of k = 1 for an arbitrary polynomial f (see Section 19 for the case when f is an
irreducible polynomial).

According to the above connections between Landau’s problems we will organize
the material into four areas as follows (the first three discussed in detail, the fourth
one briefly):

(i) Large gaps between primes
(ii) Small gaps between primes and the prime k-tuple conjecture of Dickson,

Hardy and Littlewood
(iii) Goldbach’s Conjecture and numbers of the form N = p1 − p2

(iv) Approximations to Problem No. 1.

3. Upper bounds for large gaps between consecutive primes

As mentioned in Section 2, the only area where significant results existed before
1912, was the upper estimation of the differences dn = pn+1−pn. These estimations
were trivial consequences of the deep results (2.7), (2.11) and (2.13) concerning es-
timation and asymptotics of π(x). However, this approach has its natural limits.
The Riemann–Von Mangoldt Prime Number Formula (cf. Davenport (1980), Chap-
ter 17)

(3.1) ∆(x) := ψ(x) − x :=
∑

n≤x

Λ(n) − x = −
∑

|γ|≤T

x̺

̺
+ O

(

x log2 x

T

)

(where ̺ = β + iγ denotes the zeros of Riemann’s Zeta-function, T ≤ x and
Λ(n) = log p if n = pm, Λ(n) = 0 otherwise) tells us that any zero ̺ itself implies
an expected oscillation of size xβ/|̺| for the remainder term ∆(x). Answering a
question of Littlewood, this was proved rigorously in an effective way first by Turán
(1950), later in an improved form by Pintz (1980a) and in the sharpest (in some
sense optimal) form

(3.2) sup
x

|∆(x)|
xβ/|̺0|

≥ π

2
,

by Révész (1988).
The crucial observation, which helps to reach improvements of the estimate (2.12)

is, that subtracting the two formulas of type (3.1) for x + y and x we obtain

(3.3) ψ(x + y) − ψ(x) = y −
∑

|γ|≤T

(x + y)̺ − x̺

̺
+ O

(

x log2 x

T

)

and in (3.3) any single zero ̺ has only an effect of size

(3.4)
(x + y)̺ − x̺

̺
≤ min

(

2
(x + y)β

|̺| , yxβ−1

)

,

which is alone always inferior to y. So, unlike in the problem of estimating ∆(x)
as in (3.2), one single zero itself can never destroy everything. It is the number of
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zeros with large real part β and not too large imaginary parts |γ|, which influences
the estimation of dn. The earliest of such results, called today as density theorems,
was reached by Carlson (1920):

(3.5) N(α, T ) =
∑

ζ(̺)=0
β≥α,|γ|≤T

1 ≪ T 4α(1−α)+ε.

Based on this, Hoheisel (1930) could reach the first result of type

(3.6) dn ≪ pϑ1

n (ϑ1 < 1)

with the value ϑ1 = 1 − 1/33 000.
His result was improved later significantly as

ϑ1 = 3/4 + ε Čudakov (1936),
ϑ1 = 5/8 + ε Ingham (1937),
ϑ1 = 3/5 + ε Montgomery (1969),
ϑ1 = 7/12 + ε Huxley (1972).

The result of Ingham shows that we have always primes between n3 and (n+1)3 if
n is sufficiently large. These results all showed beyond (3.6) that the PNT is valid
in intervals of length xϑ1 .

(3.7) π(x + y) − π(x) ∼ y

log x

(

y = xϑ1

)

.

Riemann’s Hypothesis (RH) implies (cf. v. Koch (1901))

(3.8) ∆(x) ≪ √
x log2 x,

and thereby

(3.9) dn ≪ √
x log2 x.

This result was improved under RH by Cramér (1920) to

(3.10) dn ≪ √
x log x,

which still falls short of answering Landau’s question No. 4 positively, even suppos-
ing RH.

In the case of the unconditional estimates the exponent 7/12 is still the best
known one for which (3.7) holds. However, concerning (3.6), a breakthrough hap-
pened when Iwaniec and Jutila (1979) obtained by an ingenious combination of
analytic and sieve methods the result

(3.11) ϑ1 = 13/23.

A theoretical importance of the results of Iwaniec and Jutila was to overcome the
‘parity obstacle’ (to be discussed later in Sections 10–11) which in general prevents
sieve methods to reveal the existence of primes in a suitable set (cf. Greaves (2001)
p. 171).

The later developments all used both analytic and sieve methods and showed
similarly to Iwaniec and Jutila (1979) an inequality weaker than (3.7) but stronger
than (3.6), namely,

(3.12) π(x + y) − π(x) ≫ y

log x

(

y = xϑ1

)

.
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(3.13)

ϑ1 = 11/20 Heath-Brown, Iwaniec (1979),
ϑ1 = 17/31 Pintz (1981, 1984),
ϑ1 = 23/42 Iwaniec–Pintz (1984),
ϑ1 = 11/20 − 1/384 Mozzochi (1986),
ϑ1 = 6/11 Lou–Yao (1992, 1993),
ϑ1 = 7/13 Lou–Yao (1992, 1993),
ϑ1 = 107/200 Baker–Harman (1996).

Finally the best known result is

Theorem (Baker–Harman–Pintz (2001)). dn ≪ p
21/40
n .

If we are contented with results which guarantee the existence of primes in almost
all short intervals of type

(3.14) [x, x + y], y = xϑ2 ,

then the method of Huxley (1972) yields this with (3.7) for

(3.15) ϑ2 = 1/6 + ε.

Further, the combination of analytic and sieve methods lead to (3.12) in almost all
short intervals with

(3.16)

ϑ2 = 1/10 + ε Harman (1982)
ϑ2 = 1/14 + ε Ch. Jia (1995a), Watt (1995)
ϑ2 = 1/15 + ε H. Z. Li (1997)
ϑ2 = 1/20 + ε Ch. Jia (1996a).

These results will have later also significance in the examination of gaps between
consecutive Goldbach numbers in Section 14.

Landau’s Problem No. 4 can be approximated in other ways if primes are sub-
stituted by almost primes. We call an integer a Pr number if it has at most r
prime factors (counted with multiplicity). Already Viggo Brun (1920) showed that
there is a P11 number in any interval of type (x, x +

√
x) for x > x0 (consequently

between neighboring squares, if n > n0). After various improvements, J. R. Chen
(1975) showed this for P2 numbers, too.

Another approach is to show that we have a number n in every interval of type
(x, x +

√
x) such that the greatest prime factor of it

(3.17) P (n) > nc1

with a c1 < 1, possibly near to 1. The first and the last results of this type are

(3.18)
c1 = 15/26 = 0.5769 . . . Ramachandra (1969),

c1 = 0.738 H. Q. Liu, J. Wu (1999).

It is interesting to observe that if we consider the slightly larger interval [x, x +
x1/2+ε] then we have already numbers with much larger prime factors, namely
P (n) > nc2 , where again the first and the latest results are the following

(3.19)
c2 = 2/3 − ε Jutila (1973),

c2 = 25/26 − ε Ch. Jia, M. Ch. Liu (2000).

We mention that the methods leading to the strong results about P (n), use,
similarly to the work of Iwaniec and Jutila, a combination of analytic and sieve
methods including the linear sieve with Iwaniec’s bilinear expression of the error
term.
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4. The expected size of large gaps. Cramér’s probabilistic model

Empirical data suggest that the largest gaps between primes are much smaller
than the size dn < 2

√
pn which would imply Landau’s conjecture (and is of about

the same strength). It was Cramér who first used a probabilistic approach to predict
the size of the largest possible gaps between consecutive primes. His probabilistic
model (Cramér (1935, 1936)) is a good starting point to formulate conjectures about
the asymptotic behaviour of primes. Based on the Prime Number Theorem (2.11)
he defined the independent random variables ξ(n) for n ≥ 3 by

(4.1) P(ξn = 1) =
1

log n
, P(ξn = 0) = 1 − 1

log n
.

On the basis of his model he conjectured

(4.2) lim sup
n→∞

dn

log2 pn

= 1,

which would be true with probability 1 in his model.
This model would predict the truth of all four conjectures of Landau and seemed

to scope with our knowledge about primes when used for appropriate problems. The
Cramér model (CM) predicts namely asymptotically the same number of even and
odd primes below a given bound, which is clearly not true. That made no obstacle as
long as the mathematical community believed to know which are the appropriate
problems. Cramér’s model predicted the truth of PNT in short intervals of size
(log x)λ for any λ > 2, for example, that is, the relation (cf. (3.7))

(4.3) π(x + y) − π(x) ∼ y

log x
, y = (log x)λ, λ > 2.

It is naturally quite difficult to check numerically conjectures like (4.3) for all short
intervals for really large values of x. However, the general belief was that this is an
appropriate problem and CM can be applied to predict relations as (4.3) despite
the obvious deficiencies of the model. It was therefore a great surprise when Maier
(1985) showed that taking an arbitrarily large fix λ, the relation (4.3) will be always
false for suitable values xn, yn = (log xn)λ → ∞.

As explained in Granville (1994, 1995) the reason why CM makes a wrong pre-
diction for (4.3) is the same as mentioned already, the model does not contain the
trivial information that primes have no small divisors. If CM is corrected in the
way that all numbers having a divisor below a given parameter z = z(x)

(

with
log z(x)
log log x → ∞

)

are a priori excluded from the set of possible primes (and the re-

maining numbers are chosen with a probability proportional to 1/ log n), then the
contradiction discovered by Maier disappears. The corrected CM (CCM) will pre-
dict falsity of (4.3) for a suitable (rare) set of short intervals. On the basis of this
corrected model, Granville (1993) conjectures that (4.2) holds with 1 replaced by
2e−γ .

However, the present author has shown that any type of modification preserving
the independence of the variables ξn will still be in a ‘non-trivial’ contradiction
with the true distribution of primes. We have, namely, still a contradiction with
the global result

(4.4)
1

X

X
∫

0

(

π(x) −
∑

2<n≤x

1

log n

)2

dx ≪ X

log2 X
,
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valid on RH. If RH is not true, then we have a much more significant contradiction
with CM-type probabilistic models, since then we have much larger oscillation than√

X as shown by the result (3.2) of Révész. We remark that in case of existence of
zeros with β0 > 1/2, also the average size of the error is larger, as shown first by
Knapowski (1959) and later in a stronger form by Pintz (1980b, c).

What makes the contradiction between (4.4) and Cramér’s model more peculiar
is the fact that the result (4.4) was proved 15 years before the discovery of Cramér’s
model and the mathematician who showed (4.4) was Harald Cramér (1920) himself.

The theorem below shows that in order to avoid conflict with reality, our set from
which we choose our ‘possible primes’ (which was the set of numbers without prime

divisors of size O(logλ x) for any λ earlier) has to coincide nearly exactly with the
set of primes. Our freedom is just to add a thin set of composite numbers to the
primes whose cardinality is less than that of the primes by a factor at least c log x.
This means that any reasonable new model has to give up the simple condition of
independence.

Theorem 1 (J. Pintz (200?)). Let x be a large even number, I = (x/2, x]∩Z. Let
S∗

x be arbitrary with

(4.5) P∗
x := P ∩ I ⊆ S∗

x ⊆ I, A =
|I|
|S∗

x|
.

Let us define independent random variables ηn for all n ∈ I as

(4.6) ηn = 0 if n /∈ S∗
x;

while for n ∈ S∗
x let

(4.7) P(ηn = 1) =
A

log n
, P(ηn = 0) = 1 − A

log n
.

Then the truth of the relation

(4.8) D2

(

∑

n∈I

ηn

)

≪ x

log2 x

implies

(4.9) |S∗
x \ P∗

x | ≪
x

log2 x
.

5. Lower bounds for large gaps between primes. The Erdős–Rankin

Problem

The Prime Number Theorem (2.11) obviously implies

(5.1) λ := lim sup
n→∞

dn

log n
≥ 1.

This was improved to λ ≥ 2 by Backlund (1929) and λ ≥ 4 by Brauer, Zeitz
(1930). Soon after this, further improvements were made. Westzynthius (1931)
proved just one year later that λ = ∞, by showing

(5.2) lim sup
n→∞

dn

log pn log3 pn/ log4 pn
≥ 2eγ ,
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where logν x denotes the ν-fold iterated logarithmic function. Erdős (1935) suc-
ceeded to improve log log log pn to log log pn. More precisely, he proved

(5.3) lim sup
n→∞

dn

log pn log2 pn/(log2
3 pn)

> 0.

Rankin (1938) could add a further factor log4 pn to it:

(5.4) lim sup
n→∞

dn

log pn log2 pn log4 pn/(log2
3 pn)

≥ c0 with c0 = 1/3.

The value of c0 = 1
3 was increased to eγ by Ricci (1952) and Rankin (1962/63).

In 1979 Erdős offered a price of USD 10,000 for the proof that (5.4) is true with
c0 = ∞, the highest price ever offered by Erdős for any mathematical problem.
Two improvements of the constant c0 were reached in the past 28 years. Maier and
Pomerance (1990) showed this with c0 = 1.31 . . . eγ , while the best known result is
the following

Theorem (Pintz (1997)). (5.4) is true with c0 = 2eγ .

The usual way to find lower estimation for dn is by showing a lower estimate
for the function J(x) = max

n≤x
j(n), where j(n) stands for the maximal gap between

consecutive integers prime to n (Jacobstahl’s function).
The results before 1970 used Brun’s sieve and estimates of de Bruijn for the

number of integers below a given x composed of primes less than a suitably chosen
y = y(x). The work of Maier and Pomerance relied on deep analytic results about
the distribution of generalized twin primes in arithmetic progressions. Finally,
the work of the author needed beyond the tools of Maier and Pomerance a new
result about colorings of graphs, which was shown in Pintz (1997) by probabilistic
methods.

6. Small gaps between primes. Earlier results

Contrary to the uncertainty concerning the size of possible large gaps between
primes, the smallest possible gaps dn occurring infinitely often between consecutive
primes are generally believed to be 2, as predicted by the Twin Prime Conjecture.
Hence, we try to give upper estimates for the size of the small gaps in terms of pn.
Since the average value of dn is log pn by the Prime Number Theorem, analogously
to (5.1) we try to give upper bounds for the corresponding quantity

(6.1) ∆1 := lim inf
n→∞

dn

log pn
≤ 1.

The advance in case of the analogous problem of lower estimation of λ was rather
quick. One year after the first non-trivial estimate of Backlund (1929) the bound
λ ≥ 4, two years after it, λ = ∞ was reached. This was not the case with this
problem (cf. (6.7)). The first non-trivial result was reached 80 years ago: Hardy
and Littlewood (1926) showed

(6.2) ∆1 ≤ 2/3 on GRH

by the circle method, where GRH stands for the Generalized Riemann Hypothesis.
It was 14 years later that Rankin (1940) improved (6.2) to ∆1 ≤ 3/5, also assuming
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GRH. In the same year Erdős (1940) succeeded to obtain the first unconditional
estimate

(6.3) ∆1 < 1 − c

with an unspecified but explicitly calculable small positive constant c. He could
namely show that values of dn cannot accumulate too strongly around the mean
value log pn, since every even value 2k appears as a difference of two primes p1, p2

at most

(6.4) CS(2k)
N

log2 N



S(2k) :=
∏

p|k, p>2

(

1 +
1

p − 2

)





times for p1 = p2 + 2k ≤ N .
This result was improved by Ricci (1954) to ∆1 ≤ 15/16, later by Wang, Xie,

Yu (1965) to ∆1 ≤ 29/32.
A breakthrough came when Bombieri and Davenport (1966) refined and made

unconditional the method of Hardy and Littlewood by substituting the Bombieri–
Vinogradov theorem for the GRH and obtained ∆1 ≤ 1/2. They also combined
their method with that of Erdős to obtain

(6.5) ∆1 ≤ 2 +
√

3

8
= 0.4665 . . . .

Their result was further improved to

(6.6)

0.4571 . . . Pilt’ai (1972),

0.4542 . . . Uchiyama (1975),

0.4463 . . . Huxley (1973),

0.4425 . . . Huxley (1977),

0.4393 . . . Huxley (1984),

0.4342 Fouvry, Grupp (1986).

Finally, Maier (1988) succeeded to apply his celebrated matrix method to im-
prove Huxley’s estimate by a factor e−γ , where γ is Euler’s constant. He obtained

(6.7) ∆1 ≤ e−γ · 0.4425 · · · = 0.2484 . . . ,

which was the best result until 2005.
The method of Bombieri and Davenport (1966) was also suitable to give an

estimate for chains of consecutive primes. They showed

(6.8) ∆ν = lim inf
n→∞

pn+ν − pn

log pn
≤ ν − 1

2
,

which was improved by Huxley (1968/69, 1977) to

(6.9) ∆ν ≤ ν − 5

8
+ O

(

1

ν

)

.

Finally, similarly to the case ν = 1, Maier (1988) obtained an improvement by a
factor e−γ :

(6.10) ∆ν ≤ e−γ

(

ν − 5

8
+ O

(

1

ν

))

.
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The method of Huxley (1968/69) also yielded an extension of the result (6.9)
to small gaps between consecutive primes in an arithmetic progression of a fixed
difference q.

Finally we have to mention an important conditional result of Heath–Brown
(1983). He proved that the existence of Siegel zeros implies the Twin Prime Con-
jecture, and more generally that every even number can be expressed in infinitely
many ways as the difference of two primes. Naturally most mathematicians be-
lieve that there are no Siegel zeros. (The truth of GRH trivially implies this, for
example.) So there is not much hope to prove the Twin Prime Conjecture via
Heath-Brown’s result. However, this result means that if we try to prove the Twin
Prime Conjecture, or any weaker version of it as the Small Gap Conjecture or
Bounded Gap Conjecture (see Section 7), for example, then we are entitled to as-
sume that there are no Siegel zeros. In the light of the results of the next section
it is also interesting to note that both

(i) the existence of Siegel zeros, that is, extreme irregularities in the distribution
of primes in some arithmetic progressions (AP), and

(ii) improvements of the Bombieri–Vinogradov theorem, that is, a very regular
distribution of primes in most AP’s
imply the Bounded Gap Conjecture.

7. Small gaps between primes. Recent results

In the present section, extending the discussion of Section 2, we will formulate in
more detail several conjectures related to the Twin Prime Conjecture and describe
some recent results about them. All these results were reached in collaboration
with D. A. Goldston and C. Y. Yıldırım. The results of Section 6 raised the goal
to prove the

Small Gap Conjecture. ∆1 = 0,

as an approximation to the Twin Prime Conjecture. A much better approximation
would be to show the

Bounded Gap Conjecture. lim inf
n→∞

(pn+1 − pn) < ∞.

It turned out (as it often happens in mathematics) that in order to approach the
above weaker form of the Twin Prime Conjecture it is worth to examine the much
stronger generalizations of it, formulated in a qualitative form by Dickson (1904),
and in a quantitative form by Hardy and Littlewood (1923). Let H = {hi}k

i=1 be
a set composed of k distinct non-negative integers, and let us examine whether we
have infinitely many natural numbers n such that all n + hi are simultaneously
primes, that is

(7.1) {n + hi}k
i=1 ∈ Pk i.o.,

where i.o. stands for infinitely often.
Dickson (1904) formulated the conjecture that if a trivial necessary condition is

true for H, then (7.1) really happens for infinitely many values n. The condition is
that the number νp(H) of residue classes covered by H mod p should satisfy

(7.2) νp(H) < p for every prime p.

Such sets H are called admissible. Hardy and Littlewood (1923) examined also the
frequency of values n for which (7.1) is expected to be true. They arrived through
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an analytic way at the conjecture that

(7.3)
∑

n≤N

{n+hi}∈Pk

1 ∼ S(H)
N

logk N
,

where S(H) is the so-called singular series, the convergent non-negative product
defined by

(7.4) S(H) :=
∏

p

(

1 − νp(H)

p

)(

1 − 1

p

)−k

.

It is easy to show that

(7.5) S(H) > 0 ⇐⇒ H is admissible.

A heuristic reasoning was provided by Pólya (1959) for the validity of (7.3) on
a probabilistic basis (at least for k = 2). If the probabilities

(7.6) n + hi ∈ P, n + hj ∈ P
would be pairwise independent, we would obtain (7.3) without the extra factor
S(H). However, for a fixed p we have

(7.7) P
(

p ∤ (n + hi), i = 1, 2, . . . , k
)

= 1 − νp(H)

p

in contrast to (1 − 1/p)−k, which would be the probability if the events p | n + hi,
p | n + hj would be pairwise independent. Hence we have to multiply the naive
probability (log N)−k with the product of all the correction factors mod p: this is
exactly the quantity S(H) in (7.4).

Since the conjecture about the infinitude of prime k-tuples is usually associated
by the names of Hardy and Littlewood and they were the first who examined it in
greater detail, we will define the qualitative form of it as

Hardy–Littlewood–Dickson (HLD) Conjecture. If H = {hi}k
i=1 is admissi-

ble, then all components n+hi are simultaneously primes for infinitely many natural
numbers n.

Since this conjecture is extremely deep, we will formulate an easier version of it
as

HLD(k, ν) Conjecture. If H = {hi}k
i=1 is admissible, then there are at least ν

primes among {n + hi} for infinitely many values of n.

In order to see the depth of this we may remark that if there is any k, ν ≥ 2 and
any single H = {hi}k

i=1 for which the above conjecture is true, then the Bounded
Gap Conjecture is obviously also true.

In the next section we will sketch an almost successful attempt to prove
HLD(k, 2) for sufficiently large values of k, which will, however, yield the truth
of the Short Gap Conjecture. The method will also yield HLD(k, 2) for sufficiently
large values k > k(δ) and thus the Bounded Gap Conjecture if the Bombieri–
Vinogradov Theorem can be improved as to include arithmetic progressions with
differences up to X1/2+δ with a fixed δ > 0. We will introduce the
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Definition. We say that ϑ is an admissible level of the distribution of primes if for
any A > 0, ε > 0 we have

(7.8)
∑

q≤Xϑ−ε

max
a

(a,q)=1

∣

∣

∣

∣

∑

p≡a(q)

log p − X

ϕ(q)

∣

∣

∣

∣

≪ε,A
X

(log X)A
.

By the Bombieri–Vinogradov theorem (Bombieri (1965), A. I. Vinogradov
(1965)) the number ϑ = 1/2 is an admissible level. The Elliott–Halberstam Con-
jecture (EH) asserts that ϑ = 1 is an admissible level (see Elliott–Halberstam
(1968/69)).

The following results are proved in Goldston–Pintz–Yıldırım (200?):

Theorem 2 (Goldston–Pintz–Yıldırım (200?)). If the primes have an admissible
level ϑ > 1/2 of distribution, then for k > C(ϑ) any admissible k-tuple contains at
least two primes infinitely often. If ϑ > 0.971, then this is true for k ≥ 6.

Since the 6-tuple (n, n+4, n+6, n+10, n+12, n+16) is admissible, the Elliott–
Halberstam (EH) Conjecture implies

(7.9) lim inf
n→∞

dn ≤ 16,

that is, pn+1 − pn ≤ 16 for infinitely many n. Unconditionally we are able to show
the truth of the Short Gap Conjecture.

Theorem 3 (Goldston–Pintz–Yıldırım (200?)). ∆1 = lim inf
n→∞

(dn/ log pn) = 0.

(For a simplified but self-contained proof of this assertion see Goldston–
Motohashi–Pintz–Yıldırım (2006).)

Remark. We have to mention here that the HLD(k, 2) Conjecture is for any given
value of k in some sense much stronger than its immediate consequence, the
Bounded Gap Conjecture. Let us return, namely, for the three different analogues
of the twin prime conjecture, given in (2.14)–(2.16), more specially to the formu-
lation (2.15) of Kronecker. Let us denote by K the set of all even integers which
can be expressed in an infinitude of ways as the difference of two primes. Although
we believe that every even integer belongs to K (as formulated in (2.15)), even the
assertion that K 6= ∅ is very deep. The following assertion is trivial:

Proposition 1. K 6= ∅ is equivalent to the Bounded Gap Conjecture.

On the other hand it is easy to show

Proposition 2. If the HLD(k, 2) Conjecture is true for any given k then the lower
asymptotic density of K, d(K) > c(k), with an explicitly calculable positive constant
c(k), depending only on k.

The same approach yields more generally for blocks of consecutive primes the
following

Theorem 4 (Goldston–Pintz–Yıldırım (200?)). If the primes have an admissible
level ϑ of distribution, then for ν ≥ 2 we have

(7.10) ∆ν ≤
(√

ν −
√

2ϑ
)2

,

in particular we have on EH

(7.11) ∆2 = lim inf
n→∞

pn+2 − pn

log pn
= 0.



LANDAU’S PROBLEMS ON PRIMES 15

It is also possible to combine Maier’s method with the method of Goldston–
Pintz–Yıldırım (200?) to obtain an improved form of the result (6.10) of Maier, gen-
eralized for arithmetic progressions, where, beyond the results of Huxley (1968/69)
we may allow q to tend (slowly) to infinity with N .

Theorem 5 (Goldston–Pintz–Yıldırım (2006)). Let ν be an arbitrary fixed positive
integer. Let ε and A be arbitrary fixed positive numbers. Let q and N be arbitrary,
sufficiently large integers, satisfying

(7.12) q0(A, ε, ν) < q < (log log N)A, N > N0(A, ε, ν),

and let a be arbitrary with (a, q) = 1. Let p′1, p
′
2, . . . denote the consecutive primes

≡ a(mod q). Then there exists a block of ν + 1 primes p′n, . . . , p′n+ν such that

(7.13)
p′n+ν − p′n
ϕ(q) log p′n

< e−γ
(√

ν − 1
)2

+ ε, p′n ∈ [N/3, N ].

Consequently,

(7.14) ∆ν(q, a) := lim inf
n→∞

p′n+ν − p′n
ϕ(q) log p′n

≤ e−γ
(√

ν − 1
)2

,

and in particular

(7.15) ∆1(q, a) = 0.

The above results left open the quantitative question: how can we estimate dn

as a function of pn from above, beyond the relation dn = o(log pn) infinitely often
⇐⇒ ∆1 = 0. We mentioned that we are not able to show dn ≤ C infinitely often,
for example. However, we were able to substantially refine the methods of proof of
∆1 = 0 as to yield the following result.

Theorem 6 (Goldston–Pintz–Yıldırım (200??)).

(7.16) lim inf
n→∞

dn

(log pn)1/2(log log pn)2
< ∞.

We may remark that although the result ∆1 = 0 was proved 75 years later than
the analogous λ = ∞ (cf. (5.2)), our present understanding (7.16) of small gaps is
much better than of large gaps (cf. (5.4)).

8. The ideas of the proof on the small gaps

The idea is based on a variant of Selberg’s sieve, which appears in connection
with almost primes in Selberg (1991) in the special case k = 2, and for general k
in Heath-Brown (1997).

We can sketch the ideas leading to Theorems 2 and 3 as follows.
Step 1. Instead of the special problem of twin primes we consider the general

problem of Dickson: we try to show that for any admissible set H = {hi}k
i=1 we

have infinitely many k-tuples of primes in {n + hi}k
i=1, that is

(8.1) {n + hi}k
i=1 ∈ Pk i.o.

The simultaneous primality of all components n + hi is essentially equivalent to

(8.2) Λ(n;H) :=
∑

d|PH(n)

µ(d)
(

log
n

d

)k

6= 0 i.o.,
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where

(8.3) PH(n) =

k
∏

i=1

(n + hi),

since the generalized von Mangoldt function Λ(n;H) detects numbers PH(n) with
at most k different prime factors. If we would be able to evaluate for any fixed
tuple H the average of Λ(n;H) for n ∈ (N, 2N ], that is, n ∼ N , this could answer
our question. Unfortunately this is not the case, especially due to the large divisors
d of PH(n).

Step 2. As usual in sieve theory we try to approximate the detector function
Λ(n;H) of the prime k-tuples by the truncated divisor sum

(8.4) ΛR(n;H) :=
∑

d|PH(n)
d≤R

µ(d)

(

log
R

d

)k

.

In this case we can evaluate the average of ΛR(n;H) for n ∼ N if R ≤
N(log N)−B0(k). However, we do not obtain any direct arithmetic information from
this. The reason for this is that, although we believe that ΛR(n;H) and Λ(n;H)
are on average close to each other, we have no means to prove this. Further, the
sum (8.4) might take negative values too, which is a handicap for us.

Step 3. More generally we look for non-negative weights (depending on the given
set H, |H| = k)

(8.5) a(n) ≥ 0 for n ∼ N, A :=
∑

n∼N

a(n) > 0, w(n) =
a(n)

A
,

such that the average number of primes of the form n + hi,

(8.6) E(N ;H) =

k
∑

i=1

∑

n∼N

w(n)χP(n + hi)

should be as large as possible, where χP(n) is the characteristic function of primes,

(8.7) χP(n) = 1 if n ∈ P, χP(n) = 0 otherwise.

If we obtain

(8.8) E(N ;H) > 1 for N > N0

(or at least for a sequence N = Nν → ∞), we showed that there are at least two
primes in the given k-tuple. If we obtained

(8.9) E(N ;H) > k − 1 for N = Nν → ∞,

then we would prove the HLD prime k-tuple conjecture for the given k-tuple. Some
candidates for a(n) are the following:

(8.10)

a1(n) = 1 =⇒ E(N,H) ∼ k

log N
(N → ∞)

a2(n) = χP(n + hj) with a given j =⇒ E(N ;H) ≥ 1

a3(n) = 1 if {n + hi}k
i=1 ∈ Pk ?

a′
3(n) = Λ(n,H) ?
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The first choice of the uniform weights a1(n) shows the difficulty of (8.8). Al-
though a2(n) yields nearly (8.8), we have no idea how to proceed further. The
other two, nearly equivalent choices a3(n) and a′

3(n) could lead to (8.9) (in fact in
case of a3(n) we would obtain E(N,H) = k) if we had

(8.11) A3(N) =
∑

n∼N

a3(n) > 0, resp.
∑

n∼N

a′
3(n) > 0.

However, A3(N) > 0 for N = Nν → ∞ is trivially equivalent to the HLD conjecture.
So all these obvious choices look clearly dead-ends. Nevertheless, our final choice
will still originate from a′

3(n). As we have seen in Step 2, the truncated version
ΛR(n,H) of a′

3(n) can be evaluated on average and we believe that it is close to
a′
3(n) in some sense. Since it does not fulfill the non-negativity condition, we can

try to square it and examine

(8.12) a4(n) = Λ2
R(n;H).

We can still evaluate their sum A4(N) asymptotically, but, due to the squaring,
only for

(8.13) R ≤ N1/2(log N)−B1 B1 = B1(k).

If we restrict R further to

(8.14) R = Nϑ/2−ε

where ϑ is an admissible level for the distribution of primes (cf. (7.8)), we can also
evaluate

(8.15) Ei(N,H) :=
∑

n∼N

w4(n)χP(n + hi) =
ϑ − ε0(k)

k
.

This yields

(8.16) E(N,H) = ϑ − ε0(k), lim
k→∞

ε0(k) = 0,

which is much better than the result k/ log N at the uniform measure, but still less
than 1, even supposing EH, that is, ϑ = 1. (However, as we will see later, this
approach could already yield ∆1 = 0 on EH with some additional ideas.)

Step 4. Since we would be very happy to find at least two primes in the k-
tuple {n+hi}k

i=1 for infinitely many n, there is no compelling (heuristic) reason to
restrict our attention for the approximation of the detector function Λ(n,H) (cf.
(8.2)) of prime k-tuples. We can try also to approximate the detector function of
those values n for which

(8.17) ω
(

PH(n)
)

= ω

( k
∏

i=1

(n + hi)

)

≤ k + ℓ, 0 ≤ ℓ < k − 2,

where ℓ is a free parameter, to be chosen later. This leads to the weight

(8.18) a5(n) = Λ2
R(n;H, ℓ) :=

(

∑

d|PH(n)
d≤R

µ(d)

(

log
R

d

)k+ℓ
)2

.

This approximation is twice as good as a4(n) in the sense that under the mild
restriction

(8.19) ℓ = ℓ(k) → ∞, ℓ = o(k),
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we obtain on average twice as many primes as in Step 4. Namely, supposing (8.19)
with these weights we obtain in place of (8.16)

(8.20) E(N,H) = 2ϑ − ε1(k, ℓ), lim
k→∞

ε1(k, ℓ) = 0.

If ϑ > 1/2 we immediately obtain (8.8), which implies Theorem 2. However,
unconditionally we must take ϑ = 1/2, so we have only

(8.21) E(N,H) = 1 − ε1(k, ℓ),

which is still weaker than the result by the trivial choice a2(n).
Step 5. We missed by a hairbreadth an unconditional proof of the existence of

at least two primes in any k-tuple which implies the Bounded Gap Conjecture, but
what about the Small Gap Conjecture, ∆1 = 0? The fact that we obtained on
average already 1 − ε1(k, ℓ) primes is of crucial importance. We missed the proof
of the Bounded Gap Conjecture but the primes we found during our trial are still
there. If we can collect more than ε1(k, ℓ) primes on average among

(8.22) n + h, 1 ≤ h ≤ H := η log N, h 6= hi,

where η > 0 is an arbitrary fixed parameter, then we obtain ∆1 = 0. Since the
weights a5(n) are not specially sensible for the primality (or prime divisors) of n+h
for h 6= hi, we can expect, similarly to the uniform distribution a1(n), to obtain on
average

(8.23)
∑

n∼N

w5(n)χP(n + h) ∼ 1

log N

primes for any h 6= hi. This would yield in total on average

(8.24) ∼ H − k

log N
∼ H

log N
= η > ε1(k, ℓ) if k > k0(η)

new primes among n + h for h ∈ [1,H], h 6= hi.
This heuristic works in practice too, with a slight change. Although (8.23) is not

true in the exact form given above, we can show the similar relation (h 6= hi)

(8.25)
∑

n∼N

w5(n)χP(n + h) ∼ S(H ∪ {h})
S(H)

· 1

log N
(N → ∞).

After this, in order to show ∆1 = 0, it is sufficient to show

(8.26)
1

X

X
∑

h=1

S(H ∪ {h})
S(H)

≥ C(H) X > X0(H)

for at least one choice of an admissible H, |H| = k for any k (or for a series kν → ∞).
Let us choose H as

(8.27) P =
∏

p≤3k

p, hi = iP, i = 1, 2, . . . , k.

Then we have for any given even h

(8.28) ν′(p) := νp(H ∪ {h}) ≤ νp(H) + 1 := ν(p) + 1 ≤ k + 1,
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(8.29)

S(H ∪ {h})
S(H)

≥
∏

2<p≤3k

1 − 2
p

(

1 − 1
p

)2

∏

p>3k

1 − ν(p)+1
p

(

1 − ν(p)
p

) (

1 − 1
p

)

≥
∏

2<p≤3k

(

1 − 1

(p − 1)2

)

∏

p>3k

1

1 + ν(p)
p(p−1−ν(p))

≥
(

2C0 + ok(1)
)

exp

(

−
∑

p>3k

k

p2/2

)

≥ 2C0 + ok(1),

which clearly proves (8.26) with C(H) = C0 = 0.66 . . . (cf. (2.6)). We remark
that it is also easy to show (8.26) for any fixed admissible H and with the better
lower estimate 1 + ok(1). However, the exact analogue of (8.29) is not true for
all admissible tuples H, although some similar estimate can be given if H ∪ {h}
is admissible. To have an idea about (8.26) for general H we may note that the
contribution of primes with p > 3k is for any single h at least 1+ok(1), as in (8.29).
On the other hand, the contribution of the primes p ≤ 3k to the left-hand side of
(8.29) depends only on h modulo

(8.30) P0 = P0(3k) =
∏

p≤3k

p,

and for a full period we have the average (with νp(H) = ν(p))
(8.31)

1

P0

P0
∑

p=1

∏

p≤3k

1 − νp(H∪{h})
p

(

1− ν(p)
p

) (

1− 1
p

) =
∏

p≤3k

(

1− ν(p)
p

) (

1− ν(p)+1
p

)

+ ν(p)
p

(

1− ν(p)
p

)

(

1 − ν(p)
p

) (

1 − 1
p

) = 1.

We remark that changing the above argument slightly even the dependence of ok(1)
on k can be omitted and we can prove for any given H and k

(8.32) lim inf
X→∞

1

X

X
∑

h=1

S(H ∪ {h})
S(H)

≥ 1.

9. Linear equations with almost primes

In Section 3 we mentioned the work of Brun (1920), according to which Problem 4
is true if primes are substituted by almost primes of the form P11 (that is, numbers
with at most 11 prime factors). In the same work Brun showed the first significant
results concerning the Goldbach and Twin Prime Conjectures. Using his sieve
method he was able to prove that

(9.1) P9 = P ′
9 + 2 infinitely often

and that all even numbers N > 2 can be expressed as

(9.2) N = P9 + P ′
9.

Brun’s sieve was used later to show several results of similar type, where by
{a, b} we abbreviate the assertion that every large even integer can be written as
a sum of type Pa + Pb. The same method leads to results of type Pa = Pb + 2 or
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Pa = Pb + 2d for every integer d

(9.3)

{7, 7} H. Rademacher (1924),
{6, 6} T. Estermann (1932),
{5, 7}, {4, 9}, {3, 15} {2, 366} G. Ricci (1936, 1937),
{5, 5} A. A. Buhštab (1938),
{4, 4} W. Tartakowski (1939a, 1939b),

A. A. Buhštab (1940).

These results were further improved by the weighted sieve of P. Kuhn (1941)
who was able to show in that and later works (cf. Kuhn (1953, 1954)) that every
even number can be written as a sum of two numbers having altogether at most 6
prime factors.

The first result where at least one of the summands could be taken as a prime
{1,K} was proved by A. Rényi (1947, 1948) using Linnik’s large sieve. (Here K
was a large unspecified constant.) The main novelty of the method was that he
(essentially) showed that primes have a positive distribution level (cf. Section 7).

A few years later Selberg (1950) noted that his sieve can yield {2, 3} without
working out the details. In fact, the results below were reached by Selberg’s sieve:

(9.4)
{3, 4} Wang Yuan (1956),
{3, 3} A. I. Vinogradov (1957),
{2, 3} Wang Yuan (1958).

For the detailed proof of Selberg see Selberg (1991).
The next developments were based on the method introduced by Rényi. The

distribution level of primes was proved to be at least ϑ = 1/3, later 3/8 by Pan
Cheng Dong and Barban. These results led to the strong approximation of the
Goldbach and Twin Prime Conjectures as

(9.5)
{1, 4} Pan Cheng Dong (1962, 63), M. B. Barban (1963),
{1, 3} A. A. Buhštab (1965).

The celebrated Bombieri–Vinogradov theorem, the level ϑ = 1/2 (cf. (7.8)) en-
abled a simpler proof of Buhštab’s result {1, 3}, but did not yield K = 2.

The presently best known results were reached by Jing Rum Chen (1966, 1973).
He used a form of Kuhn’s weighted sieve, the switching principle and the newly
invented Bombieri–Vinogradov theorem to show

Chen’s Theorem. Every sufficiently large even integer can be written as a sum of
a prime and a P2 number. Further, every even number can be written in infinitely
many ways as the difference of a prime and a P2 number.

10. Small gaps between products of two primes. The

Hardy–Littlewood–Dickson Conjecture for almost primes

Chen’s theorem (see Section 9) showed that at least one of the equations
(p, p′, pi ∈ P)

p + 2 = p′,(10.1)

p + 2 = p1p2(10.2)

has infinitely many solutions. The phenomenon that we cannot specify which one
of the two equations (10.1) and (10.2) has infinitely many solutions (in reality most
probably both) is the most significant particular case of the parity problem. This is
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a heuristic principle (observed and formulated by Selberg in the 1950’s, see p. 204 of
Selberg (1991) for example) stating that sieve methods cannot differentiate between
integers with an even and odd number of prime factors.

Whereas Chen’s theorem is relatively close to the Twin Prime Conjecture, it
might be surprising to note that the seemingly much easier assertion that for in-
finitely many primes p, p + 2 has an odd (or even) number of prime factors, is still
open. The reason for it is the parity obstacle (cf. Hildebrand (2002)).

According to this, until very recently, problems involving numbers with exactly
two distinct prime factors seemed to be as difficult as problems involving primes.
We will introduce the

Definition. We call a natural number an E2-number if it is the product of two
distinct primes.

Denoting the consecutive E2-numbers by q1 < q2 < . . . we may remark that the
analogue of ∆1 = 0 (cf. (6.1)), the relation

(10.3) lim inf
n→∞

qn+1 − qn

log qn/ log log qn
= 0

was not known (the function in the denominator corresponds to the average distance
between E2-numbers as the function log p in case of primes).

In collaboration with D. Goldston S. W. Graham, C. Y. Yıldırım (Goldston,
Graham, Pintz, Yıldırım 200?, 200?? to be abbreviated later by GGPY 200? and
GGPY 200??) we examined various problems. The results obtained (cf. the present
and the next section) showed that the method of Section 8 is suitable to discuss
these problems as well. We are not only able to prove analogous results for E2

numbers, but we obtain much stronger ones. For the difference of E2 numbers we
obtained the analogue of the Bounded Gap Conjecture in the following strong form.

Theorem 7 (GGPY 200?). lim inf
n→∞

(qn+1 − qn) ≤ 6.

Let us consider more generally the appearance of almost primes in admissible
k-tuples, the qualitative analogue of the Hardy–Littlewood–Dickson (HLD) conjec-
ture for almost primes. (As we will see, Theorem 7 is the consequence of such a
result – Theorem 9 – as well.) Chen’s theorem (Section 9) gives a complete answer
(for the qualitative case) for any integer d, we have

(10.4) p + 2d ∈ P2 i.o.

This trivially implies that we have infinitely often at least two P2 numbers in
any admissible k-tuple. In other words, the HLD(k, 2) Conjecture, formulated in
Section 7 is true for P2 numbers for any k ≥ 2.

We will examine the problem, whether we can guarantee for every ν the existence
of ν P2-numbers (or at least ν Pr-numbers with a given fixed r, independent of ν)
in any admissible k-tuple if k is sufficiently large, that is, k ≥ C0(ν).

Such a result seems to be unknown for any fixed value of r. The strongest result
in this direction is due to Heath-Brown (1997). He showed for any admissible
k-tuple {hi}k

i=1

(10.5) max
1≤i≤k

ω(n + hi) < C log k,

where ω(n) stands for the number of distinct prime divisors of n.
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Our method enables us to prove that the HLD(k, ν) Conjecture is true for k >
C(ν) if primes are replaced by E2-numbers (or Er-numbers, for any fixed r). This
will imply the existence of infinitely many blocks of ν consecutive E2-numbers with
a bounded diameter (depending on ν) for any given ν. We remark that in case of
primes we cannot prove ∆ν = 0 if ν > 2 (cf. (6.8)) and Theorem 5). In case of
ν = 2 we were able to show ∆2 = 0 (but not bounded gaps pn+2 − pn i.o.) only
under the very deep Elliott–Halberstam Conjecture (cf. (7.10)–(7.11)).

We can prove the result in a more general form. Let

(10.6) Li(x) = aix + bi (1 ≤ i ≤ k) ai, bi ∈ Z, ai > 0

be an admissible k-tuple of distinct linear forms, that is, we suppose that
∏

Li(x)
has no fixed prime divisor.

Theorem 8 (GGPY 200?). Let D be any constant, Li(x) as above. Then there are
ν + 1 forms among them, which take simultaneously E2-numbers with both prime
factors above D if

(10.7) k ≥ C1(ν) = (e−γ + o(1))eν .

Corollary. lim inf
n→∞

(qn+ν − qn) ≤ C2(ν) = (e−γ + o(1))νeν .

Theorem 8 does not specify how many forms we need, to find among them ν +1
E2-numbers for given small values of ν. The most important particular case is the
following, which clearly implies Theorem 7.

Theorem 9 (GGPY2). Let Li(x) be an admissible triplet of linear forms. Among
these there exist two forms Li, Lj such that Li(n) and Lj(n) are both E2-numbers
infinitely often.

11. Small gaps between almost primes and some conjectures of

Erdős on consecutive integers

Erdős had many favourite problems on consecutive integers (see the work of
Hildebrand (2002)). Let us denote by Ω(n) and ω(n), resp., the number of prime
factors of n with and without multiplicity. Let d(n) stand for the divisor-function.

The celebrated Erdős–Mirsky (1952) Conjecture refers to the divisor function,
the others to consecutive values of Ω and ω.

Conjecture 1 (Erdős–Mirsky). d(x) = d(x + 1) infinitely often.

Conjecture 2 (Erdős (1983)). Ω(x) = Ω(x + 1) infinitely often.

Conjecture 3 (Erdős (1983)). ω(x) = ω(x + 1) infinitely often.

These conjectures would follow from the Twin Prime Conjecture with x + 1
replaced by x + 2 in the following sharp form:

(11.1) d(x) = d(x + 2) = 2, Ω(x) = Ω(x + 2) = ω(x) = ω(x + 2) = 1 i.o.

In their original forms Conjectures 1–3 would follow from an analogue of the
conjecture of Sophie Germain. Sophie Germain conjectured that 2p + 1 ∈ P for
infinitely many primes p. It is possible to show by Chen’s method that, similarly
to (10.1)–(10.2), either

(11.2) 2p + 1 ∈ P
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or

(11.3) 2p + 1 = p1p2 pi ∈ P
is true for infinitely many primes p. Now if (11.3) itself holds infinitely often, then
C1–C3 hold, namely,

(11.4) d(2p) = d(2p + 1) = 4, ω(2p) = Ω(2p) = Ω(2p + 1) = ω(2p + 1) = 2.

Due to this connection also Conjectures C1–C3 were considered extremely diffi-
cult, if not hopeless. (Problem 11.3 is believed to be of the same depth as the Twin
Prime Conjecture, as remarked by Hildebrand (2002)).

It was a great surprise when C. Spiro (1981) could prove

(11.5) d(n) = d(n + 5040) i.o.

Independently of (11.5) Heath-Brown (1982) found a conditional proof of C2
under EH. Finally he succeeded (Heath-Brown (1984)) to show C1 unconditionally
using the ideas of Spiro in combination with significant new ideas of himself.

His method led also to C2, but C3 remained open. C3 was proved just recently
by J.-C. Schlage-Puchta (2003/2005). His method involved both theoretical and
computational methods.

An important feature of all these results were, as pointed out by Heath-Brown
(1982) in connection with the conditional solution of C2: ‘It should be noted at
this point that in solving Ω(n) = Ω(n+1) we shall not have specified Ω(n), or even
the parity of Ω(n). Thus we avoid the parity problem, rather than solve it.’

Our Theorem 9 yields in a rather quick way a new solution of Conjectures C1–
C3 with the additional advantage that we can solve them even if the common
consecutive value of f(n) = f(n + 1) (f = d,Ω or ω) is specified.

More precisely we can prove

Theorem 10 (GGPY 200??). For any A ≥ 3 we have ω(n) = ω(n + 1) = A, i.o.

Theorem 11 (GGPY 200??). For any A ≥ 4 we have Ω(n) = Ω(n + 1) = A, i.o.

Theorem 12 (GGPY 200??). For any 24 | A we have d(n) = d(n + 1) = A, i.o.

Conjectures C1–C3 are also interesting if the shift 1 is replaced by 2 or by a
general shift b ∈ Z+, that is, the problem, whether

(11.6) f(n) = f(n + b)

holds infinitely often if f = d,Ω or ω.
These results were proved by C. Pinner (1997) for every value b using an inge-

nious extension of Heath-Brown’s method for f = d and Ω. Y. Buttkewitz (2003)
extended Puchta’s result for f = ω and for infinitely many integer shifts b.

Our methods yield a full extension of the results for f = ω and Ω with specified
common values of f(n) = f(n+b) = A and a partial extension for d(n) = d(n+b) =
A.

Theorem 13 (GGPY 200??). If b ∈ Z+, A ≥ 4, then Ω(n) = Ω(n + b) = A, i.o.

Theorem 14 (GGPY 200??). If b ∈ Z+, A ≥ A(b), then ω(n) = ω(n + b) = A,
i.o.

Theorem 15 (GGPY 200??). If b ∈ Z+, b 6≡ 15 (mod 30), 48 | A, then d(n) =
d(n + b) = A, i.o.
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We will show below the simple deduction of Theorem 10 from Theorem 9 in the
most important case A = 3. We consider the admissible system

(11.7) 18m + 1, 24m + 1, 27m + 1

and the relations

(11.8)

3(18m + 1) = 2(27m + 1) + 1,

4(18m + 1) = 3(24m + 1) + 1,

9(24m + 1) = 8(27m + 1) + 1.

Since by Theorem 9 at least two of the forms in (11.7) will be simultaneously
E2-numbers not divisible by 2 and 3 for infinitely many values m, we obtain by
(11.8) a sequence xi → ∞ with

(11.9) ω(xi) = ω(xi + 1) = 2 + 1 = 3.

The case of a general A > 3 can be deduced in a similar way from Theorem 9
with some additional ideas.

12. The exceptional set in Goldbach’s Problem

Hardy and Littlewood (1924) examined the problem whether one can bound from
above the number E(X) of Goldbach exceptional even numbers below X, which
cannot be expressed as a sum of two primes, i.e.

(12.1) E(X) = |E| =
∣

∣{n ≤ X, 2 | n, n 6= p + p′}
∣

∣.

They attacked the problem with the celebrated circle method, invented by Hardy,
Littlewood and Ramanujan. They could not prove any result unconditionally. How-
ever, they showed

(12.2) E(X) ≪ X1/2+ε

under the assumption of GRH. This result is even today the best conditional
one, apart from the improvement of Goldston (1989/1992) who substituted Xε

by log3 X.
The first unconditional estimate of type E(X) = o(X) was made possible more

than a decade later by the method of I. M. Vinogradov (1937) which yielded the
celebrated Vinogradov’s three prime theorem. This theorem states that every suf-
ficiently large odd number can be written as a sum of three primes.

Thus, using Vinogradov’s method, van der Corput (1937), Estermann (1938)
and Čudakov (1938) simultaneously and independently proved the unconditional
estimate

(12.3) E(X) ≪A X(log X)−A for any A > 0.

This shows that Goldbach’s Conjecture is true in the statistical sense that almost
all even numbers are Goldbach numbers. The above result was the best known for
35 years when Vaughan (1972) improved it to

(12.4) E(X) ≪ X exp
(

−c
√

log X
)

.

Just three years later Montgomery and Vaughan (1975) succeeded to show the
very deep estimate

(12.5) E(X) ≤ X1−δ for X > X0(δ),
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with an unspecified but explicitly calculable, δ > 0. Several attempts were made
to show (12.5) with a reasonable (not too small) value of δ. These investigations
led to the values

(12.6)

δ = 0.05 (Chen, Liu (1989)),

δ = 0.079 (H. Z. Li (1999)),

δ = 0.086 (H. Z. Li (2000a)).

Finally, the author could show unconditionally (see Section 18 for some details)

Theorem 16 (J. P.). There exists a fix ϑ < 2/3 such that E(X) ≪ Xϑ.

If we consider the analogous problem (cf. (12.6)) for the difference of primes,
then the mentioned results are all transferable to this case as well, thereby furnish-
ing an approximation to the Generalized Twin Prime Conjecture. Thus, defining
analogously to E(X) in (12.1)

(12.7) E′(X) = {n ≤ X, 2 | n, n 6= p − p′},
we can show that all but X2/3 even integers below X can be written as the difference
of two primes.

Theorem 17 (J. P.). E′(X) ≪ Xϑ with a fixed constant ϑ < 2/3.

Naturally, we are not able to prove the stronger generalization of the twin prime
conjecture (2.15) for any single even number N since this would imply the Bounded
Gap Conjecture.

13. The Ternary Goldbach Conjecture and Descartes’ Conjecture.

Primes as a basis

The name Ternary Goldbach Conjecture refers to the conjecture that every odd
integer larger than 5 can be written as a sum of three primes. This conjecture
appeared first actually at Waring (1770). The first, albeit conditional result con-
cerning this was achieved in the mentioned pioneering work of Hardy and Littlewood
(1923). They showed that if there is a θ < 3/4 such that no Dirichlet L-function
vanishes in the halfplane Re s > θ (a weaker form of GRH), then every sufficiently
large odd number can be written as a sum of three primes. As an approximation to
the Goldbach Conjecture we may consider the problem whether the set P of primes
(extended with the element 0) forms a basis or an asymptotic basis of finite order.
The existence of a number S∗ such that every integer larger than 1 can be written
as the sum of at most S∗ primes was first proved by Schnirelman (1930, 1933). Let
us denote by S the smallest number S∗ with the above property. Similarly let S1

denote the smallest number with the property that all sufficiently large numbers
can be expressed as the sum of S1 primes. As we mentioned in Section 2, the
conjecture formulated by Descartes prior to Goldbach is equivalent to S = 3. So
we may restate it as

Descartes’ Conjecture. S = S1 = 3.

Approaching the Goldbach Conjecture from this direction we can try to give
upper bounds for S and S1. The original work of Schnirelman relied on two basic
results proved by Brun’s sieve and combinatorial methods, respectively.

(i) The number G(x) of Goldbach numbers below x satisfies G(x) ≥ cx for x ≥ 4
with an absolute constant c > 0.
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(ii) Every set A ⊂ Z+ with positive lower asymptotic density forms an asymp-
totic basis of finite order.

This combinatorial approach led to the estimates

(13.1)
S1 ≤ 2208 Romanov (1935),
S1 ≤ 71 Heilbronn–Landau–Scherk (1936),
S1 ≤ 67 Ricci (1936, 1937).

The breakthrough came in 1937 when I. M. Vinogradov (1937) invented his
method to estimate trigonometric sums over primes and proved his celebrated the-
orem, according to which every sufficiently large odd number can be written as the
sum of three primes, which implies

Theorem (I. M. Vinogradov). S1 ≤ 4.

Although his result is nearly optimal, it gave no clue for a good estimate of S.
The estimates for S were first reached by the elementary method of Schnirelman.
Later results used a combination of elementary and analytic methods involving in
many cases heavy computations as well. Subsequent improvements for S were as
follows:

S < 2 · 1010 Šanin (1964),
S ≤ 6109 Klimov (1969),
S ≤ 159 Deshouillers (1972/73),
S ≤ 115 Klimov, Pilt’ai, Šeptickaja (1972),
S ≤ 61 Klimov (1978),
S ≤ 55 Klimov (1975),
S ≤ 27 Vaughan (1977),
S ≤ 26 Deshouillers (1975/76),
S ≤ 24 Zhang, Ding (1983),
S ≤ 19 Riesel, Vaughan (1983),
S ≤ 7 Ramaré (1995).

The best known conditional results are the following

Theorem (Kaniecki (1995)). RH implies S ≤ 6.

Theorem (Deshouillers, Effinger, te Riele, Zinoview (1997), Saouter (1998)). The
assumption of GRH implies the validity of the Ternary Goldbach Conjecture for
every odd integer N > 5, and consequently the estimate S ≤ 4.

It is unclear yet whether it is easier to deal with the Descartes Conjecture than
with the (Binary) Goldbach Conjecture. Earlier methods for estimation of the ex-
ceptional set would yield the same estimates for the exceptional sets of the two
different problems. However, the method leading to Theorem 16 (for a brief dis-
cussion see Section 18, for more details see Pintz (2006)) yields a better bound for
this case. We can prove, namely,

Theorem 18. All but O(X3/5 log10 X) integers below X can be written as the sum
of at most three primes, where the last prime (if it exists) can be chosen as 2, 3
or 5.

We remark that while the methods of proving Theorems 16 and 18 are simi-
lar, neither of one implies the other (however, the proof of Theorem 18 is easier,
comparable to an estimate of type E(X) ≪ X4/5 logc X (cf. (12.1)) for Goldbach’s
Problem).
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14. Gaps between consecutive Goldbach numbers

Denoting the consecutive Goldbach numbers by 4 = g1 < g2 < . . . we may try
to give upper bounds for the occurring maximal gaps

(14.1) A(X) = max
gk≤X

(gk+1 − gk)

in this sequence. Goldbach’s Conjecture is naturally equivalent to A(X) = 2 for
X ≥ 4. Thus, the problem of upper estimation of A(X) represents a new ap-
proximation to Goldbach’s Conjecture. In other words we may ask: for which
functions f(X) can we guarantee at least one Goldbach number in an interval of
type (X,X + f(X)). This problem differs from the other approximations in the
following aspect. The sharpest results for the problems of Sections 12–13 and 15–18
all use the circle method, which is specifically designed to treat additive problems.
In contrast to this, the best estimates for A(X) can be derived from information
concerning the distribution of primes.

The following proposition is contained in the special case ϑ1 = 7/12 + ε, ϑ2 =
1/6 + ε in the work of Montgomery, Vaugham (1975)

Proposition. Let us suppose we have four positive constants ϑ1, ϑ2, c1 and c2 <
c1ϑ1 with the following properties:

(a) every interval of type [X − Y,X] with Xϑ1 < Y < X/2 contains at least
c1 Y/ log X primes for any X > X0,

(b) for all but c2 X/ log X integer values n ∈ [X, 2X] the interval [n − Xϑ2 , n]
contains a prime for any X > X0. Then

(14.2) A(X) ≪ Xϑ1ϑ2 .

In such a way, the combination of any pair of estimates from (3.13) and (3.16)
implies a bound for A(x). Combining the result ϑ1 = 21/40 of Baker–Harman–Pintz
(2001) with the estimate ϑ2 = 1/20 + ε of Ch. Jia (and taking into account that
the first mentioned work gives actually some exponent ϑ1, slightly less than 21/40)
we obtain

Theorem (Baker, Harman, Jia, Pintz). All intervals of type [X,X + X21/800]
contain at least one Goldbach number, that is,

(14.3) gn+1 − gn ≪ g21/800
n ⇔ A(X) ≪ X21/800.

The first conditional estimate,

(14.4) gn+1 − gn ≪ log3 gn ⇔ A(X) ≪ log3 X on RH

was proved by Linnik (1952), while the best is the following:

Theorem (Kátai (1967)). RH implies gn+1 − gn ≪ log2 gn ⇔ A(X) ≪ log2 X.

15. Goldbach exceptional numbers in short intervals

The results of Section 12 raise the problem whether we can prove the analogue
of E(X) = o(X) for short intervals, that is,

(15.1) E(X,Y ) := E(X + Y ) − E(X) = o(Y ),

for some function Y = Y (X). The above relation means that almost all even
integers are Goldbach numbers in a short interval of type [X,X + Y (X)].
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The first result of such type was proved by Ramachandra (1973) with an interval
of type

(15.2) Y = Y (X) = Xϑ3 , ϑ3 =
3

5
+ ε.

The result of Ramachandra was improved to ϑ3 = 1/2 + ε in Perelli, Pintz
(1992). Soon afterwards, simultaneously and independently Perelli–Pintz (1993)
and Mikawa (1992) proved the significantly stronger estimates ϑ3 = 7/36 + ε and
ϑ3 = 7/48 + ε, respectively. A new feature of Mikawa’s result was that, similarly
to the work of Iwaniec and Jutila (1979), it was based on a combination of analytic
and sieve methods. Further refinements of this method yielded the sharper results

(15.3)
ϑ3 = 7/78 + ε Ch. Jia (1995b, 1995c),
ϑ3 = 7/81 + ε H. Z. Li (1995),
ϑ3 = 11/160 + ε Baker, Harman, Pintz (1995/97).

Finally, the best known estimates are the following.

Theorem (Ch. Jia 1996b). Almost all even integers are Goldbach numbers in every
interval of type [X,X + Xϑ3 ], for ϑ3 = 7/108 + ε. More precisely we have

(15.4) E(X,Xϑ3) ≪A Xϑ3 log−A X for any A > 0.

Theorem (Kaczorowski–Perelli–Pintz (1993)). Under the GRH we have

(15.5) E(X, log6+ε X) = o(log6+ε X) for any ε > 0.

We conclude this section with a further problem, which is a combination of
the approaches of Section 12 and the present section. We can namely ask for the
shortest interval Y = Y (X) for which we can guarantee beyond (15.1) an estimate
of type

(15.6) E(X,Y ) ≪ Y 1−δ,

with a given absolute constant δ > 0. The strongest known result of this kind was
reached recently by A. Languasco (2004).

Theorem (Languasco). The estimate (15.6) is true for Y = X7/24+ε if ε > 0 is
arbitrary, with a suitably chosen δ = δ(ε) > 0.

16. The Goldbach–Linnik Problem

As another approximation to Goldbach’s Problem Linnik (1951, 1953) proved
that every even integer can be expressed as a sum of two primes and K powers
of two. In his original work K was an unspecified large number. One can try to
show Linnik’s theorem with explicitly given values of K, at least for even numbers
N > N0. The best possible estimate K = 0 is clearly equivalent to Goldbach’s
Conjecture for N > N0.

Linnik’s proof was significantly simplified by Gallagher (1975). Later explicit
estimates for K were based on Gallagher’s work:

(16.1)

K = 54 000 Liu–Liu–Wang (1998b),
K = 25 000 H. Z. Li (2000b),
K = 2250 T. Z. Wang (1999),
K = 1906 H. Z. Li (2001).
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The conditional estimates, proved under GRH, were the following:

(16.2)
K = 770 J. Y. Liu, M. C. Liu, T. Z. Wang (1998a),
K = 200 J. Y. Liu, M. C. Liu, T. Z. Wang (1999),
K = 160 Tianze Wang (1999).

These results were improved by D. R. Heath-Brown, J.-C. Puchta (2002) to
K = 13 (and K = 7 on GRH) and simultaneously and independently by I. Ruzsa
and the author to

Theorem 19 (Pintz–Ruzsa (2003, 200?)). All sufficiently large even integers can
be expressed as a sum of two primes and at most eight powers of two. Under GRH
the same result is true with at most seven powers of two.

The proof of Theorem 19 relies on the Structural Theorem of Section 18 and on

a much more effective treatment of the exponential sum
L
∑

ν=1
exp(2να) than those

applied in (16.1)–(16.2).
As a natural refinement of the result of Linnik we may ask for an asymptotic

formula for the number R′
k(N) of representation of an even integere as the sum of

two primes and k powers of two. This problem is open for evey value of k. Recently,
however, in collaboration with A. Languasco and A. Zaccagnini, we were able to
show the following

Theorem 20 (Languasco–Pintz–Zaccagnini (200?)). Let k be any positive in-
teger, X sufficiently large. Then, after the eventual deletion of at most
C(k)X3/5(log X)(10) even integers below X, we can give an asymptotic formula
for R′

k(N) for the remaining even values of N < X.

17. Further approximations to Goldbach’s Conjecture

H. Mikawa (1993) studied the moments of the differences of Goldbach numbers
G = {gk}∞k=1,

(17.1) Mα(X) =
∑

gn≤X

(g∗n+1 − gn)α, g∗k = min(gk,X), α ≥ 0, 00 = 1.

He proved M3(X) ≪ X log300 X and

(17.2) Mα(X) = 2α−1X + o(X) for 0 < α < 3.

The above moments are sensible both for the total size E(X) of the exceptional
set (cf. (12.1)) and for the concentration of Goldbach exceptional numbers. As a
sharper form of (17.2) we may formulate the

Conjecture A. Mα(X) = 2α−1X + O(X1−δ(α)) holds for any α ≥ 0 and corre-
sponding δ(α) > 0.

To see the difficulty of Conjecture A we remark that
(i) for α = 0 the assertion is equivalent to the deep theorem E(X) ≪ X1−δ of

Montgomery and Vaughan (cf. (12.5)).
(ii) The truth of Conjecture A is equivalent to

Conjecture B. gn+1 − gn ≪ε gε
n for any ε > 0.
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Using the Structural Theorem of Section 18 and the theorem of Baker–Harman–
Jia–Pintz (cf. (14.3)) about the gaps between consecutive Goldbach numbers we
can deduce

Theorem 21 (J. P.). Conjecture A is true for any α < 341
21 = 16.238 . . .

The following result refers to the concentration of Goldbach exceptional numbers.

Theorem 22 (J. P.). One can discard a set E ′ of at most O(X3/5 log10 X) Gold-
bach exceptional numbers m ∈ [X/2,X] so that the remaining set would contain
at most C Goldbach exceptional numbers in any interval of type [Y, Y + Y 1/3] ⊆
[X/2,X], where C is an explicitly calculable absolute constant.

The above result clearly implies E(X) ≪ X2/3.
In Section 16 we have seen that starting from any even number and subtracting

from it a number of the form

(17.3)

K
∑

i=1

2νi K ≤ 8

(an empty sum means 0) we arrive at a Goldbach number. The numbers of type
(17.3) form a very thin set, having at most (log X)K elements below X. One can
prove the analogue of this result, too, that starting from any even number and
adding to it a number of type (17.3) we can reach a Goldbach number. The result
below shows that this can be achieved for any N ≤ X with a set having just two
suitably chosen elements below X.

Theorem 23. Let X > X0. Then we have integers a, b ≤ X such that for every
N ≤ X at least one of N , N + a, N + b is a Goldbach number

From the above result we can further deduce the existence of an arbitrarily thin
universal set S with

(17.4) Z+ = G − S.

Theorem 24. Let f(x) be an arbitrary increasing function with lim
x→∞

f(x) = ∞.

Then we can find a set S such that

(17.5) |n ≤ X;n ∈ S| ≤ f(X) for X > X0, G − S = Z+,

that is, every integer can be written as the difference of a Goldbach number and an
element of S.

18. Explicit formulas in the additive theory of primes

In this section we sketch one of the basic ideas behind the new approximation
of Goldbach’s Conjecture. In Section 2 we cited that Hilbert expressed his hope
that the Riemann–von Mangoldt Prime Number Formula (3.1) might help in the
solution of the Goldbach, Twin Prime and Generalized Twin Prime Conjectures.
We will sketch below a two-dimensional analogue of (3.1), which plays a basic role
in the proof of all Theorems 16–24 (in some cases directly, in some cases through
Theorem 16, for example).
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Let X be any large number, P ≤
√

X a parameter to be chosen later. We will
apply the circle method with major and minor arcs defined by

(18.1) M =
⋃

q≤p

q
⋃

a=1
(a,q)=1

[

a

q
− P

qX
,
a

q
+

P

qX

]

, m = [0, 1] \ M.

We consider as usual
(18.2)

R(m) =
∑

p1+p2=m

log p1 · log p2 =

1
∫

0

S2(α)e(−mα)dα =

∫

M

+

∫

m

= R1(m) + R2(m),

where

(18.3) S(α) =
∑

X1<p≤X

log pe(pα), X1 = X1−ε0 , L = log X.

The contribution of the minor arcs can be estimated well on average by Parseval’s
identity and Vinogradov’s method or Vaughan’s method. This yields for P ≤ X2/5

(18.4) |E2| =

∣

∣

∣

∣

{

m; 2 | m,m ∈
[

X

2
,X

]

, R2(m) >
X√
L

}∣

∣

∣

∣

≪ L10X√
P

.

In such a way many problems are reduced to the behaviour of R1(m). In the clas-
sical treatment M, that is, P is chosen in such a way that an asymptotic evaluation
of R1(m) as

(18.5) R1(m) ∼ S(m) := C0

∏

p|m

(

1 +
1

p − 1

)

would be possible, due to the uniform distribution of primes in the arithmetic
progressions with moduli q ≤ P . This requires by Siegel’s theorem (cf. Siegel
(1936)) the strong upper bound

(18.6) P ≪ logA X

for any arbitrarily large but fixed A > 0. This yields a relatively weak bound in
(18.4) for |E2|.

The idea of Montgomery and Vaughan (1975) was to evaluate exactly the effect
of the possible (essentially unique) Siegel zero and to show some weaker positive
lower bound for R1(m) in place of (18.5) by using a deep theorem of Gallagher
(1970) about the statistically good distribution of primes in arithmetic progressions
modulo

(18.7) q ≤ P := Xδ

with a small but fixed positive value of δ.
As a generalization of this idea we evaluate exactly the effect of all ‘generalized

exceptional zeros’ ̺ = β + iγ of all L-functions modulo

(18.8) q ≤ P := X2/5

with

(18.9) β ≥ 1 − H

log X
, |γ| ≤ T,
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where H and T are large parameters. We denote the set of the above zeros by
E(H,T ). In practice we may choose H and T as large absolute constants.

The evaluation gives rise to ‘generalized singular series’ S(χi, χj ,m) satisfying

(18.10) |S(χi, χj ,m)| ≤ S(χ0, χ0,m) = S(m).

The evaluation of R1(m) depends on the generalized exceptional zeros, whose num-
ber is bounded by Ce4H by a density theorem of Jutila (1977). The arising explicit
formula forms a basis for many further results.

Theorem 25 (J. P.). Under the above conditions we have for even n ∈ [X/2,X]
the explicit formula:

(18.11)

R1(m) = S(m) +
∑∑

̺i,̺j∈E(H,T )

S(χi, χj ,m)
Γ(̺i)Γ(̺j)

Γ(̺i + ̺j)
m̺i+̺j−1

+ O(Xe−cH) + O(X−1/3H) + O

(

X√
T

)

,

where the generalized singular series S(χi, χj ,m) satisfy

(18.12) |S(χi, χj ,m)| ≤ ε

unless the following three conditions all hold (condχ is the conductor of χ, C(ε) a
constant depending on ε)

(18.13) condχi | C(ε)m, cond χj | C(ε)m, cond χiχj < ε−3.

Introducing the notation

(18.14) E0(X) =

{

m; 2 | m, m ∈
[

X

2
,X

]

, m /∈ G
}

,

one can deduce from Theorem 24 results about the ‘structure’ of a set E1(X) con-
taining the even m’s with R1(m) < X√

L
.

Theorem 26 (J. P., Weak Structural Theorem). There are positive absolute con-
stants c0,K and a set E1(X) with the properties:
(18.15)

E0(X) ⊆ E1(X) ∪ E2(X), |E2(X)| ≪ L10X3/5, E1(X) ⊆
K
⋃

ν=1

Adν
, dν > Xc0 ,

where Ad denotes the multiples of an integer d.

Theorem 26 clearly implies E(X) ≪ X1−δ. However, in a much more sophisti-
cated way we can show the much stronger

Theorem 27 (J. P., Strong Structural Theorem). Theorem 26 is true with a c0 >
1/3.

This result immediately yields Theorem 16 and plays a crucial role in the proofs
of some other results among Theorems 16–24.

Finally we just briefly mention that an analogous explicit formula and results
analogous to Theorems 19–27 can be proved for the representation of even integers
as differences of two primes.



LANDAU’S PROBLEMS ON PRIMES 33

19. Approximations to Landau’s first problem

In this last section we will briefly summarize the most important results in
connection with the problem whether the polynomial n2 + 1 represents infinitely
many primes.

Let f be a polynomial with integer coefficients irreducible over the rationals
and without a fixed prime divisor. Let p(f) be the minimal number such that f
represents infinitely often integers with at most p(f) prime factors and let deg f be
the degree of f . The first result,

(19.1) p(f) ≤ 4 deg f − 1,

was reached more than 80 years ago by H. Rademacher (1924). Later results were

(19.2)
p(f) ≤ 3 deg f − 1 Ricci (1936),
p(f) ≤ deg f + c log(deg f) Kuhn (1953, 1954),
p(f) ≤ deg f + 1 Buhštab (1967).

If deg f = 2, then first Kuhn (1953) proved p(f) ≤ 3, while the best result is at
present

Theorem (Iwaniec (1978)). If deg f = 2 and f(0) is odd, then p(f) ≤ 2.

Corollary. n2 + 1 = P2 infinitely often.

Another approach is to ask Ω-type estimates about the largest prime divisor
P (f(n)) of f(n). For the special case of f(n) = n2 +1, such estimates were reached
by Hooley (1967)

(19.3) P (n2 + 1) > n1.1 i.o.;

finally the sharpest known estimate is

Theorem (Deshouillers, Iwaniec (1982)). P (n2 + 1) > n1.202468... i.o.

It is easy to see that Landau’s first conjecture would follow if we could show

(19.4)
{√

p
}

<
c√
p

i.o.,

with a suitable constant c.
This was shown in the weaker form {√p} ≤ cp−α with

(19.5)

α =
1

15
− ε I. M. Vinogradov (1940),

α =
1

10
− ε I. M. Vinogradov (1976, Ch. 4),

α = 0.163 . . . Kaufman (1979).

The best known result is

Theorem (Balog (1983), Harman (1983)). {√p} ≪ε p−
1

4
+ε i.o.

Finally we mention that Hardy and Littlewood (1923) expressed a number of con-
jectures in their landmark paper about additive problems involving primes. Some of
them deal with prime values of polynomials; one of them is exactly the quantitative
form of the 1st conjecture of Landau.
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Conjecture (Hardy–Littlewood (1923)). The number of primes n2 + 1 ≤ x is
asymptotically equal to

(19.6)
∏

p>2

(

1 − 1

p − 1

(−1

p

))
√

X

log X
.
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[19] Carlson, F. (1920), Über die Nullstellen der Dirichletschen Reihen und der
Riemannscher ζ-Funktion, Arkiv f. Math. Astr. Fys. 15, No. 20.



LANDAU’S PROBLEMS ON PRIMES 35
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Reprint Co. 1968.]

[50] Gallagher, P. X. (1970), A large sieve density estimate near σ = 1, Invent.
Math. 11, 329–339.

[51] Gallagher, P. X. (1975), Primes and powers of 2, Invent. Math. 29, 125–142.
[52] Goldston, D. A. (1989/1992), On Hardy and Littlewood’s contribution to the

Goldbach conjecture, in: Proceedings of the Amalfi Conference on Analytic
Number Theory (Maiori, 1989), 115–155, Univ. Salerno, Salerno, 1992.

[53] Goldston, D. A., Motohashi, Y., Pintz, J., Yıldırım, C. Y. (2006), Small gaps
between primes exist, Proc. Japan Acad. 82A, 61–65.

[54] Goldston, D. A., Pintz, J., Yıldırım, C. (200?), Primes in Tu-
ples, Ann. Math., to appear, AIM Preprint Series, No. 2005-19,
http://aimath.org/preprints.html

[55] Goldston, D. A., Pintz, J., Yıldırım, C. (200??), Primes in Tuples II, preprint.
[56] Goldston, D. A., Pintz, J., Yıldırım, C. (2006), Primes in Tuples III: On the

difference pn+ν − pn, Funct. Approx. Comment. Math. 35, 79–89.
[57] Goldston, D. A., Graham, S. W., Pintz, J., Yıldırım, C. Y. (200?), Small

gaps between products of two primes, preprint.
[58] Goldston, D. A., Graham, S. W., Pintz, J., Yıldırım, C. Y. (200?), Small

gaps between almost primes, preprint.
[59] Granville, A. (1994), Unexpected irregularities in the distribution of prime

numbers, in: Proceedings of the International Congress of Mathematicians,
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Saratov No. 4, 35–51 (Russian).



LANDAU’S PROBLEMS ON PRIMES 39

[105] Knapowski, S. (1959), On the mean values of certain functions in prime
number theory, Acta Math. Acad. Sci. Hungar. 10, 375–390.

[106] Koch, H. von (1901), Sur la distribution des nombres premiers, Acta Math.
24, 159–182.

[107] Kronecker, L. (1901), Vorlesungen über Zahlentheorie, I, p. 68, Teubner,
Leipzig.

[108] Kuhn, P. (1941), Zur Vigo Brun’schen Siebmethode I, Norske Vid. Selsk. 14,
145–148.

[109] Kuhn, P. (1953), Neue Abschätzungen auf Grund der Viggo Brunschen Sieb-
methode, 12. Skand. Mat. Kongr., 160–168.
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