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Small gaps between almost primes, the parity problem and some

conjectures of Erdős on consecutive integers

D. A. GOLDSTON, S. W. GRAHAM, J. PINTZ AND C. Y. YILDIRIM

Abstract. In a previous paper, the authors proved that in any system of
three linear forms satisfying obvious necessary local conditions, there are at
least two forms that infinitely often assume E2-values; i.e., values that are
products of exactly two primes. We use that result to prove that there are
inifinitely many integers x that simultaneously satisfy

ω(x) = ω(x + 1) = 4, Ω(x) = Ω(x + 1) = 5, and d(x) = d(x + 1) = 24.

Here, ω(x), Ω(x), d(x) represent the number of prime divisors of x, the number
of prime power divisors of x, and the number of divisors of x, respectively. We
also prove similar theorems where x + 1 is replaced by x + b for an arbitrary
positive integer b. Our results sharpen earlier work of Heath-Brown, Pinner,
and Schlage-Puchta.

1. Introduction

Erdős had many favorite problems on consecutive integers (see the work of Hilde-
brand [8]). We will discuss among others the celebrated Erdős–Mirsky conjecture
[4] on consecutive values of the divisor function:

Conjecture C1. d(x) = d(x + 1) infinitely often.

We will also deal with the analogous conjectures for Ω(x) and ω(x), which denote
the number of prime factors of a positive integer x counted with and without
multiplicity, respectively.

Conjecture C2. Ω(x) = Ω(x + 1) infinitely often.

Conjecture C3. ω(x) = ω(x + 1) infinitely often.

The twin prime conjecture is clearly equivalent to a stronger form of Conjectures
C1–C2 for x + 2 in place of x + 1 namely, with

(1.1) d(x) = d(x + 2) = 2, and Ω(x) = Ω(x + 2) = 1.

However, the original Conjectures C1–C3 also follow (in a stronger form, similarly
to the above) from some analogues of the twin prime conjecture. For example, it is
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1

http://arXiv.org/abs/0803.2636v1


2 D. A. GOLDSTON, S. W. GRAHAM, J. PINTZ AND C. Y. YILDIRIM

conjectured that 2p + 1 is prime for infinitely many primes p, and Chen’s method
(see Chapter 11 of [5]) proves that there are infinitely many p ∈ P (P denotes the
set of prime numbers) such that either

(1.2) 2p + 1 ∈ P

or

(1.3) 2p + 1 = p1p2 p1, p2 ∈ P , p1 6= p2.

If, as we believe, (1.3) holds infinitely often, then C1–C3 hold; more precisely

(1.4) d(2p) = d(2p + 1) = 4, ω(2p) = Ω(2p) = ω(2p + 1) = Ω(2p + 1) = 2.

Due to the connection to the problem in (1.3) (“which is believed to be of the
same depth as twin prime conjecture” [8, p. 309]), Conjectures C1–C3 were also
considered extremely difficult, if not hopeless.

It was therefore a great surprise for Erdős [3] (and probably for other number
theorists as well) when C. Spiro [16] proved in 1981 that

(1.5) d(x) = d(x + 5040) infinitely often.

At about the same time, Heath-Brown [6] found a conditional proof of C2 under
a hypothesis slightly weaker than the Elliott–Halberstam conjecture [2]. In 1984
he succeeded [7] in proving the original Erdős–Mirsky Conjecture C1 by using the
ideas of Spiro in combination of other new ideas. His method also yielded C2, but
not C3. About two decades later, J.-C. Schlage–Puchta [14] gave the first proof of
C3.

A common feature of all these proofs was their intimate connection with almost
primes. More precisely (as suggested by (1.2)–(1.3)), all numbers produced that
satisfied the relations C1–C3 had a bounded number of prime factors, but this
number (even its parity) was left unspecified by the nature of the methods applied.

The phenomenon which “prevents us from showing that (1.3) has infinitely many
solutions” is called the “parity obstacle”, “parity barrier” or “parity problem”.
Selberg gave examples of the two sets [12, Ch. 4]

A(−1)r

(X) = {a : X < a ≤ 2X, Ω(a) ≡ r + 1 (mod 2)}

which show that the upper and lower bounds obtained under general conditions of
the linear sieve of Rosser are optimal. The parity problem is expressed informally
as saying that sieve methods cannot differentiate between integers with an even and
an odd number of prime factors. Therefore, the parity obstacle prevents the sieve
method from revealing the existence of primes in a suitable set as formulated by
Greaves [12, p. 171]. For example, while Chen’s method yields that p+2 (or 2p+1)
has infinitely often at most two prime factors, the method is unable to specify the
parity of the number of prime factors of p+2 (or 2p+1). As a result, the seemingly
much easier assertion that for infinitely many primes p, p + 2 (or 2p + 1) has an
odd (or even) number of prime factors, is still open [8, p. 310].

The general view about the parity problem and Conjectures C1–C3 can be described
by again citing the survey paper of Hildebrand [8, p. 310]: “However, there is one
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crucial difference which makes this conjecture [the Erdős–Mirsky conjecture] more
accessible than ‘twin-prime type’ conjectures. Namely, in contrast to the above-
mentioned problem on the parity of the number of prime factors of 2p + 1 or p + 2
when p is prime (and thus, in particular, has an odd number of prime factors),
when trying to prove that d(n) = d(n + 1) holds infinitely often one does not need
to specify the parity of the number of prime factors of n. It is this fact that allowed
the solution of the Erdős–Mirsky conjecture, while bypassing the deeper problems
related to the twin prime conjecture.”

The situation is described in exactly the same way by Heath-Brown in his work,
where he gives the conditional solution of C2 [6]: “It should however be noted at
this point that in solving Ω(n) = Ω(n+1) we shall not have specified Ω(n), or even
the parity of Ω(n). Thus we avoid the parity problem, rather than solve it.” In his
work [7], where he gives an unconditional solution of C1 and C2, he writes about
the proof of (1.5) by Spiro (and his remark refers also for the solution he gives for
C1–C2): “Thus one does not know the value of Ω(n) for the particular n which
satisfies d(n) = d(n + 5040). In this way one sidesteps the ‘parity problem.’ ”

In the present work we shall show that the method which yielded the existence of
short gaps between primes [11] and E2-numbers (numbers with exactly two distinct
prime factors) with bounded differences [9], [10] is able to show a stronger variant
of Conjectures C1–C3. In this variant, the parity problem is not bypassed but
overcome. We can show the above conjectures in the stronger form where the value
of the relevant arithmetic function d, Ω or ω is specified.

Theorem 1. For any integer A ≥ 4, there are infinitely many integers x with

(1.6) Ω(x) = Ω(x + 1) = A.

Theorem 2. For any integer A ≥ 3, there are infinitely many integers x with

(1.7) ω(x) = ω(x + 1) = A.

Theorem 3. For any positive integer A with 24|A, there are infinitely many inte-

gers x with

(1.8) d(x) = d(x + 1) = A.

As mentioned earlier, Heath-Brown [7] was the first to prove Conjectures C1 and
C2, and Schlage-Puchta [14] was the first to prove Conjecture C3. Here, we will
give the first proof that there are infinitely many x that simultaneously satisfy the
conditions of Conjectures 1 through 3.

For a positive integer n with prime factorization

n = pα1

1 pα2

2 . . . pαk

k ,

we define the exponent pattern of n to be the multiset {α1, α2, . . . , αk}. We follow
the usual conventions for multisets; in particular, an element may appear more
than once, and the order of the elements does not matter. This definition is relevant
because if x and x+1 have the same exponent pattern, then ω(x) = ω(x+1), Ω(x) =
Ω(x + 1), and d(x) = d(x + 1). We prove



4 D. A. GOLDSTON, S. W. GRAHAM, J. PINTZ AND C. Y. YILDIRIM

Theorem 4. There exist infinitely many integers x such that x and x+1 both have

exponent pattern {2, 1, 1, 1}. Consequently, there exist infinitely many integers x
such that

ω(x) = ω(x + 1) = 4, Ω(x) = Ω(x + 1) = 5, and d(x) = d(x + 1) = 24.

We also note that in fact, we have f(x) = f(x + 1) infinitely often for all number-
theoretic functions f with the property that f(n) depends only on the exponent
pattern of n. Similar comments apply to Theorems 8 and 10 below.

All of the theorems we prove here are done in a relatively straightforward and
uniform way. In fact, all of our theorems are simple consequences of the following
result proved in [10].

Basic Theorem. We say that

(1.9) Li(x) = aix + bi (1 ≤ i ≤ 3) ai, bi ∈ Z, ai > 0,

is an admissible triplet of linear forms if for every prime p there exists xp ∈ Z such

that

p ∤ L1(xp)L2(xp)L3(xp).

Let C be any constant. If {L1, L2, L3} is an admissible triplet, then there are two

forms Li(x), Lj(x) (i 6= j) in the triplet that simultaneously take E2-values with

both prime factors exceeding C for infinitely many integer values x. In other words,

there are two forms Li, Lj such that

ω(Li(x)) = Ω(Li(x)) = ω(Lj(x)) = Ω(Lj(x)) = 2,

and
(

∏

p≤C

p, Li(x)Lj(x)
)

= 1

for infinitely many integers x.

For future reference, we make one further remark about the admissibility hypothesis
in the Basic Theorem. In order for the triplet {L1, L2, L3} to be admissible, it is
obviously necessary to have

(1.10) (ai, bi) = 1, i = 1, 2, 3.

We shall refer to any system of linear forms that satisfies (1.10) as a reduced system.

For any reduced system,

L1(n)L2(n)L3(n) ≡ 0 (mod p)

has at most 3 solutions (mod p). Therefore, for any reduced system, the admis-
sibility hypothesis is satisfied for any prime p ≥ 5, and we need check only p = 2
and p = 3.

To illustrate how the Basic Theorem can be used, we give a short proof of Theorem
2 in the case A = 3. Consider the system

(1.11) L1(m) = 6m + 1, L2(m) = 8m + 1, L3(m) = 9m + 1.
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This system is admissible because we may take xp = 0 for all primes p. We note
the relations

(1.12) 4L1(m) = 3L2(m) + 1, 3L1(m) = 2L3(m) + 1, 9L2(m) = 8L3(m) + 1.

By the Basic Theorem, at least two of the forms will be simultaneously E2-numbers
for infinitely many values of x. We take C = 3, so that resulting E2-numbers have
both prime factors exceeding 3.

Now suppose the two forms giving infinitely many E2-numbers are L1 and L2. Then
we let

x = 3L2(m), x + 1 = 4L1(m).

If the two relevant forms are L1 and L3, we let

x = 2L3(m), x + 1 = 3L1(m).

If the two relevant forms are L2 and L3, we let

x = 8L3(m), x + 1 = 9L2(m).

In all cases, we obtain infinitely many positive integers x with ω(x) = ω(x+1) = 3.

As the proof illustrates, our approach is to combine the Basic Theorem with a
judicious choice of linear forms. Another element of our approach is the idea of
“adjoining” extra prime factors. We will discuss this further in Section 2; e.g., see
the proof of Theorem 1.

Next, we consider a modification of Conjectures 1 through 3 with x, x + 1 replaced
by x, x+2. As noted before, this is directly related to the twin prime conjecture. We
emphasize that while we are unable to specify the parity of ω(p+2) or Ω(p+2) for
any infinite set of primes p, we can specify the common value of ω(n) and ω(n + 2)
(or Ω(n) and Ω(n + 2)), where the value can be given almost arbitrarily.

Theorem 5. For any B ≥ 4 there are infinitely many integers x with

(1.13) ω(x) = ω(x + 2) = B.

Theorem 6. For any B ≥ 5 there are infinitely many integers x with

(1.14) Ω(x) = Ω(x + 2) = B.

In the previous papers of this series [9] [10] we investigated the distribution of E2-
numbers. We are unaware of earlier results (or even earlier known methods capable
of yielding such results) on E2-numbers showing

(1.15) lim inf
n→∞

qn+1 − qn

log qn/ log log qn

= 0,

where qn denotes the nth E2 number. This is in contrast to P2-numbers (being the
product of at most two primes) where Chen’s method proved that we may have
infinitely often n, n + 2 ∈ P2. The parity problem seems to indicate that problems
with E2-numbers may have about the same difficulty as the analogous problems
with primes. We proved unconditionally that

(1.16) lim inf
n→∞

(qn+1 − qn) ≤ 6;
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in fact, this follows from the Basic Theorem by considering the forms {n, n+2, n+6}.
Although (1.16) is clearly much stronger than (1.15), it is still unclear whether there
is any theoretical obstacle which prevents us to find infinitely many pairs of E2-
numbers with a fixed difference.

Our Theorems 1–6 show, however, that these barriers may be overcome if we in-
crease (slightly) the fixed number of prime divisors. Let rn and Rn be the nth

positive integer with

(1.17) ω(rn) = 3 and Ω(Rn) = 3, respectively.

An immediate corollary of Theorem 2 is that

lim inf
n→∞

(rn+1 − rn) = 1.

We also prove

Theorem 7.

lim inf
n→∞

(Rn+1 − Rn) ≤ 2.

Analogously to (1.17), let sn and Sn denote the nth positive integer with

ω(sn) = 4 and Ω(Sn) = 4, respectively.

Theorems 1 and 2 imply

lim inf
n→∞

(sn+1 − sn) = lim inf
n→∞

(Sn+1 − Sn) = 1.

The same holds if we consider the sequence s
(ν)
n , S

(ν)
n of integers defined for an

arbitrary integer ν ≥ 4 by

ω(s(ν)
n ) = ν, Ω(S(ν)

n ) = ν.

These results settle almost completely the problem of small differences between
consecutive almost primes having exactly ν ≥ 3 prime factors (except for the case
when prime factors are counted with multiplicity, and ν = 3 – see Theorem 7).

We also consider the generalization of Conjectures C1–C3 to an arbitrary shift. In
1997, Pinner [13] used an ingenious extension of Heath-Brown’s method to prove
that there are infinitely many positive integers x with

d(x) = d(x + n)

for any fixed n. His method also works for Ω, but it does not work for ω. However,
Buttkewitz [1] has recently proved that ω(x) = ω(x + n) holds infinitely often for
an infinite set B of shifts n.

We will show that our method provides a positive answer to a stronger form of these
more general conjectures as well. Similiarly to Theorems 1–6, we can prescribe the
value of the ω and Ω functions in case of an arbitrary given shift n. Our first results
in this direction treat the case of even n.

Theorem 8. Let n be an even positive integer. Then there exist infinitely many x
such that x and x + n both have exponent pattern

{2, 1, 1, 1, 1}.
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In particular, there exist infinitely many x such that

ω(x) = ω(x + n) = 5, Ω(x) = Ω(x + n) = 6, and d(x) = d(x + n) = 48.

Theorem 9. If n ≡ 0 (mod 4), then for any integer A ≥ 4, there are infinitely

many x such that

(1.18) Ω(x) = Ω(x + n) = A.

If n ≡ 2 (mod 4), then for any integer A ≥ 5, there are infinitely many x such that

(1.19) Ω(x) = Ω(x + n) = A.

If n is even, then for any positive integer A ≥ 4, there are infinitely many x such

that

(1.20) ω(x) = ω(x + n) = A.

If n is even, then for any positive integer A with 48|A, there are infinitely many x
such that

(1.21) d(x) = d(x + n) = A

The proof of Theorem 8 uses the linear forms

(1.22) L1(m) = 2m + n, L2(m) = 3m + n, L3(m) = 5m + n.

In an earlier draft of this paper, we used the same linear forms to show that if
n is odd and n 6≡ 15 (mod 30), then there are infinitely many x such that x and
x + n both have exponent pattern {2, 1, 1, 1, 1}. We eventually realized that one
critical property of the forms in (1.22) is that (3, 5) is a twin prime pair. We then
discovered Theorem 10, which applies to any n satisfying the following

Hypothesis T. Assume that n is an odd positive integer and that there exists a

twin prime pair (p, p + 2) such that p(p + 2) ∤ n.

Theorem 10. If n satisfies Hypothesis T, then there exist infinitely many positive

integers x such that x and x + n both have exponent pattern

{2, 1, 1, 1, 1}.

In particular, there are infinitely many x such that

ω(x) = ω(x + n) = 5, Ω(x) = Ω(x + n) = 6, and d(x) = d(x + n) = 48.

By combining Theorem 10 with the trick of adjoining prime factors, we get an
analog of Theorem 9 that holds for n satisfying Hypothesis T.

Theorem 11. Assume that n satisfies Hypothesis T. For any positive integer A ≥
5, there are infinitely many x such that

(1.23) ω(x) = ω(x + n) = A.

For any positive integer A with 48|A, there are infinitely many x such that

(1.24) d(x) = d(x + n).
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Along the same lines, we can also prove that Ω(x) = Ω(x + n) = A for infinitely
many x, any n satisfying Hypothesis T, and any A ≥ 6. However, we will prove a
stronger result on Ω in Theorem 12.

The previous two theorems lead to the natural problem of determining which inte-
gers satisfy Hypothesis T. Take any set T1 with the property that p ∈ T1 implies
that (p, p + 2) is a twin prime pair. Let T2 = {p + 2 : p ∈ T1}, T = T1 ∪ T2, and

(1.25) S = ST =
∏

p∈T

p.

Then any n 6≡ S (mod 2S) satisfies Hypothesis T.

For example, if we take T1 = {3, 5}, we get S = 105, and so any odd n with n 6≡ 105
(mod 210) satisfies Hypothesis T. Of course, one may take larger sets as well.1 Let
(1.26)

T1 = {p : 1015 < p ≤ 1016, (p, p + 2) is a twin prime pair}, and S =
∏

p∈T1

p(p + 2).

According to calculations of Sebah [15] [17], the set T1 has more than 9 · 1012

elements, and therefore

log10 S > 30 · 9 · 1012 > 2 · 1014.

Consequently, Hypothesis T is true for any odd n with n < 102·1014

. Moreover, the
density of n which fail Hypothesis T is ≤ 1/(2S), which is extremely small.

In fact, Hypothesis T is probably true for all odd n, but this appears difficult
to prove. The truth of Hypothesis T for all odd n is equivalent to the existence
arbitrarily large sets T , and this in turn is equivalent to the twin prime conjecture.
In light of this, it is desirable to give unconditional proofs of (1.23) and (1.24) for
all odd n.

Theorem 12. Assume that n is an odd positive integer. For any integer A ≥ 5,
there are infinitely many x such that

(1.27) Ω(x) = Ω(x + n) = A.

For any integer A ≥ 6, there are infinitely many x such that

(1.28) ω(x) = ω(x + n) = A.

For any positive integer A with 288|A, there are infinitely many x such that

(1.29) d(x) = d(x + n) = A.

In the proofs of (1.28) and (1.29), we employ the system

L1(m) = 672m + 41, L2(m) = 672m + 47, L3(m) = 672m + 55.

The Basic Theorem says that at least two of these forms represent E2-numbers
infinitely often. This provides a usable analogue of the twin prime conjecture. The
proof of (1.27) is simpler; it uses the linear forms given in (1.22).

1Note that T1 and T2 are disjoint if 3 /∈ T1 and 5 /∈ T1.
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2. The case of consecutive integers–Theorems 1 through 7

For the proof of Theorem 1, we begin with the admissible system

(2.1) L1(m) = 4m + 1, L2(m) = 5m + 1, L3(m) = 6m + 1,

and we note the relations

(2.2) 5L1 = 4L2 + 1, 3L1 = 2L3 + 1, 6L2 = 5L3 + 1.

If we apply the Basic Theorem directly to this system, we fail to get the desired
result. If, for example, L1(m) and L2(m) are both E2 numbers, and if x = 4L2(m),
then Ω(4L2(m)) = 4 and Ω(5L1(m)) = 3. To remedy this, we modify our system so
that 4m+1 and 6m+1 each have one additional prime factor. We use the Chinese
Remainder Theorem to solve the system of congruences

4m + 1 ≡ 0 (mod 11), 6m + 1 ≡ 0 (mod 7).

The solution is m ≡ 8 (mod 77). Accordingly, we take

(2.3) K(ℓ) = 77ℓ + 8,

and we define three new forms K1, K2, K3 by setting r1 = 11, r2 = 1, r3 = 7, and

Ki(ℓ) =
Li(K(ℓ))

ri

(i = 1, 2, 3).

In other words,

(2.4) K1(ℓ) = 28ℓ + 3, K2(ℓ) = 385ℓ + 41, K3(ℓ) = 66ℓ + 7.

This is an admissible system; we may use the comment after (1.10) for p > 3.
Otherwise, we let x2 = 0 and x3 = 2. Therefore, we have two forms in (2.4) that
are E2-numbers with all prime factors exceeding 11. Consequently, there are at
least two relations among

Ω(4m + 1) = 3, Ω(5m + 1) = 2, Ω(6m + 1) = 3,

that are simultaneously true for infinitely many integer values m. In view of the
relations (2.2) we obtain infinitely many integers x with

(2.5) Ω(x) = Ω(x + 1) = 4,

since the multiplications in (2.2) adjoin one new prime factor to both 4m + 1 and
6m + 1 and two prime factors to 5m + 1.

For the case A > 4, we modify the above procedure slightly. We let

r1 = 11 · 13A−4, r2 = 17A−4, r3 = 7 · 19A−4.

and we use the Chinese Remainder Theorem to find k such that

4k + 1 ≡ 0 (mod r1), 5k + 1 ≡ 0 (mod r2), and 6k + 1 ≡ 0 (mod r3).

We then take K(ℓ) = r1r2r3ℓ + k, and define the forms K1, K2, K3 by

Ki(ℓ) =
Li(K(ℓ))

ri

(i = 1, 2, 3).

We apply the Basic Theorem with C = 19 to the system {K1, K2, K3}, and the
desired result follows.
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Remark. We will often apply the above procedure of adjoining new prime factors
in the following, but we will usually omit the details.

We have already proved Theorem 2 in the case A = 3; see the discussion beginning
with equation (1.11). We do the case A > 3 by the procedure of adjoining new
prime factors. We take r1, r2, r3 to be pairwise relatively prime squarefree numbers
with exactly A − 3 prime factors all exceeding 3, and we start with the system
(1.11) as in the case A = 3.

We will derive Theorem 3 from Theorem 4, so we now turn our attention to the
latter. We begin with the linear forms

L1(m) = 3m + 2, L2(m) = 4m + 3, L3(m) = 10m + 7.

We note the relations

3L2 = 4L1 + 1, 3L3 = 10L1 + 1, 5L2 = 2L3 + 1,

and we take
r1 = 5, r2 = 72, r3 = 112.

We see that
Li(m) ≡ 0 (mod ri) (i = 1, 2, 3)

holds for m ≡ 3956 (mod 29645). Let K(m) = 29645m + 3956, and consider the
three reduced forms

Ki(m) =
Li(K(m))

ri

.

A calculation reveals that

K1(m) = 17787m + 2374, K2(m) = 2420m + 323, K3(m) = 2450m + 327.

The above three forms give an admissible system. To see this, we use the comment
after (1.10) for primes p ≥ 5. For p = 2 and p = 3, we note that

5 · 72 · 112 · K1K2K3(1) = L1L2L3(K(1)) ≡ L1L2L3(1) ≡ 1 (mod 6),

so we may take x2 = x3 = 1. We apply the Basic Theorem and deduce that at least
two of these forms are infinitely often simultaneously E2-numbers with all prime
factors exceeding 11. If K1(m) = p1p2 and K2(m) = p3p4, then we may take

x = 4L1(m) = 22 · 5 · p1p2, x + 1 = 3 · L2(m) = 3 · 72 · p3p4.

The other cases are similar. We conclude that there are infinitely many x such that
both x and x + 1 have exponent pattern

{2, 1, 1, 1}.

This proves Theorem 4 and Theorem 3 in the case A = 24. When A = 24B with
B > 1, we modify the above with the procedure of adjoining new prime factors.
We can do this, for example, by using

r1 = 5 · 13B−1, r2 = 72 · 17B−1, r3 = 112 · 19B−1.

Note that this produces infinitely many x such that both x and x+1 have exponent
pattern

{2, 1, 1, 1, B − 1}.

Consequently, we can say somewhat more; namely, there are infinitely many x with

d(x) = d(x + 1) = 24B, Ω(x) = Ω(x + 1) = B + 4, and ω(x) = ω(x + 1) = 5.
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Theorems 5 and 6 are special cases of Theorem 9, but we give the following inde-
pendent short proofs. For Theorem 5 in the case B = 4 and Theorem 6 in the case
B = 5, consider the admissible system

L1(m) = 2m + 1, L2(m) = 12m + 5, L3(m) = 20m + 9.

Note the relations

12L1 − 2L2 = 20L1 − 2L3 = 3L3 − 5L2 = 2.

Using the Basic Theorem and adjoining one new prime factor to each of L2 and
L3, we get Theorem 5 for B = 4. Adjoining two new prime factors to each of L2

and L3 gives Theorem 6 for B = 5. The general cases may be done by adjoining
further prime factors.

Finally, in order to prove Theorem 7, consider the admissible system

(2.6) 24m + 1, 36m + 1, 72m + 1.

Using the Basic Theorem and adjoining one new prime factor to the last form we
obtain infinitely many positive integers m such that at least two of the relations

(2.7) Ω(24m + 1) = 2, Ω(36m + 1) = 2, Ω(72m + 1) = 3

hold. Equivalently at least two of the relations

(2.8) Ω(72m + 3) = 3, Ω(72m + 2) = 3, Ω(72m + 1) = 3

will be true for infinitely many positive integers m, and this proves Theorem 7.

3. The case of even shift–Theorems 8 and 9

Throughout this section, we assume that n is even, and we write n = 2n2.

We consider the three (non-admissible) forms

(3.1) L1(m) = 2m + n, L2(m) = 3m + n, L3(m) = 5m + 2n,

with the relations

(3.2) 3L1 = 2L2 + n, 5L1 = 2L3 + n, 3L3 = 5L2 + n.

We will restrict m to some residue class a (mod 60), where a depends on n,

(3.3) a ≡ a4 (mod 4), a ≡ a3 (mod 3), a ≡ a5 (mod 5),

and a4, a3, a5 are defined as follows. First, we take

a4 =

{

1 if n2 is even,

n2 if n2 is odd.

In other words, a4 ≡ 3 (mod 4) if n2 ≡ 3 (mod 4) and a4 ≡ 1 (mod 4) otherwise. If
3 ∤ n, we take a3 = 0. If 3|n, we write n = 3n3 and choose a3 so that a3(a3+n3) 6≡ 0
(mod 3). For example, we may take

a3 =

{

1 if n3 6≡ 2 (mod 3),

2 if n3 ≡ 2 (mod 3).



12 D. A. GOLDSTON, S. W. GRAHAM, J. PINTZ AND C. Y. YILDIRIM

If 5 ∤ n, we take a5 = 0. If 5|n, we write n = 5n5 and choose a5 so that a5(a5+2n5) 6≡
0 (mod 5). For example, we may take

a5 =

{

1 if n5 6≡ 2 (mod 5),

2 if n5 ≡ 2 (mod 5).

With this choice of a we can show that if m ≡ a (mod 60), then

21 ‖ L1(m) if 4|n, 22 ‖ L1(m) if 4 ∤ n,(3.4)

31 ‖ L2(m) if 3|n, 3 ∤ L2(m) if 3 ∤ n,(3.5)

51 ‖ L3(m) if 5|n, 5 ∤ L3(m) if 5 ∤ n.(3.6)

To prove (3.4), note that if 4|n, then 2|n2, a4 = 1 and

1

2
L1(m) = m + n2 ≡ a4 ≡ 1 (mod 2).

If 4 ∤ n, then n2 is odd, and

1

2
L1(m) = m + n2 ≡ a4 + n2 ≡ 2n2 ≡ 2 (mod 4).

To prove (3.5), assume first that 3|n. Then n = 3n3, and

1

3
L2(m) = m + n3 6≡ 0 (mod 3).

If 3 ∤ n, then m ≡ 0 (mod 3) and

L2(m) = 3m + n ≡ n 6≡ 0 (mod 3).

The proof of (3.6) is similar to (3.5), and we leave the details to the reader.

Now let pi be the ith prime, so that p1 = 2, p2 = 3, p3 = 5. Let b1 = b2 = 1, b3 = 2.
With this notation,

Li(m) = pim + bin

We claim that if m ≡ a (mod 60), then

(3.7) pi ∤ Lj(m)

whenever i 6= j. For i = 2 or 3, this follows because pi divides either m or n but
not both. For p1 = 2, this follows because m is odd and n is even.

We rephrase (3.4) through (3.6) by saying that if m ≡ a (mod 60), then

(3.8) 2α1 ‖ L1(m), 3α2 ‖ L2(m), 5α3 ‖ L3(m),

where

(3.9) α1 =

{

1 if 4|n,

2 if 4 ∤ n,
α2 =

{

1 if 3|n,

0 if 3 ∤ n,
α3 =

{

1 if 5|n,

0 if 5 ∤ n.

We adjoin extra factors to the Li according to the following recipe.

If

{

4|n

4 ∤ n
, then we adjoin a factor of

{

192

19
to L1.
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If

{

3|n

3 ∤ n
, then we adjoin a factor of

{

72

72 · 13
to L2.

If

{

5|n

5 ∤ n
, then we adjoin a factor of

{

112

112 · 17
to L2.

By doing this, we have arranged so each Li has a fixed divisor of the form riq
2
i ,

where

r1 =

{

2 if 4|n

19 if 4 ∤ n
, r2 =

{

3 if 3|n

13 if 3 ∤ n
, r3 =

{

5 if 5|n

17 if 5 ∤ n
,

and

q1 =

{

19 if 4|n

2 if 4 ∤ n
, q2 = 7, q3 = 11.

We may therefore apply the Basic Theorem to the three forms

(3.10) Ki(ℓ) =
Li(60ℓ + a)

riq2
i

.

We obtain at least two different indices i ∈ {1, 2, 3} such that the numbers in
(3.10) would be E2-numbers with both prime divisors exceeding 19. Therefore, the
numbers pj(pim + bin) (j 6= i) have the exponent-pattern

{2, 1, 1, 1, 1},

This completes the proof of Theorem 8.

Now we consider Theorem 9. Statement (1.21) follows from the construction in
Theorem 8; let A = 48K and adjoin a factor of 23K−1 to the forms L1, L2, L3. For
the proofs of the other statements, we take L1, L2, L3 to be as in (3.1). Then we
follow the proof of Theorem 8 down to (3.9). Now let K(ℓ) = 60ℓ + a, and set

Ki(ℓ) =
Li(K(ℓ))

pαi

i

for i = 1, 2, 3. The system K1, K2, K3 is admissible, so we may apply the Basic
Theorem. By adjoining further primes as necessary, we see that there are infinitely
many x and at least two forms with

ω(pjx + bjn) = 3, Ω(pjx + bjn) = 2 + α1,

where α1 was defined in (3.9). If we multiply any fixed pjx + bjn by pi (i 6= j),
then we obtain two forms with

ω(pi(pjx + bjn)) = 4, Ω(pi(pjx + bjn)) = 3 + α1.

This proves (1.18) with A = 4, (1.19) with A = 5, and (1.20) with A = 4. For
larger values of A, we adjoin further prime factors as necessary.

4. Hypothesis T: Proofs of Theorems 10 and 11

In this section, we assume that n satisfies Hypothesis T. Consequently, n is odd,
and there is a twin prime pair (p, p + 2) such that p ∤ n or (p + 2) ∤ n. We divide
our argument into two cases depending on whether or not p = 3.
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Case 1. p = 3. In this case, we consider the three (non-admissible) linear forms

(4.1) L1(n) = 2m + n, L2(m) = 3m + n, L3(m) = 5m + 2n.

We note the relations

(4.2) 3L1 − 2L2 = 5L1 − 2L3 = 3L3 − 5L2 = n.

Our argument for this case is broken into three subcases: (a) 3 ∤ n and 5 ∤ n, (b)
3 ∤ n and 5|n, (c) 3|n and 5 ∤ n.

Subcase 1a. Assume that 3 ∤ n and 5 ∤ n. We choose m (mod 180) by the relations

m ≡0 (mod 4),(4.3)

m ≡6 + 5n (mod 9),(4.4)

m ≡0 (mod 5).(4.5)

From the hypotheses, (n, 30) = 1, so

2 ∤ L1(m), 3 ∤ L2(m), 5 ∤ L3(m).

Condition (4.3) implies that m is even, so 2 ∤ L2(m). However, n is odd, so

L3(m) = 5m + 2n ≡ 2 (mod 4),

and 21||L3(m). Condition (4.4) implies that

L1(m) = 2m + n ≡ 2n 6≡ 0 (mod 3) and L3(m) = 5m + 2n ≡ 3 (mod 9),

so 3 ∤ L1(m) and 31||L3(m). Finally, condition (4.5) implies that

L1(m) ≡ L2(m) ≡ n 6≡ 0 (mod 5).

We deduce that L1, L2 have no fixed divisors, and L3 has the fixed divisors 2 and 3
with exponent one. We adjoin extra factors of 112 to L1 and 132 to L2. We apply
the Basic Theorem to the reduced forms

L1(m)

112
,
L2(m)

132
,
L3(m)

2 · 3
.

Multiplying the original forms by 2, 3 and 5 according to (4.2), we arrive in all
cases at infinitely many pairs x, x+n with exponent pattern {2, 1, 1, 1}. We adjoin
one further prime factor to each form to reach the exponent pattern {2, 1, 1, 1, 1}
enunciated in Theorem 10.

Subcase 1b. Assume that 3 ∤ n and 5|n. Write n = 5n5. In this case, we choose
m (mod 180) by the relations

m ≡0 (mod 4),(4.6)

m ≡6 + 5n (mod 9),(4.7)

m ≡

{

1 (mod 5) if n5 6≡ 2 (mod 5),

2 (mod 5) if n5 ≡ 2 (mod 5).
(4.8)

As in Subcase 1a, we have

2 ∤ L1L2(m), 3 ∤ L1L2(m), 21||L3(m), 31||L3(m).

By (4.8), m(m + 2n5) 6≡ 0 (mod 5), thus 5 ∤ L1L2(m) and 51||L3(m). We deduce
that L1, L2 have no fixed divisors and L3 has the fixed divisors 2, 3, 5 with exponent
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one. We adjoin factors of 112 · 17 to L1 and 132 · 19 to L2, then we apply the Basic
Theorem to the reduced forms

L1(m)

112 · 17
,

L2(m)

132 · 19
,

L3(m)

2 · 3 · 5
.

Multiplying the original forms by 2, 3 and 5 according to (4.2), we arrive in all
cases at numbers with exponent pattern {2, 1, 1, 1, 1}.

Subcase 1c. Assume that 3|n and 5 ∤ n. Write n = 3n3. This case is similar to
Subcase 1b; the primary difference is that the roles of 3 and 5 have been reversed.
In this case, we choose m (mod 300) by the relations

m ≡2 + n (mod 4),(4.9)

m ≡10 + 8n (mod 25),(4.10)

m ≡

{

1 (mod 3) if n3 6≡ 2 (mod 3),

2 (mod 3) if n3 ≡ 2 (mod 3).
(4.11)

Using condition (4.9), we find that

2 ∤ L1L3(m), 21‖L2(m).

Using condition (4.10), we find that

5 ∤ L1L3(m), 51||L2(m).

Using condition (4.11), we find that

3 ∤ L1L3(m), 31||L2(m).

We deduce that L1 and L3 have no fixed divisors and that L2 has the fixed divisors
2, 3, 5 with exponent one. We adjoin extra factors of 112 · 17 to L1, 132 · 19 to L3,
and then we apply the Basic Theorem to the reduced forms

L1(m)

112 · 17
,
L2(m)

2 · 3 · 5
.
L3(m)

132 · 19
,

Multiplying the original forms by 2, 3 and 5 according to (4.2), we arrive in all
cases at numbers with exponent pattern {2, 1, 1, 1, 1}.

Case 2. For this case, we assume that Hypothesis T holds for some prime p > 3.
We write p = 2k + 1, so that

p ≡ k ≡ 2 (mod 3).

In this case, we will use the three linear forms

(4.12) L1(m) = 2m + n, L2(m) = pm + kn, L3(m) = (p + 2)m + (k + 1)n.

Note the relations

(4.13) pL1 − 2L2 = (p + 2)L1 − 2L3 = pL3 − (p + 2)L2 = n.

We may assume that 3 · 5|n; otherwise, we may appeal to Case 1. We will always
assume that

(4.14) m ≡ 1 (mod 3);

the motivation is that we ensure that 3 ∤ L1L2L3(m).
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Subcase 2a. Assume that neither p nor p + 2 divides n. We also assume (4.14),
and we specify that

m ≡ 2 + (k + 1)n (mod 4),(4.15)

L3(m) ≡ p (mod p2),(4.16)

m ≡ 0 (mod p + 2).(4.17)

From (4.15), we see that

L3(m) ≡(p + 2)m + (k + 1)n ≡ 2p + (p + 3)(k + 1)n

≡2 + 2(k + 2)(k + 1)n ≡ 2 (mod 4).

In the last line, we use the fact that (k + 1)(k + 2) is always even. Furthermore,

2m + n ≡ n ≡ 1 (mod 2), pm + kn ≡ m + k ≡ (2k + 1)n ≡ 1 (mod 2).

Therefore, 21||L3(m) and 2 ∤ L1L2(m).

From (4.16), we see that p1||L3(m). Moreover, p ∤ L1L2(m) because

L1(m) =2m + n ≡ −kn 6≡ 0 (mod p), and

L2(m) =pm + kn ≡ kn 6≡ 0 (mod p).

From (4.17), we see that Li(m) ≡ bin (mod p+2), where b1 = 1, b2 = k, b3 = k+1.
Therefore (p + 2) ∤ L1L2L3(m). We conclude that L3 has a fixed divisor 2p and
L1, L2 have no fixed divisors.

Let p1, p2 be distinct odd primes2 with (p1p2, p(p + 2)n) = 1. We adjoin extra
factors of p2

1 and p2
2 to L1 and L2 respectively, then we apply the Basic Theorem

to the reduced forms
L1(m)

p2
1

,
L2(m)

p2
2

,
L3(m)

2p
.

Multiplying the original forms by 2, p, p+2 according to (4.13), we obtain infinitely
many positive integers x such that x and x + n both have the exponent pattern
{2, 1, 1, 1}. To get the desired exponent pattern {2, 1, 1, 1, 1}, we adjoin one more
prime factor to each form.

Subcase 2b. Assume that p ∤ n and (p + 2)|n, and write n = (p + 2)n0. We also
assume (4.14), and we specify that

m ≡ 2 + 3(p + 2)(k + 1)n (mod 4),(4.18)

m ≡ − (k + 1)n0 + p (mod p2),(4.19)

m(m + (k + 1)n0) 6≡ 0 (mod p + 2).(4.20)

The last condition is possible because there are at most two residue classes mod
(p + 2) for which (4.20) fails. Furthermore, from (4.18), we see that

L3(m) = (p + 2)m + (k + 1)n ≡ 2(p + 2) +
(

3(p + 2)2 + 1
)

(k + 1)n

≡ 2 (mod 4).

2We are no longer using the convention that pi denotes the ith prime.
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In the last equation, we use the fact that j2 ≡ 1 (mod 4) whenever j is odd. We
also note that

L1(m) = 2m + n ≡ 1 (mod 2), and L2(m) = pm + kn ≡ m + k ≡ 1 (mod 2)

Therefore 21||L3(m) and 2 ∤ L1L2(m).

From (4.19), we see that

L3(m) ≡ (p + 2) (m + (k + 1)n0) ≡ 2p (mod p2).

Furthermore,

L1(m) ≡ −2kn0 (mod p) and L2(m) ≡ kn (mod p).

Therefore p1||L3(m) and p ∤ L1L2(m). From (4.20), we see that (p + 2) ∤ L1L2(m),
and

(p + 2)1||L3(m) = (p + 2)(m + (k + 1)n0).

We conclude that L3 has fixed divisors 2p(p + 2) and L1, L2 have no fixed prime
divisors.

Let p1, p2, p3, p4 be distinct odd primes with (p1p2p3p4, p(p + 2)n) = 1. We adjoin
extra factors of p2

1p2 and p2
3p4 to L1 and L2 respectively, then we apply the Basic

Theorem to the reduced forms

L1(m)

p2
1p2

,
L2(m)

p2
3p4

,
L3(m)

2p(p + 2)
.

Multiplying the original forms by 2, p, p+2 according to (4.13), we obtain infinitely
many positive integers x such that x and x + n both have the exponent pattern
{2, 1, 1, 1, 1}.

Subcase 2c. Assume that p|n and (p + 2) ∤ n, and write n = pn0. This case is
similar to Subcase 2b except that the roles of p and p + 2 have been reversed. We
assume (4.14), and we specify that

m ≡ 2 + 3pkn (mod 4),(4.21)

m ≡ − kn0 + p + 2 (mod (p + 2)2),(4.22)

m(m + kn0) 6≡ 0 (mod p).(4.23)

From (4.21), we see that

L2(m) = pm + kn ≡ 2p +
(

3p2 + 1
)

kn ≡ 2 (mod 4).

Furthermore,

L1(m) =2m + n ≡ 1 (mod 2), and

L3(m) =(p + 2)m + (k + 1)n ≡ m + k + 1 ≡ 1 (mod 2).

Therefore 21||L2(m) and 2 ∤ L1L3(m).

From (4.22), we see that

L2(m) ≡ p (m + kn0) ≡ p(p + 2) (mod (p + 2)2).

Furthermore,

L1(m) ≡(−2k − 2)n0 (mod (p + 2)), and

L3(m) ≡(p − 2k)n0 ≡ n0 (mod (p + 2)).
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Therefore (p + 2)1||L2(m) and (p + 2) ∤ L1L3(m). From (4.23), we see that

p ∤ L1L3(m) and p1||L2(m) = p(m + kn0).

We conclude that L2 has fixed divisors 2p(p + 2) and L1, L3 have no fixed prime
divisors.

Let p1, p2, p3, p4 be distinct odd primes with (p1p2p3p4, p(p + 2)n) = 1. We adjoin
extra factors of p2

1p2 and p2
3p4 to L1 and L3 respectively, then we apply the Basic

Theorem to the reduced forms

L1(m)

p2
1p2

,
L2(m)

2p(p + 2)
,

L3(m)

p2
3p4

.

Multiplying the original forms by 2, p, p+2 according to (4.13), we obtain infinitely
many positive integers x such that x and x + n both have the exponent pattern
{2, 1, 1, 1, 1}.

Remark 1. By considering Case 1a and Case 2a, we see that we also have the
following result.

Theorem 13. Let n be an odd number. Suppose that there exists a twin prime pair

(p, p + 2) such that p ∤ n and (p + 2) ∤ n. Then there are infinitely many positive

integers x such that x and x + n both have exponent pattern

{2, 1, 1, 1}.

Note that this generalizes Theorem 4. Note also that using the set T1 from (1.26),
we find that the hypothesis of Theorem 13 is true for any odd n < S′, where

S′ =
∏

p∈T1

p > 101014

.

5. The Case of Odd Shift–Proofs of Theorem 12

We first do the proofs for the results on ω and d; i.e., the proofs of (1.28) and (1.29).
The proof of (1.27) is much simpler, and it will be done at the end of this section.
For the proofs of (1.28) and (1.29), we will assume that 3 · 5 · 7|n; otherwise, the
desired results follow from Theorem 11.

Consider the admissible system

(5.1) 672ℓ + 41, 672ℓ + 47, 672ℓ + 55.

By the Basic Theorem, there are infinitely many positive integers ℓ such that at
least two of the forms in (5.1) are E2-numbers with both prime factors exceeding
C. In this case, we take C to be the greatest prime factor of 13n. In particular,

(5.2) C ≥ 13.

We divide our argument into three cases.
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Case 1: 672ℓ + 41 and 672ℓ + 47 are both E2-numbers. Let q = 672ℓ+ 41, and let
k = 112ℓ + 7, so that q = 6k − 1, q ≡ 1 (mod 4), and k ≡ 3 (mod 4). Consider the
system of linear forms

(5.3) L1(m) = 6m + n, L2(m) = qm + kn, L3(m) = (q + 6)m + (k + 1)n.

Note that

(5.4) 6L2 − qL1 = 6L3 − (q + 6)L1 = (q + 6)L2 − qL3 = n.

Let q1, q2 be the prime divisors of q. We are assuming 3|n, and we write n = 3n3.
We specify that m satisfies the conditions

m ≡2 (mod 4),(5.5)

m(2m + n3) 6≡0 (mod 3),(5.6)

L3(m) ≡q1 (mod q2
1).(5.7)

From (5.5), we find that

L3(m) = (q + 6)m + (k + 1)n ≡ 3m ≡ 2 (mod 4),

and that 2 ∤ L1L2(m). From (5.6), we find that

L1(m) = 3(2m + n3),

and so 31||L1(m). Moreover, 3 ∤ L2L3(m). From (5.7), we find that q1
1 ||L3(m).

Moreover, from (5.4) and (5.7), we see that

−6L1(m) ≡ 6L2(m) ≡ n (mod q1).

Now q1 exceeds all prime divisors of n, so q1 ∤ L1L2(m).

To summarize, our congruence conditions (5.5) through (5.7) imply that L1 has
fixed divisor 3, L2 has no fixed divisors, and L3 has fixed divisors 2 and q1.

Let p1, p2, p3, p4 be distinct primes with

(p1p2p3p4, 6q(q + 6)n) = 1.

We adjoin extra factors of p2
1 to L1, p2

2p3 to L2, and p4 to L3. We apply the Basic
Theorem to the forms

L1

3p2
1

,
L2

p2
2p3

,
L3

2p4q1
.

We use the multipliers in (5.4), and we note that

d(3p2
1q) =d(3p2

1(q + 6)) = d(6p2
2p3) = d((q + 6)p2

2p3)

=d(6 · 2q1p4) = d(2q2
1q2p4) = 24.(5.8)

We deduce that there are infinitely many x such that

d(x) = d(x + n) = 96.

By the usual procedure of adjoining extra prime factors, we deduce that for any
positive integer A, d(x) = d(x + n) = 96A infinitely often. Moreover, we note that

ω(3p2
1q) =ω(3p2

1(q + 6)) = ω(6p2
2p3) = ω((q + 6)p2

2p3)

=ω(6 · 2q1p4) = ω(2q2
1q2p4) = 4.(5.9)
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We thereby obtain infinitely many x such that ω(x) = ω(x + n) = 6.

Case 2. 672ℓ + 41 and 672ℓ + 55 are both E2-numbers. This is similar to Case
1, so we will leave many of the details. The primary difference is that the prime 7
plays the role played by 3 in Case 1.

In this case, we let k = 48ℓ + 3, so that q = 14k − 1 and k ≡ 3 (mod 4). Consider
the system of linear forms

L1(m) = 14m + n, L2(m) = qm + kn, L3(m) = (q + 14)m + (k + 1)n.

Note that

(5.10) 14L2 − qL1 = 14L3 − (q + 14)L1 = (q + 14)L2 − qL3 = n.

Let q1, q2 be the divisors of q. We are assuming that 7|n, and we write n = 7n7.
We specify that m satisfies the conditions

m ≡ 2 (mod 4),(5.11)

m(2m + n7) 6≡ 0 (mod 7),(5.12)

L3(m) ≡ q1 (mod q2
1).(5.13)

From these conditions, we find that 21||L3(m) and 2 ∤ L1L2(m). We also find that
71||L1(m) and 7 ∤ L2L3(m). Moreover, q1

1 ||L3(m) but q1 ∤ L1L2(m). In summary,
our congruence conditions imply that L1 has fixed divisor 7, L2 has no fixed divisors,
and L3 has fixed divisors 2 and q1, similarly to Case 1.

Let p1, p2, p3, p4 be distinct primes with

(p1p2p3p4, 14q(q + 6)n) = 1.

We adjoin extra factors of p2
1 to L1, p2

2p3 to L2 and p4 to L3. We apply the Basic
Theorem to the forms

L1

7p2
1

,
L2

p2
2p3

,
L3

2p4q1
,

and we use the multipliers in (5.10). In this case, we note that (5.8) and (5.9) are
true when 6 is replaced by 14 and 3 replaced by 7. Accordingly, we deduce that for
any positive integer A, there are infinitely many x such that d(x) = d(x+n) = 96A
and ω(x) = ω(x + n) = 6.

Case 3: 672ℓ + 47 and 672ℓ + 55 are both E2-numbers. Let q = 672ℓ + 47, and
let k = 84ℓ + 6, so that q = 8k − 1 ≡ 3 (mod 4) and k ≡ 2 (mod 4). Consider the
system of linear forms

(5.14) L1(m) = 8m + n, L2(m) = qm + kn, L3(m) = (q + 8)m + (k + 1)n.

Note that

(5.15) 8L2 − qL1 = 8L3 − (q + 8)L1 = (q + 8)L2 − qL3 = n.

Let q1, q2 be the prime divisors of q, and choose m so that

m ≡4 + (k + 1)n (mod 8),(5.16)

L3(m) ≡q1 (mod q2
1),(5.17)
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L3(m) ≡q2
2 (mod q3

2).(5.18)

From (5.16), we see that

L3(m) = (q + 8)m + (k + 1)n ≡ −m + (k + 1)n ≡ 4 (mod 8),

so 22||L3(m). Note also that m and n are odd and k is even, so 2 ∤ L1L2(m).
Conditions (5.17) and (5.18) imply that L3(m) has the fixed divisors 22, q1, q

2
2 . The

forms L1 and L2 have no fixed divisors, similarly to Cases 1 and 2.

Let p1, p2, p3, p4 be primes with

(5.19) (p1p2p3p4, 2q(q + 8)n) = 1.

We add extra divisors p2
1p

2
2 to L1 and p2

3p
2
4 to L2. We apply the Basic Theorem to

the forms
L1

p2
1p

2
2

,
L2

p2
3p

2
4

,
L3

22q1q2
2

.

We use the multipliers in (5.15) and note that

d(p2
1p

2
2q) = d(p2

1p
2
2(q + 8)) = d(8p2

3p
2
4) = d(p2

3p
2
4(q + 8))

= d(23 · 22q1q
2
2) = d(22q1q

2
2q) = 36.

We deduce that there are infinitely many x with

d(x) = d(x + n) = 144.

By adjoining further prime factors, we see that for any positive integer A, d(x) =
d(x + n) = 144A infinitely often.

The above argument has to be modified slightly for ω. We take the same linear
forms as given in (5.14). As before, we take m ≡ 4 + (k + 1)n (mod 8), and we
let q1, q2 be the prime divisors of q. Let q3, q4 be the prime divisors of q + 8. We
choose m so that

L2(m) ≡ q3 (mod q2
3), and L3(m) ≡ q1 (mod q2

1).

Let p1, p2 be as in (5.19). Adjoin an extra factor of p1 to L1 and an extra factor of
p2 to L2, then apply the Basic Theorem to the forms

L1

p1
,

L2

p2q3
,

L3

22q1q2
.

We use the multipliers in (5.15) and note that

ω(p1q) = ω(p1(q + 8)) = ω(8p2q3) = ω(p2q3(q + 8))

= ω(8 · 22q1q2) = ω(22q1q2q) = 3.

We deduce that there are infinitely many x such that

ω(x) = ω(x + n) = 5.

To make this compatible with Cases 1 and 2, we adjoin one further prime factor so
that we obtain infinitely many x with ω(x) = ω(x+n) = 6. This concludes Case 3.

We can now prove (1.28) and (1.29). From the above three cases, we we see that
there are infinitely many x such that ω(x) = ω(x+n) = 6. Statement (1.28) follows
from the usual procedure of adjoining further prime factors. For (1.29), we note
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that Cases 1 and 2 give infinitely many x such that d(x) = d(x + n) = 96A, while
Case 3 gives d(x) = d(x + n) = 144A. Statement (1.29) follows upon noting that
lcm(96, 144) = 288.

For the corresponding result on Ω, we return to the simpler procedure used in
Section 3. First, we note that by Theorem 13, we have (1.27) with A = 5 whenever
(n, 15) = 1, 3, or 5. Henceforth, we assume that 15|n.

We take the forms given in (3.1); i.e.,

L1(m) = 2m + n, L2(m) = 3m + n, L3(m) = 5m + 2n.

We may write n = 3n3 = 5n5. We specify that

m ≡ n + 2 (mod 4),

m(m + n3) 6≡ 0 (mod 3),

m(m + 2n5) 6≡ 0 (mod 5).

From these conditions, we see that L1 has no fixed divisors, L2 has fixed divisors
2 and 3, and L3 has fixed divisor 5. We apply the Basic Theorem to the reduced
forms

L1(m),
L2(m)

2 · 3
,

L3(m)

5
.

We adjoin one new prime factor to L3 and two new prime factors to L1. We then
find that there are at least two forms Li such that

Ω(Li(r)) = 4

for infinitely many r. Using the relations in (3.2), we find that there are infinitely
many x such that

Ω(x) = Ω(x + n) = 5.

The completes the proof of (1.27) in the case A = 5. The general case follows by
adjoining further prime factors.
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