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We give asymptotically sharp upper bounds for the maximum diameter and 
radius of (i) a connected graph, {ii) a connected trangle-free graph, (iii) a connected 
C,-free graph with n vertices and with minimum degree 6, where n tends to infinity. 
Some conjectures for J&-free graphs are also stated. ‘c 1989 Academic Press, Inc. 

Let G be a connected graph with vertex set V(G) and edge set E(G). For 
any XJJ E V(G) let dG(x,y) denote the distance between x and y, i.e., the 
minimum length of an x-y path in G. The diameter and the radius of G 
are defined as 

The following theorem answers a question of Gallai [6]. 

THEOREM 1. Let G be a connected graph M*ith n vertices and with 
minimum degree 6 2 2. Then 

(ii) 

diam G< & - 1. [ 1 
radG< inb3 

’ 2KP5. 

Furthermore, (i) and (ii) are tight apart from the exact value of the aditive 
constants, and for every 6 > 5 equality can hold in (i) for infinitely many 
values of n. 
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Prooj Let G be a graph of diameter d> 1 and minimum degree 6, and 
asume that it is saturated; i.e., the addition of any edge results in a graph 
with smaller diameter. Let x and y be two vertices with d,(x,y) = d, and 
putSi=(YEV(G):dc(x,~)=i}foranyOdidd.ThenISoI=lSdl=1and 
by the condition on the minimum degree 

Is,~,I+Is,I+Is;,~/~~+l for all O<i<d, 

where S I = S,, , = 0. It can readily be checked by distinguishing cases 
according to the residue class of d mod 3 that if d > 2 then this implies 

where sd denotes the remainder of d upon division by 3. This yields (ij. 
Further, it is easily seen that equality can be attained in (1) for any pair 
d32,6>2. 

Note that (i) is tight, e.g., for the following graph. Let k > 1, 6 > 5, and 
V(G) = V, u V, u ..- u If,,- 1, where 

{ 

1 if i=Oor2(mod3), 
lvil= 6 if i= 1 or 3k-2, 

6-l otherwise 

Let two distinct vertices u E Vi, u’ E Vj be joined by an edge of G if and only 
if Ij-il <l. 

To prove (ii), let us fix a center x of G, i.e., a point for which 
maxJ,EV,,,d,(x,y)=radG=r, and put Si= {t’~V(G):d,(x,u)=i) for 
O< i< r. Given any u E Si, pidk a point t”~ SiPI such that 
vu’ E E(G) ( 1 < i < r). The collection of the edges { DU’: a E V(G) - {x > } 
obviously defines a spanning tree Tc G with the property that 

d,(x, Y) = 4(x> Y) for all y E V(G). 

Let T(x, y) denote the path connecting x and y in T. Further, put 

Fix a point y’ E S,. A vertex y” E V(G) is said to be related to y’, if one 
can find jj’ E T(x, u’) n S, 5 and 7” E T(x, JJ”) n S B s such that 

dG(,ij’,y”)<22. (2) 

There are two cases to consider. 
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Case A. There exists a point y” E S, r- 5 which is not related to y’. 
For any i, let S: (and S:‘) denote the set of all elements in Si whose 

distance from at least one point of T(x, y’) n S, j (one point of 
T(x, y”) n Sa5, resp.) is at most 1 in G. Using the fact that y’ and y” are 
not related, 

On the other hand, by the condition on the minimum degree, 

/s:_~I+Is:l+js:+,I~~++ for all 5 d i d Y, 

IS:I-1J+ISI’I+IS:+1~3s+l for all 5 <ibs, 

where s = dG (x, y”) 3 r - 5. Similarly to (l), we now obtain 

n> IS,,1 + i ISll +;$I is:1 
i=4 

2:6+2+ i f~ls:~,l+,s:,+,s:+,l~+~ 
{ i=5 1 

whence (ii) follows immediately. 

Case B. Every point y” E S a r _ 5 is related to y’. 
Let x’ denote the only element of T(x, y’) which belongs to S,. Then, for 

any YES~,-~, 

d,(x’,y)<dd,(x’,x)+d,(x,?,)<5++-6=r-1. 

On the other hand, every y” E S > I- 5 is related to y’, therefore by (2) 

dG (x’, y”) < d, (x’, p’) + d, (y’, f’) + d,(j”, y”) 

<(d,(x,y’)-5)+2+(r-d,(x,y”)) 

dr-3+d,(y’,y”)dr-1. 

Thus, d, (x’, y) < r - 1 for every y E V(G), contradicting our assumption 
that rad G = r. This completes the proof of (ii). 1 
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THEOREM 2. Let G be a connected triangle-free graph with n vertices, and 
with minimum degree 6 2 2. Then 

0) 

Furthermore, (i) and (ii) are tight apart from the exact value of the additive 
constant, and for every 6 > 2 equality can hold in (i) for infinitely many 
values of n. 

ProoJ Let x and y be two vertices of G with do (x, y) = diam G = d, and 
put S, = (u E V(G): dc(x, v) = i} for any 0 6 id d. 

For every i exactly one of the following two possibilities occurs. Either 
Si does not span any edge of G and then 

IS,-11 + IS,+11 ZJ> (3) 

or VU’ E E(G) for some v, v’ E S,, and then the neighborhoods of v and v’ are 
disjoint. Therefore 

Isi-Il+ls~I+Isz+1132d (4) 

Note that (3) and (4) immediately imply that 

I~,-~l+l~,l+I~,+~l+I~,+~/~~~ forevery O<i<d-1, (5) 

where S, = Sd+ 1 = aa. Indeed, if Si or Si+ i contains an edge, then (5) 
follows from (4). Otherwise, by (3), ISi_ I I + I Si+ 1 I >, 6 and ISi I + 
JSi, z J Z 6; hence (5) is true again. 

Now easy calculations show that 

f- 6+2 if ds 0 (mod 4) 
if ds 1 (mod 4), 
if ds 2 (mod 4) 
if d= 3 (mod 4), 

and equality can hold for every pair d, 6 3 2. This yields (i). Note that (i) 
is tight, e.g., for the following graphs. Let V(G) = V, u V, u ... u V,, with 

I 

1 if i=Oorl(mod4)andi#l, 
I?fl= 6 if i=l or4k-1, 

6-l otherwise, 

and assume that Vi and Vi+ 1 induce a complete bipartite subgraph of G for 
every i. 
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The proof of the second part of the theorem is very similar to that 
of Theorem 1 (ii). We use the same notation and terminology as there, 
with the following modification. Fix a point y’ E S,. A vertex y” E V(G) 
is now said to be related to y’, if there exist j’ E T(x, y’) n S,, and 
j” E T(x, y”) n S, 9 such that 

dG (Y’, J”) G 4. (2’) 

Case A. There exists a point y” E SarMg which is not related to y’. 
For any i, let S: (Sf) denote the set of all elements of Si whose distance 

from at least one point of T(x,y’)nS., (T(x,y”)nSa,, resp.) is at 
most 2. Then 

and by an argument similar to the proof of (5) we obtain 

IX-11 + IFI + Is:+,l+ IX+21 226 forall 8<i<r-1, 

Isp-,I + Is:‘1 + Is:+ll+ IS:‘+21 226 forall 8<i<s-1, 

where s = d, (x, y”) > r - 9. This yields 

n~ls,,j+ i Is;/+ “~‘IS:llHr-W~+2 
i=7 i=7 

and (ii) follows. 

Case B. Every point of S z r-9 is related to y’. 
A slight modification of the argument which settled the corresponding 

case in Theorem 1 shows that this cannot occur. 1 

THEOREM 3. Let 6 2 2 be a fixed integer, and let G be a connected, 
Cd-free graph with n vertices and with minimum degree 6. Then 

0) 

(ii) 

diam G d 
5n 

P-2[c6/2] -k 1’ 

rad Gd 
5n 

2(P- 2[6/2] + 1)‘ 

Furthermore, if 6 is large, then these bounds are almost tight. More precisely, 
if 6 + 1 is a prime power, then there exists a graph G with the above proper- 
ties and 

(iii) diam G > 5n -1 
d2+36+2 ’ 
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ProoJ: Let xOxlxz a . . xd be a chordless path of length d = diam G in G. 
Put S.,(x)=(~~V(G):d~(x,o)~2} for any XEV(G). Since G does not 
contain C4, 6 

IS,,(x)1 2d2-2 - A-1 [1 2 
for every x E V(G). 

In view of the fact that 

&*c4n&2(x5j)=@ forall O<i#j<Q, 

we obtain 

which proves (i). From here (ii) follows in exactly the same way as before. 
To establish (iii), set q = 6 + 1 and let H denote the following graph dis- 

covered by Brown [4] and Erdiis and RCnyi [S]. Let V(H) consist of all 
ordered triples x = (x1, x2, xj) #Q whose elements are taken from GF(q), 
where two triples x and $ are considered identical if x’= Ax for some 
1. E GF(q), 3. # 0. Let &y E E(H) if and only if x .y = 0. Clearly, H is Cd-free 
and has q2 + q + 1 vertices, each of degree q or > + 1. 

Let us fix distinct u, v, z E Y(H) satisfying u ,z= v .z = z .z =O. Let 
uo=z, ui, u2, . . . . uq, and v. =z, vl, v2, . . . . vq denote the neighbors of u and 
v, respectively. For every i (16 id q) there is a uniquely determined 
j(i) (1 <.j(i) <q) such that u~v,(~) GE(H). On the other hand, no ui or 
v,(l <i,j<q) is adjacent to z in H. 

Let Ho denote the graph obtained from H after the removal of the vertex 
z and all edges of the form uivjci,, 1 < i < q. It is clear that d,,(u, v) = 4, and 
the minimum degree of the vertices of Ho is q - 1 = 6. 

Let G be defined as the union of k disjoint isomorphic copies 
HS”, H’2’ 0 3 ..-, Hr’ of Ho, and let us make it connected by adding the edges 
v”)u(‘+‘) for every 1 < t < k. Then 1 V(G)1 = n = k(q2 + q) = k(d2 + 36 + 2) 
and 

diamG=5k-1= 
5n 

S*+36+2 
-1. i 

Conjecture. Let r, 6 > 1 be fixed natural numbers, and let G be a con- 
nected graph with n vertices and with minimum degree 6. 

(i) If G is K,,-free and 6 is a multiple of (I - 1)(3r + 2), then 

diam G < 2(r - 1 W + 2) 
’ (2r2-1)d n+0(1) while n-+ +w. 



RADIUS, DIAMETER, AND MINIMUM DEGREE 79 

(ii) If G is Kz,+l -free and 6 is a multiple of 3r - 1, then 

diam G<yn+O(I) while n+ + cc. 

These bounds, if valid, are asymptotically sharp, as is shown by the 
following graphs. 

(i) Let V(G)= UFcO u;!$l V,, where r(i) = r or r - 1 depending on 
whether i is even or odd, and let 

i 

r 6/(r - 1)(3r + 2) 
““= (r+l)d/(r- -i-1)(3r+2) 

if i#O, kis even 
if i # 0, k is odd, 

and 1 V,, 1 = 1 V,, 1 = 6 for every j. Let two vertices v E V, and v’ E Vi?, be 
joined by an edge if and only if (a) Ii - i’j = 1 or (b) i = i’ and j #j’. Then 
G is obviously K,,-free. 

(ii) Let V(G)=Uf==,U;=, V,, where IV,l=6/(3r-l)if i#O,kand 
1 V,,l = 1 V,,l = 6 (1 <j< r). Let the edge set of G be defined by the same 
rule as above. Then G is Kzr + 1-free. 

For an extensive survey of problems and results on the relations between 
the degrees, the radius, and the diameter of a graph see Chapter 4 in 
Bol’tibBs [3], or Bermond and Bollob& [2]. A statement essentially 
equivalent to part (i) of Theorem 1 already appears in [ 11. 
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