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1. Introduction 

Let us denote by p(n) the number of unrestricted partitions of II, by r(pz, m) 
the number of partitions of n whose parts are at least m, and by R(n, a) the 
number of partitions of 12: 

whose subsums ni, + - * . + ni, are all different from a. Furthermore, if d = 
{aI, . . . , uk}, we denote by r(n, a) the number of partitions of n with no parts 
belonging to d. 

Let us consider now partitions of n for which each part is allowed to occur at 
most once. In that case the above notations will be changed for q(n), p(n, m), 

Qh a), p(n, 4. 

Clearly we have: 

r(n, m) = r(n, {1,2, . . . , m - l}) 

R(n, a) 3 r(n, a + 1) (1) 
R(n, a) 2 ~(12, {I,29 . . . , b/21, a>) (2) 

where [x/2] denotes the integral part of x. 
In [4], the following estimation is given for R(n, a): when a is fixed, and II 

tends to infinity, 

(3) 

where q(u) = ]a/2 + 11, and u(a) E N. The value of u(a) is computed for 
1 L 116 20, and it does not seem easy to get a simple formula for ~(a). The results 
are u(l)= 1, u(2)=4, u(3)=3, u(4)= 16, and u is increasing from u = 3 to 
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a = 20. Moreover, J. Dixmier gives the following inequalities: 

for a even (]a/31 - l)! ua’6+3 G ~(a) G 2*‘%!/(a/2 - l)! (4) 

for a odd (]a/31 - l)! #u/6+2 G u(a) G 2‘%!/( ]a/2] )! (5) 

It follows from (3), the definition of @, and the behaviour of u, that for n large 
enough, 

R(n, 1) > R(n, 2) > R(n, 3) > R(n, 4) (6) 

andfora=26, 2sbb9, 

R(n, 2b + 2) < R(n, 2b) < R(n, 2b + 1) < R(n, 2b - 1). 

At the end of the paper, a table of R(n, a) is given. It has been calculated by 
J. Dixmier, H. Epstein and O.E. Lanford, using the induction formula. 

f(n,p,d)=Cf(n-i,i,.dlJd-ii). 
‘Gp 

Here, f(n, p, a) denotes the number of partitions of n in parts sp such that no 
subsum belongs to a, and sl-i={(a-i;u~~,a--i>O}. It has been inde- 
pendently calculated by F. Morain and J.P. Mass&. They have used computer 
algebra systems MAPLE and MACSYMA to compute polynomials mentioned by 
Diximier (cf. [4], 4.3 and 4.10). Unfortunately these polynomials are of degree 
((u + l)(u + 2)/2) - 2, and it is not easy to deal with them for large values of a, 

As observed in [4], R(n, 2) <R(n, 3) for 10~n C 106, which contradicts (6). 
But (6) is true only for n large enough. 

The aim of this paper is to study R(n, a) for a depending on n, and smaller 
than h,fi, where 12, is a small positive constant. The tools for that are an 
estimation for r(n, &) (cf. Lemma 2 below), and inequalities involving R(n, a), 
extending (1) and (2). We shall prove the following result. 

Theorem 1. There exists A,> 0, such that uniformly for 1 G a s&j&z, we have, 
when n goes to infinity, 

(9 log(W) s (V(0) log%) +0(1/V% 

(ii) log(w) 5 *(a) log%- yau + Oju2/fi) 

where ‘/I = 1 if a is odd, and, if a is even, 

y,=~+1og3-~1og2+c’“g= 
log a 

U 
+0.79- * * +ca where c is a j2ed constant. 
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Let us observe that, when a goes to intinity, (4) or (5) gives 

( - 1+~3+o(l,)u s log u(a) - ia log u c (log 2 - f + o(l))a (7) 

while (3), (i) and (ii) yield that 

-yJl + o(u) s log u(u) - $a log u S o(u) (8) 
which is better than (7) except for the lower bound when a is even. 

We intend to treat the case A,fi s a in an other paper, by a different method, 
which will give also an estimation for Q(n, a). For this quantity, we here give 
only a lower bound. 

Theorem 2. There exists A, > 0, such that, uniformly for 1 s a 6 A,fi, we have: 

log(F) 2 -;log&log3+0 ” . 
( > 6 

We thank very much J. Dixmier for several interesting remarks. 

2. Preliminary Results 

Let us first recall the definition of the mth Bessel1 polynomial ym(x); (cf. [9]): 

YdX) = 1 
y,(x) = (1+ sly,-lb) + x2YL-&). 

From that definition, it is easy to see that, if we set 

F(x) = (exp (ti)>/ti, 

(9) 

then we have (cf. [5], Lemma 1) 

F(“)(x) = exp ti 
2mX(m+l)nYm ( > -< ’ ; (10) 

Furthermore, it follows from (9) that ~~(0) = 1. 

Lemma 1. For m odd, the function x + y,,,(x) is increasing for x E 1-03, +m[, and 
its zero a;, satk$es 

where y is a constant satisfying 1.5 < y < 1.51. 
For m even, y,(x) is decreasing on l-m, c&J and increasing on ]a;, +m[, and 

Y <a:,<- Y 
-m +0.77 m + 1.61’ 02) 

Proof. This is proved in [l] and [2]. 0 
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Lemma 2. Let us define Pm by 

j=-k+l 

Then we have 

Ym@lYm(-x) = cd~“). 

Proof. It is known that y,(x) satisfies the differential equation (cf. [9], p. 7) 

x*yw + 2(x -t 1)y’ - m(m + 1)y = 0. (13) 

If we set w(x) = y,(-x), it satisfies 

2w” + 2(x - 1)w’ - m(m + 1)w = 0. 04) 

Now we set Y = yw. It is known that Y satisfies a linear differential equation, and 
with some calculation this equation writes: 

x4Y”‘+ 6x3Y” - ((4m(m + 1) - 6)x2 + 4)Y’ - 4m(m + 1)xY = 0. (15) 

We can easily check that Y satisfies (15), by calculating Y” and Y”’ in terms of 
yw, y’w, yw’, y’w’ by (13) and (14). 

Now, we are looking for polynomial solutions of (1.5). It turns out that these 
solutions are of the form cP&*), and considering x = 0 yields Lemma 2. Cl 

We are very pleased to thank A. Salinier for this proof of Lemma 2. This result 
is somewhat curious. We would expect that, in the product y,(x)y,,,(-x) the 
coefficient of r2k is a polynomial of degree 4k in m. Indeed, it follows from (9), 
cf. [9], p. 13, that 

with 

y,(x) = 1 -I- 2 aim)xk 
k=l 

Lemma 3. For x such that 0 S m s l/a, we have 

y,(-x) 2 (1 - m(m2+ l)x’)exp( - m(m2+ “x) 

=exp - 
( 

m(m2+ l) (x + O(2))). 

Proof. From the obvious inequality (m - i + l)(nz + i) < (m + l)m, (16) implies 
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which gives 

Y,(X) s exp ( 
m(m + 1) 

2 x* > 

159 

(17) 

Now, let us write the polynomial P,,,, defined in Lemma 2, in the form 

P,(x) = 2 d&. 
k=O 

Then we have 

I I - =(m+k+l)(m-k)(2k+1)<2m, d kfl 

d/c (2k+2) - . 

Thus, the absolute value of the general term of y&)y,(-x), that is ldkxzkl is 
decreasing, and, as it alternates in sign, for llzx 6 l/I& we have 

l-m(m+l) 
2 

x2~ym(x)ym(-x) = Pm(x2) s 1, 

which, with (17) completes the proof of Lemma 3. 0 

More accurate estimations have been obtained by M. Chellali, using Agarwal’s 
integral representation 

y*(,,=~%f”(l+~)^e-‘dt 

and the saddle point method (cf. [3]). 

Proposition. There exists & > 0 such that, if d = {al, . . . , ak} satisfies s = a1 + 

a,+-* . + ak S&n, then, when n tends to infinity, we have 

6) 

(ii) 

4% 4 s (Ii ~i)l+)(&)“(l + o(k)) 
i=l 

rh 4 2 (~ai)~(~)(~)kexP(O(~/~)). 

Proof. It is very similar to the proof of Theorem 1 of [5]. First we introduce the 
operator D’“‘. Let f: R + R, m > 1, ul, . . . , u, be positive. We set 

D(l)(U*‘f x) =f(x) -f (x - u*) 3 , 
ZP)(U1 , * . - 9 u,; f, x) = D(m-l)(Ut, . . . , urn-*; f, x) 

- P--1)(U*, . . . ) 4?-,;f, x - 4n). 

From the generating functions, we observe 

r(n, {aI, . . . , ak}) = Dck)(ul, . . . , ak;p, n)- 
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Now, with F(x) = (exp(ti))/& the classical result of Hardy and Ramanujan 
can be written (cf. [5]) as follows: 

P(n) =& F’(C2(n - l/24)) + fl(n) (19) 

with C = rrm, and 

CVG Ifi(n>l s y exp( T). 

Furthermore, using Lemma 3 of [5], (18) and (19) give 

sF(*I’)(CI(g - l/24)) + O(cexp(C$)) 

with 
(20) 

n-sS:5Sn. (21) 

We now use (10) to estimate F (k+1)(C2(E - l/24)). The function x+ exp(ti) . 
X(k+2)/2 ls 

increasing for x> (k +2)2. As s =a1 + * * - + ok 2 k(k + 1)/2 Z= k2/2, which im- 
plies k s fi, for il, small enough, from (21) we have 

exp( CVX) exp(Cm) ~ exp(CVi) 
(n -s - qW+W c (5 _ 1/2q(k+W2 n(k+2)/2 ’ (22) 

NOW let US turn to the proof of (i). By (22), the main term of (20), is at most 

exp( 62) 
n(k+2)/2 

For A2 small enough, we have 

and thus Lemma 1 gives 

( 
-1 

yk+l cj@=im > s 1. 

Using the estimation 

P(n) = exf$-GJ (1+ 0(1/V-q), 

the main term of (20) is at most 

(23) 

(&+“)(&y( + I* (24) 
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To complete the proof of (i), it remains to check that the error term of (20) is 
included in the above error term. First, (24) is 

>> k, exp(Cfi) k >> exp( CG) k 
n n 

by Stirling’s formula. So it is enough to show that 

But the left hand side of the above inequality is an increasing function on k, for 

k+, d k IE an we now that k < fi < a. To conclude, we observe that for 

& small enough, we have: 

In order to prove (ii), first we apply Lemma 3, to obtain 

( 
-1 

yk+l cam > ( aexp - 2c.\/n-s-1 
(k+l)(k+2y1+0(&))) 

which with (23) yields 

( -1 
yk+l cqigm > 

= U(s/lii). 

Then we observe that 

exp(CVGPi) = exp(CG + O(slG)) 
and 

(n - s - l)(k+z@ = exp 
( 
y (log 12 + O(sln))) 

= rick+*)” exp(O(s&)) 

since k = O(h). 
Furthermore, by (lo), (22) and (25), the main term of (20) is at least 

exp(O(slV$). 

The end of the proof of (ii) goes in the same way as for (i). Cl 

Remark. A similar proposition is given in [7] in the case of restricted partitions. 
A more general estimation is given by J. Herzog (cf. [lo] and [ll]), using a 
Tauberian theorem. 
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3. Tbe upper bound in Theorem 1 

First let us say that a partition PI = n, + * * * + n, of n represents a if there is a 
subsum nil,. . . ,nj,, l~i,<.. * < ij c t which is equal to a. Thus R(n, a) counts 
the number of partitions of n which do not represent a. 

Clearly if b <a, b and a - b cannot be together parts of a partition which 
does not represent a. 

Let us suppose first that a is odd. From the above remark, we deduce that for 
all integers, i, with 1 G i s lu/2], at most one of i and a - i can be a part, and 
thus 

R(n, a) 6 E, ,llan, + (g {iETa - i)‘-“I) U 64) 

where in the summation Ed E (0, l}. 
Now we apply our proposition, with k = q(u), and s s C./2<j~~j, and we 

obtain that 

But this summation is exactly 

a iFl (i f (a - i)) = av(“) 

which proves (i) for a odd. When a is even, the part u/2 can occur but only once. 
Thus we have 

+ c 
9....,~l.i2J 

i-(n -I, (I$ {i”(u - i)‘“)) U {a)) 

where the first summation counts partitions without any part equal to u/2, and 
the second counts partitions with one part equal to u/2. 

For the second sum we obtain the upper bound 

c [ 

exp( CGTE) 
4ti(n - u/2)~‘(a)a+1 yiz I( > 

n” y1+ O(l/fi)). 

But, as already observed, the function x--, expfi/xk is increasing for x > k2, 
and for A,, small enough, the expression between brackets is smaller than 

exp(&) 
4&vw2+1 =p(n)n-‘(“)‘2(1 +0(1/J@). 
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So, the second sum in (27) is not bigger than the first one, which was already 
estimated when a is odd. This completes the proof of (i). 0 

4. Tbe lower bound in Theorem 1 

Let us suppose first that a is odd. Then 

R(n, a) 2 r(n, (1, 3,5, . . . , a}) 

and, observing that ~&(a) = (a + 1)/2, by the Proposition we have 

By Stirling’s formula, (2u)!/2”u! 2 uU2Ue-U, and since q(a) 5 u/2, we obtain (ii). 
Let us suppose now that a is even. In fact, the following reasoning works also 

for a odd, but it gives a worse estimation than the preceding one. For real 
numbers x and y, let us denote the set of integers belonging to the real interval 
]x, y[ by ]x . m . y[. We set 

a=p 6 - a/3] U [u/2 - - 6 h/3] U {a}. 

Then, it is not difficult to see that 

R(n, a) 3 r(?l, d) 

(which is slightly bettter than (2)), and considering the three possible cases 
a = 0, 2,4 mod 6, that card A? = v(a). By the proposition, we get 

R(n a) ~u b/31! l& - wl!p(n) Jr y(o) 
P La/:!- l]! - ( > 6 

exp(Q(a’lG)). 

Using Stirling’s formula in the form 

[u + O(l)]! = u”eeu exp(O(log u)) 

we obtain (ii) with an eifectively computable constant c. 0 

5. Proof of Theorem 2 

We consider now only partitions without any repetition, and we look at a 
subset of [l 1 . * (a - l)], say 1 with the following property: 

noelementjE l..*i [ 1 belongs to d 

foreachje f*..i , 1 [ there are 3 possibilities: 

jE&anda-j$d, j$sQanda-jEOe, j$.&andu-j$d 

foreachjE $*..u-l , 1 there are 2 possibilities, j E d or j $ Se. 
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For any such &, we have: 

Card d 6 ~~11’. 

How many such &‘s are there? As 

Card(]i...i[)>i-1 and Card([$...(,-l)])>f, 

there are more than 
3(n/6)- lyEi 

such sets d. Further, to build a partition of ~1, we choose such a set &, and we 
complete by a partition of n-Card ~4, without any part smaller than a + 1. Thus, 
since p(n, m) is non-decreasing in n (cf. [S]), 

Q(n, a) z 3d6-120’3p(n - cla2, a f 1). 

Using Theorem 1 of [8], which gives p(n, m) 2 q(n)/2”-l, and the classical 
estimation 

4(n) 
1 

- 7 exp(rcVZ), 
4(3n3)z 

Table of R(n,.a) 

n p(n) a = 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 0 

2 2 1 
, 

24 ( 15751 3201 198 1 228 1 170 1 218 I 158 ( 214 1 157 1 198 180 1 239 

1 25 I19581 1 3831 240 1 262 1 202 1 241 1 187 ) 219 1 209 1 195 ( 200 1 236 ) 250 1 
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Table of R(n, a) (continued). 
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I 26) 24361 

27 3010 574 349 381 291 

295 304 361 I 1 
28 3718 706 421 476 343 4401 308 1 4031 3291 397) 305 

414 336 "- *** I I I 1 I 

70 AiCC P17 En? 
431 OLY I 

t Ld, I ww.2, I , ' “.I 'PC' ( *“II 550 410 483 362 430 371 395 314 
385 448 492 

604 600 485 611 420 565 435 534 402 

423 584 550 922 

94 597 519 540 513 
I 

,_1” 

1650 

1395 

1173 

~ 

1617 

1909 

la77 

2096 

which implies 

q’nqinC;.2) = exp(O(a’/G)), 

we obtain Theorem 2. 0 
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