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1. Introduction

Let us denote by p(n) the number of unrestricted partitions of n, by r(n, m)
the number of partitions of n whose parts are at least m, and by R(n, a) the
number of partitions of n:

n=n1+"‘+n“

whose subsums n; +---+n; are all different from a. Furthermore, if o =
{a, ..., a}, we denote by r(n, &) the number of partitions of » with no parts
belonging to .

Let us consider now partitions of n for which each part is allowed to occur at
most once. In that case the above notations will be changed for q(n), p(n, m),
Q(n, a), p(n, ).

Clearly we have:

r(n,m)=r(n, {1,2,...,m—1})

R(n,a)=r(n, a+1) (1)

R(n,a)=r(n, {1,2,..., la/2], a}) )
where |x/2] denotes the integral part of x.

In [4], the following estimation is given for R(n, a): when a is fixed, and n
tends to infinity,

(a)
R @) ~p() =) (@ ®)

where y(a)=|a/2+ 1], and u(a)eN. The value of u(a) is computed for
1<a =20, and it does not seem easy to get a simple formula for u(a). The results
are u(1)=1, u(2)=4, u(3)=3, u(d4)=16, and u is increasing from a=3 to
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a =20. Moreover, J. Dixmier gives the following inequalities:
foraeven ([a/3] —1)!a****<u(a)=<2"%a'/(a/2—1)! 4)
foraodd (|a/3] —1)!a****<u(a)=<2"%a!/(la/2])! (5)

It follows from (3), the definition of v, and the behaviour of u, that for n large
enough,

R(n,1)>R(n,2)>R(n,3)>R(n, 4) (6)
and fora=2b, 2=b =<9,
R(n,2b+2)<R(n,2b)<R(n,2b+1)<R(n,2b-1).

At the end of the paper, a table of R(n, a) is given. It has been calculated by
J. Dixmier, H. Epstein and O.E. Lanford, using the induction formula.

f(u, p, )=, f(n—i, i, 4 U —i).
i=p
Here, f(n, p, &) denotes the number of partitions of » in parts <p such that no
subsum belongs to &, and s —i={a—i;aesf,a—i>0}. It has been inde-
pendently calculated by F. Morain and J.P. Massias. They have used computer
algebra systems MAPLE and MACSYMA to compute polynomials mentioned by
Diximier (cf. [4], 4.3 and 4.10). Unfortunately these polynomials are of degree
((a +1)(a +2)/2) — 2, and it is not easy to deal with them for large values of a.

As observed in [4], R(n, 2) <R(n, 3) for 10=n <106, which contradicts (6).
But (6) is true only for n large enough.

The aim of this paper is to study R(n, a) for a depending on », and smaller
than A,Vn, where A, is a small positive constant. The tools for that are an
estimation for r(n, ) (cf. Lemma 2 below), and inequalities involving R(n, a),
extending (1) and (2). We shall prove the following result.

Theorem 1. There exists A;> 0, such that uniformly for 1<a< AoVn, we have,
when n goes to infinity,

O 1og(*) < (i@ tog ) + 011V

p(n)
(i) log(R;’(’;;’)) > Y(a) log -~ y.a + 0@ Vi)

where v, =3 if a is odd, and, if a is even,

loga loga
a

Ya=4%+log3—7log2+ oy +0.79 - - - +c where c is a fixed constant.
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Let us observe that, when a goes to infinity, (4) or (5) gives

1+1log3
(— 30g +o(l))aslog u(a)—3aloga<(log2—3+o0(1))a @)
while (3), (i) and (ii) yield that
—v.a+o(a)<logu(a)—jaloga=<o(a) (8)

which is better than (7) except for the lower bound when a is even.

We intend to treat the case A;Vn <a in an other paper, by a different method,
which will give also an estimation for Q(n, a). For this quantity, we here give
only a lower bound.

Theorem 2. There exisis A, >0, such that, uniformly for 1<a < A,Vn, we have:
2

log(%) = —glog%ﬁ— log3+ O(%).

We thank very much J. Dixmier for several interesting remarks.

2. Preliminary Results

Let us first recall the definition of the mth Bessell polynomial y,,(x); (cf. [9]):
yo(x) =1

¢ 9
Y(5) = (1 + LYoo () + Y1 (3). ©)
From that definition, it is easy to see that, if we set
F(x) = (exp (Vx))/ Vx,
then we have (cf. [5], Lemma 1)
i exp Vx 1
F)(x) =2mx(Tl)Qym(_V;)' (10)

Furthermore, it follows from (9) that y,,(0) = 1.

Lemma 1. For m odd, the function x— y,,(x) is increasing for x € |—», +=[, and
its zero «,, satisfies

Y ¥
. I .
mo S Tmrl an
where v is a constant satisfying 1.5 <<y <1.31.
For m even, y,.(x) is decreasing on |—=, «,,[ and increasing on |a,,, +[, and
Y ) ¥

-t <l <——1—.
071 T L6l (12)

Proof. This is proved in [1] and [2]. O
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Lemma 2. Let us define P, by
(DK [ ;
Put)= 2, et 2 (k1) (,-ﬂﬂ (m+1) )¢

Then we have

ym(x)ym(_x) = Pm(xz)'

Proof. It is known that y, (x) satisfies the differential equation (cf. [9], p. 7)

xy"+2(x + 1)y’ —m(m + 1)y =0. (13)
If we set w(x) = y,,(—x), it satisfies

2w +2(x — Dw' —m(m + 1)w =0. (14)
Now we set Y = yw. It is known that Y satisfies a linear differential equation, and
with some calculation this equation writes:

Y+ 6x°Y" — (dm(m + 1) — 6)x* + 4)Y' — 4m(m + 1)xY =0. (15)

We can easily check that Y satisfies (15), by calculating Y” and Y” in terms of

yw, y'w, yw', y'w’ by (13) and (14).

Now, we are looking for polynomial solutions of (15). It turns out that these
solutions are of the form cP,,(x*), and considering x = 0 yields Lemma 2. [

We are very pleased to thank A. Salinier for this proof of Lemma 2. This result
is somewhat curious. We would expect that, in the product y,,(x)y,.(—x) the
coefficient of x** is a polynomial of degree 4k in m. Indeed, it follows from (9),
cf. [9], p. 13, that

Ym(x) =1+ 3 afx*
k=1
with

k

a == [I (m+)). (16)

e i

Lemma 3. For x such that 0<m <1/\?2, we have

}’m(“x)a( m(mz Dy )em(—@x)

= exp -T2 e+ 06x7)).

Proof. From the obvious inequality (m — i + 1)(m + i) < (m + 1)m, (16) implies

i< )
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which gives

) < exp( T D). a7

Now, let us write the polynomial P, defined in Lemma 2, in the form
.Pm(x) = 2 dkxk.
k=0

Then we have
divi| _(m+k+1)(m —k)(2k +1)
de | (2k +2)

Thus, the absolute value of the general term of y,,(x)y,,(—x), that is |dx*| is
decreasing, and, as it alternates in sign, for mx < 1/\/5, we have

<2m2

1- m(m2+ 1) xZ s:"ym(x)ym(_x) = PM(xz) =1,

which, with (17) completes the proof of Lemma 3. O

More accurate estimations have been obtained by M. Chellali, using Agarwal’s
integral representation

o0

1 (Pl
ym(x)=ajt(l+5)e dr

0

and the saddle point method (cf. [3]).

Proposition. There exists A, >0 such that, if A ={a,, ..., a,} satisfies s =a, +
G, + -+ ++a; <Ayn, then, when n tends to infinity, we have

@ )< (lj a,-)p(n)(v%)k(l + o(\—};))
G)  rn, )= (1f[1 a,-)p(n)(\/%)kexp(O(s;’Vg)).

Proof. It is very similar to the proof of Theorem 1 of [5]. First we introduce the

operator D™, Let f:R—>R, m=1, u,, ..., u,, be positive. We set
DW(uy; f, x)=f(x) —f(x —uy)
‘D(m}(u1’ LL R S um;ﬂ x)=D(m_t)(u], LA S | um_];f, x)
o e (7T S | B I

From the generating functions, we observe

r("r {alp---)ak})=D(k)(alJ~- 2 Qg P, n)' (18)
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Now, with F(x) = (exp(Vx))/Vx, the classical result of Hardy and Ramanujan
can be written (cf. [5]) as follows:

(n—1/24)) + fi(n) (19)
with C = ©V?2/3, and
<%t exn(57).

Furthermore, using Lemma 3 of [5], (18) and (19) give

rn, {ay, ..., a))= ([i‘[1 af) O Fen(C2(E—1/20) + 0(2; exp(cﬁ))

2mV2 2
(20
with )
n—s<f=n (21)
. (k+D) (205 _ : P(v_)
We now use (10) to estimate F**"(C*(§ — 1/24)). The function g L2 is

increasing for x=(k +2)%. As s=a,+--+a, =k(k +1)/2=k?/2, which im-
plies & <V/2s, for A, small enough, from (21) we have

exp(CVn —s —1) _exp(CVE—1/24) _exp(CVn)
(n—s—1)%+22 = (E —1/24)%+272 = PR (22)

Now let us turn to the proof of (i). By (22), the main term of (20), is at most

5 e exp(CVn) 1
(n “) 2mV2)25 1 CF 2 o J’k+1(c\/7”2)

For A, small enough, we have

-1 - y
CVE-1/24" k+3

and thus Lemma 1 gives

y“*'(#\/—lilm) <1 23)

Using the estimation

o0 =22V 1 4 oy,

the main term of (20) is at most

(H a)p)(7z) (1+ o(vz))- 24)
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To complete the proof of (i), it remains to check that the error term of (20) is
included in the above error term. First, (24) is

ol Ol L

by Stirling’s formula. So it is enough to show that

(4Zf)k = exp(g ‘\/f_l)

> k!

But the left hand side of the above inequality is an increasing function on k, for
4
k sz,%, and we know that k < V/2s < \/24,n. To conclude, we observe that for

A, small enough, we have:

4e Vz:.z_n{ (E )
(cVz;.z) <exp|3 V).

In order to prove (ii), first we apply Lemma 3, to obtain

) - ol )

which with (23) yields

-1
}’k+1(m) = O(s/Vn). (25)
Then we observe that

exp(CVn —s — 1) = exp(CVn + O(s/Vn))

and

(n—s—1)&2 = exp(% (logn + O(S}'n)))

= n®*+22 exp(O(s/Vn))
since k = O(Vn).
Furthermore, by (10), (22) and (25), the main term of (20) is at least

([1a)(§) SR esp(o V)

The end of the proof of (ii) goes in the same way as for (i). O
Remark. A similar proposition is given in [7] in the case of restricted partitions.

A more general estimation is given by J. Herzog (cf. [10] and [11]), using a
Tauberian theorem.
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3. The upper bound in Theorem 1

First let us say that a partition n =n, + - - - + n, of n represents a if there is a
subsum n;, ..., n;, 1<i;<---<ijjst which is equal to a. Thus R(n, a) counts
the number of partitions of n which do not represent a.

Clearly if b<a, b and a — b cannot be together parts of a partition which
does not represent a.

Let us suppose first that a is odd. From the above remark, we deduce that for
all integers, i, with 1<i< |a/2], at most one of i and a —i can be a part, and
thus

Rma)< 3 r(n (lL_"jlJ (i@ -)"~) U fa}) 26)
Efuenr Elan) =
where in the summation g; € {0, 1}.

Now we apply our proposition, with k=1(a), and s<},o-=,j, and we

obtain that

R(n, a)ép(n)(viﬁ_n) W(a)(l + O(%)) E]»%lml 5 tfjj i%a — i)'~

But this summation is exactly

lar2]
a [] (i+@-i)=a*®
i=1

which proves (i) for @ odd. When a is even, the part a/2 can occur but only once.
Thus we have

R(n,a)< D r(n, (L:le] {i*(a -—i)l_z"}) U {a})

E15--1 Ear2)
a (el oL
+£,.,,,_%M '(”‘5’(1};{ {i%(a—i) })u{a}) @7

where the first summation counts partitions without any part equal to /2, and
the second counts partitions with one part equal to a/2.
For the second sum we obtain the upper bound

pn-ad)ggrrs) (14 0(35)

CVn—a/2 w(@)
= [4\%{5’: o ajz)vf:r{)m)ﬂ](%) 1 +0@1/Vn)).

But, as already observed, the function x — expVx/x* is increasing for x = k2,
and for 4, small enough, the expression between brackets is smaller than

exp(CVn)

=p(n)n~¥@?(1 + 0(1/Vn)).
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So, the second sum in (27) is not bigger than the first one, which was already
estimated when a is odd. This completes the proof of (i). O

4. The lower bound in Theorem 1

Let us suppose first that a is odd. Then
R(n,a)=r(n, {1,3,5,...,4a})
and, observing that y(a) = (a + 1)/2, by the Proposition we have
2y(a))! m e
s P ™) exp(O@Va).

By Stirling’s formula, (2u)!/2“u!=u"“2"e™, and since y(a) =a/2, we obtain (ii).

Let us suppose now that a is even. In fact, the following reasoning works also
for a odd, but it gives a worse estimation than the preceding one. For real
numbers x and y, let us denote the set of integers belonging to the real interval

Jx, y[ by Jx - - - y[. We set
A=[1---a/3]U[a/2:--2a/3]U {a}.
Then, it is not difficult to see that
R(n,a)=r(n, o)
(which is slightly bettter than (2)), and considering the three possible cases
a=0, 2, 4mod 6, that card & = y(a). By the proposition, we get

s P(a)
R(n,a)=a lﬂ/?’JI-!aE!(ZZi 1J11)13J !p(n)(vz—n) exp(O(a*/Vn)).

R(n,a)=

Using Stirling’s formula in the form
[u+ O(1)]! = u"e™™ exp(O(log u))

we obtain (ii) with an effectively computable constant ¢. O

5. Proof of Theorem 2

We consider now only partitions without any repetition, and we look at a
subset of [1- - (a—1)], say & with the following property:

no element j € [1 vk g] belongs to &

for each j ]‘3—’ g ‘2—’[ there are 3 possibilities:

jedanda—j¢sd,jedanda—jesd,j¢ danda—j¢ oA

2a
foreachje [? cra— 1] , there are 2 possibilities, j € o or j ¢ A.
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For any such &, we have:
Card oA <c,a*

How many such &/’s are there? As

|

there are more than

um

3(aa’6)-— 12a-'3

such sets &f. Further, to build a partition of n, we choose such a set &, and we
complete by a partition of n-Card &, without any part smaller than @ + 1. Thus,
since p(n, m) is non-decreasing in n (cf. [8]),

Q(n, a)=3""""2"%p(n — ¢,a% a +1).

Using Theorem 1 of [8], which gives p(n, m)=gq(n)/2™", and the classical
estimation

Table of R(n, a)
n pln) |la= 1 2 3 4 5 ] 7 B ] 10 11 12
1 1 0
2 2 1
3 3 1
4 5 2| 2
5 7 2l 2
6 11 4 3 5
7 15 4| 4 4
8 22 71 5 7 8
9 30 8] 7 7 8
10 42 12 9 12 9 17
11 56 14] 11 12 12 13
12 77 21] 15 19 15 21 24
13 |1 101 24| 18 20 19 21 22
14 135 34| 23 30 24 30 25 46
15 176 41] 30 32 30 32 30 36
16 | 231 55| 38 46 35 50 36 50 64
17 | 287 B6| 46 51 45 49 44 51 54
18 | 385 88| 58 70 55 72 50 73 63 107
19 490 105] 72 78 85 77 67 59 76 81
20 | 827 137| 88 105 81 103 80 103 81 112 | 147
21 782 165/ 108 | 118 98 112 95 104 | 101 105 | 126
22 | 1002 210] 133 | 156 | 116 | 154 | 111 | 151 | 119 | 148 | 134 | 242
23 | 1255 253] 161 | 177 | 143 | 163 | 133 | 158 | 134 | 147 | 161 | 173
24 | 1575 320] 198 | 228 | 170 | 218 | 158 | 214 | 157 | 198 | 180 | 239 | 302
25 | 1958 383] 240 | 282 | 202 | 241 187 | 219 | 209 | 195 | 200 | 236 | 250
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Table of R(n, a) (continued).

165

n pin} | 2 ] 4 5 B 7 8 g 10
11 12 93 14 15 16 17 18 13 20

26 2436 478 288 3R 244 a7 218 01 244 204 237
303 276 488

27 010 514 349 381 291 343 261 308 274 264 2
295 304 361

28 3718 708 [ 476 34 440 308 403 124 397 05
414 138 457 629

29 4565 BT 503 550 410 483 362 43 i 395 k1L
385 385 448 492

Kl 5604 1019 604 580 485 611 420 565 435 534 402
533 423 584 550 22

3 842 1238 122 785 5N 688 494 597 519 540 513
5]  aea]  se9]  e4| 6R2

32 8349 1507 859 961 677 Bdh 581 72 579 0 18
847 542 755 63 B57 17

i 10143 1794 1024 1111 798 954 676 831 677 730 96
691 g3 706 750 )] 930

kL] 12310 2187 1216 1349 932 177 783 1043 B0 943 77
1024 707 838 g7 1050 995 1745

3B 14883 2573 1439 1560 100 1318 916 1139 ape 473 926
983 825 433 502 953 1120 1223

36 17877 3084 1706 1880 1287 1608 1063 1408 1058 1246 1046
1302 830 1225 1043 1282 1180 1577 2108

37| 21837 3660 2014 2175 1503 1821 1235 1534 1238 1285 1181
1355 1143 1160 1216 1217 1291 1496 1650

3B 26015 4378 2371 2603 1761 2183 1421 1905 1385 1662 1372
1705 1308 1627 1272 1637 1477 1859 1773 3104

3w/ N 5170 2794 3008 2052 2483 1652 2079 1617 1735 1543
1728 1502 1529 1472 1497 1592 1764 1808 2173

40| 37338 6153 3285 3581 2184 2980 1911 2525 1877 2179 1762
2&3 1684 2177 1723 2_010 1704 2351 2096 2?0_6 3737

which implies
A =G8) _ oep(O(a?/ Vi),
q(n)

we obtain Theorem 2. [
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