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Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced
subgraphs of G and k > 1 . We prove that if i(G) = o(n k+ ') then by omitting o(n) vertices the
graph can be made (l, m)-almost canonical with 1 + m < k + 1 .

0. Introduction

We need some notation to state our main result .

Definition 1 . G = (V, E) is 1-canonical if there is a partition (A;:0-_i <1) of the
vertex set V such that for i, j < 1, x, x' E Az , y, y' EAj

{x, y} c- EG->{x', Y'} E E .

Definition 2. For G = ( V, E), G' _ ( V, E') put GAG' = ( V, EAE'), the sym-
metric difference of G and G' .

Definition 3 . For G = (V, E) set i(G) _ I {G[W] : W (-- V}/ - I i .e . denote by
i(G) the number of pairwise non-isomorphic induced subgraphs of G.

Definition 4 . G = ( V, E) is (l, m)-almost canonical if there is an 1-canonical
graph G,= (V, E,) such that all the components of GAG, have sizes at most m .

During the Cambridge Combinatorial conference held in March 1988 the
second author stated the following conjecture .
Assume i(G) = o(n 2) . Then one can omit o(n) vertices of G in such a way that

the remaining graph is either complete or empty .
This was proved later independently by the two of us and by Alon and

Bollobás [1] . We can actually prove the following stronger result .

Theorem l. V.- > OVk > 136 > OVn`dG with n vertices i(G) _ (5n k+1 3W c V,
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(WJ < an, such that G[V \W] is (l, m)-almost canonical for some l, m satisfying
l+m -k+1.

Note first that this implies the conjecture, as l + m -- 2 implies l = m = 1 . We
would like to mention that this strong formulation of the theorem was inspired by
a result of Zs . Nagy, who proved and strengthened a conjecture of the second
author concerning infinite graphs . He proved that if for a graph G = ( (o, E),
where (o is the set of natural numbers, i(G) is less than the continuum, then for
some l, m < o), the graph G is (l, m)-almost canonical . His result extends to
weakly compact cardinals x in place of co. This result will be published elsewhere .

The main aim of this paper is to prove Theorem 1 . This will be done in Section
1 . In Section 2 we will discuss some further results and problems .

1. Proof of Theorem 1 .

First we list our notation . Most of it is standard ; we list it for the convenience of
the reader. However, we will point out that, applying double-think, we use the
convention n = (0, . . . , n - 1} whenever it is convenient for us .

(1) For a set A, [A]2 _ ((u, V) : u, v EA n u * v}, the set of unordered pairs of
A ; G[W] _ ( V, E n [W]2) is the subgraph of G = (V, E) induced by W.

(2) For A,BcV with AnB=O, [A, B]= flu, v} :uEAAVEB} ;G[A,B]=
(A U B, E n [A, B]) is the bipartite subgraph of G induced by A and B .

(3) G is the complement of G, i .e . G = ( V, [V]2\E) .
(4) For x E V, A(-_ V, T(x, A) _ (y E A : (x, y} EE}, and F(x) = F(x, V) ;

d(x, A) _ I F(x, A)I, d(x, V) = d(x) . We let F, d denote the same functions

for G.
(5) (A)' is the set of sequences of length r formed for the elements of A . For

x c (A)' and i < r, x i is the ith member of the sequence . For r = 0,
(A)' _ (0} . For x E (V )r, cp E (2)' put

T(x, (]7) _ (Z E V : Vi < r ((Z, xi} E E<* (pi = 0)} .

Note that Mu), (0)) = F(u), T((u), (1)) = P(u) for u c- V, and

T(O, 0) = V .
(6) A(G) = max(d(x) :x E V) ; A(G, A, B) = max(d(x, B) : x E A} .

(7) For A n B = 0, U, W (--A U B put G[U]-A,BG[W] if there is an isomorph-

ism between G[U] and G[W] such that jr(U n A) _ ,r(W n A) .
(8) For A n B = 0 we write

i(G, A, B) _ I(G[W] :W cA n B}I `A,B1,

i .e . the number of the equivalence classes with respect to the equivalence
relation -A B . We will often use the fact that

i(G, A, B) , i(G[A, B]) .



Lemma 2 . For every k there is an l such that whenever A(G) = o(n) and
i(G) < 0(nk) then there is a Wn = V, I Wnl = o(n) such that

A(G[V \W,]) , l.

Lemma 2 is an important tool in our proof but we can only prove it later, after

the proof of Lemma 8. First we prove a consequence of it .

Lemma 3 . For every k there is an l such that whenever c > 0 ; A, B c V ;
A n B = 0 ; IA I, IBI % cn, A(G, A, B) = o(n) and i(G, A, B) = 0(n k) then there is
a W„ c V, I W, I = o (n) such that

A(G[A\W„ B\Wn])<l.

Proof. By omitting o(n) vertices, we may assume A(G[A, V]) = o(n) . By
averaging we can see that for C = A or C c B, C * 0 and for every integer m

~Y EB :d(Y, C)= 1 CI }
l

	

m

and

t(G)-- \l/ .

{y EA :d(y, C)= 1 iCl
1

m
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Our proof of Theorem 1 is quite lengthy . First, by proving a sequence of easy
lemmas, we will establish that the theorem is (almost) true without the restriction
l + m < k + 1 . This will be done in Lemma 9 .
Then, in Lemma 10, we prove that this implies the theorem . We would like to

point out that our proof yields a similar result in case k tends to infinity slowly
(e.g. if k = o(log3(n))), but we do not go into the technical details .

First we give a rough estimate for i(G) in the case of a disconnected graph .

Lemma 0. Assume G has r components of sizes n i : i < r. Then

(a) i(G) ' (r!)-' TLIr ni
(b) If ni % l for i < r then i(G) = (W.

Lemma 1 . Assume {x i : i < l}, A i : i < l are pairwise disjoint subsets of V,
Rxi : i < l}]2 n E _ 0, Ui<,A i = A, [A ]2 =E, F(x i , A) = A i and JA iJ--t for i<1.
Then

= o(n)

= o(n) .

Using these, we can either pick, for every m and for sufficiently large n, an
induced subgraph of G[A, B] with m components, each having size at least n'2 ,
or we can omit o(n) vertices from A U B so that for the remaining graph
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G[A', B'] we have A(G[A', B']) _- nz . In the first case, by Lemma O . a, we have

i(G[A, B]) % O(
1

n -12) for every m.
m !mm

In the second case, if the conclusion of Lemma 3 does not hold for an 1, we can
choose an induced subgraph of G[A', B'] having at least n'/21 components of
sizes 1. Then, by Lemma O .b,

n 1/2

i(G[A, B]) =
(21)` .

Hence 1 % 2k + 2 satisfies the requirements of the Lemma . L1

Lemma 4 . Assume r , 1, x E (V)', (po cp, E (2)'. Let A = r(x, (po),
r(x, (p l ) . Then

l(G) % l(G, A, B)n-' .

B=

Proof. Assume that W c A U B for i , n' and that the G[W] are pairwise
non-equivalent with respect to =A,B . We claim that the graphs

Gt =[W U fx„ :v<r}], i<n'

are not pairwise isomorphic . Indeed, otherwise for some i t-j < n' there is an
isomorphism jr of GÍ and Gj with jr(x„) = x„ for v < r. Then 7r maps W n A onto
W n A, a contradiction . F1

Lemma 5. Let c > 0, r, 1 ; 1, y E V, X E (V)', xi 0 r(y) for i < r. Assume further
that there are T, e (2)', j < l such that

I r(y) n r(x, (pj ) I , cn for j < l.

Then

i(G) % (nr!)`(cn)t .

Proof . For each sequence v E (cn)' let W„ be a set such that

fy }U fxi :i<r}(-_ W f y }U fx i :i<r) UU (r(y)nr(x, (pj ))

and
1 W„ n r(y) n r(x, qgj)1 = vj , for j < 1 .

If nr! + 1 of the different G[W„] are isomorphic, then r! + 1 are pair-wise
isomorphic by isomorphisms keeping y fixed . Such an isomorphism keeps the set
fx ; : i < r} fixed. Hence there are v v' and an isomorphism 7r of G[v] and
G[W,-] such that jT(y) = y, and .n(x,) =xi for i < r. But for any such ,T

jr(r(y) n r(x, 9?j ) n Wv) = r(y ) n r(x, (pj ) n Wv- for j > 1.

Hence v = v', a contradiction . F1
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Lemma 6 . Assume x c- (V)' . For y E V let

f,(y) = max{min{d(y, F(x, (p)), d(y, F(x, (p))} : (P E (2)'}
and

gx(n)=max{fx(y) :yEV\{x, :i<1}} .

Assume gx (n) = o(n) . Then there are W„ c V and Go such that I WnI = o(n), Go is
s2'-canonical on V \W, and A(G[V \WjAG o) = o(n) . Moreover, each of the
classes of the canonical partition coincides with some F(x, (p)\Wn .

Proof. Put A, = F(x, cp) . We claim that we can omit o(n) vertices Wn so that for
A' =A99 Wn

min{A(G,, Ate, A,'), A(G, Ay„ A~)} =o(n)

and

min{A(G[AJ), A(G[Aq,])} = o(n),

holds for qg :?'- E (2)' . Indeed if for example the first of these claims is false for
some cp * 7P E (2)', then for some c > 0 and infinitely many n, we would have say

I
{x E A~ : d (x, A .) % cn } I , cn

and

I fxEA :d(x,Ay,)%cn}

	

cn.

Then, by the assumption, for infinitely many n,

I {x E A' : d(x, Ay,) > á IAwj} I -- cn

and

I {X E A' : d(x, A') >' IA' III - cn

hence for some y E A~ f,(y) > z n for infinitely many n, a contradiction . 0

Lemma 7 . For every k there is an 1 such that whenever y E V, A c F(y),
B c f(y), c > 0, IA I, IBI % cn and i(G) , O(nk) then there are Wn c V and a Go
for which IW,I =o(n), Go is 1-canonical on (A U B)\Wn and

A(G[A\Wn , B \Wn]AGO) -- 1 .

Proof. We use the notation fx, gx introduced in the proof of Lemma 6 for the

graph G' = G[A, B] with V' =A U B . For an x E (V)' and i -- r we denote the

restriction of x to i by x I i . For every fixed 1 and for every n > 1 we define a

sequence (x j : i < 1) by recursion on i, using a greedy algorithm : we let xi be an

element of V'\ {x; : j < i} satisfying

f,I i(xi) = gxI i(n) .

We now claim that gx (n) = o(n) for an x E (V')'' with h -- 2k + 3 . Indeed if
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g,(n) % c,n for some c l > 0 for infinitely many n, then for all these n we have

Vi < 1,3cp E (2)' (d(xi, F(x I i, cp)) >_ c,n n d(xi , F(x I i, (p) , c i n) .

Then either there is a subsequence {xiy : v < k + 2} c A such that for k + 2
functions V E (2)k+2 we have

JBf1F((xiv :v<k+2),

	

c,n

or the same holds when the roles ofA and B are interchanged . This however, by
Lemma 5, contradicts our assumption . This proves the claim . The claim and
Lemma 6 imply that there is a 21'-canonical graph Go and W

n'
c V such that

IWnJ=o(n) and

A(G'[V'\ Wn] AGo) = o(n) .

Let {A; :j < 21 '} be the canonical classes of G o . We may assume (increasing 1, to
21,), that A; c A or Aj c B, hence we may assume that GJAJ = G'[A,] has no
edges. By Lemmas 3 and 4, using the last clause of Lemma 6, we can omit Wn ,
J Wnl = o(n) vertices in such a way that A(G'[V \W,]AGO[V' \Wn]) , l with
l--l,+2k+2--4k+5. 0

Lemma 8. For all k there exists an l such that whenever there are disjoint subsets
{xi : i < l}, Ai : i < l and c > 0 satisfying [{xi : i < 1}] 2 n E _ 0 and

A = U A i , F(xi , A) = A i ; JAi J , cn for i > l

then i(G) % c in k for some c, , 0 infinitely often .

Proof. Assume that {xi : i < l} and {A i : i < l} are as above . We prove that
i(G) % c,nk holds for some c, > 0 infinitely often, provided l is large enough . By
Lemma 7, there exists an l, and 1,-canonical graphs Gi : < l such that

A(G[A i , U A i]AGi) _ 1, .
J#i,J<L

Using a Ramsey type argument we can select a subsequence {x i . : j < 1,), c,, > 0
and A;_ = Aj such that by putting y; = x i , Aj'= Aü we have JAj'J % c,n and either

(1)

	

[Aj, A] = E, for j < t < 1 2

or

i<1

(2)

	

[Aj, At] n E _ 0, for j < t < 12,

provided l is large enough compared to k, 1,, and 12 . If case (2) holds, by Lemma
0(a) we have

i(G) %i(G[{x; :j< 121U U Aj])%c 3n12
J<1 2

for some c3 > 0. If case (1) holds, then either for some c 4 > 0 and for more than



l 2/2 values of j, G[A,l has a component of size at least c4n2' and in this case
Lemma 0(a) implies that i(G) % cs n`zi4 for some cs > 0, or else we may assume
that for more than l2/2j, the components of G[Aj'l have sizes at most k. This
follows from Lemma 0(b) . Then for some c6 > 0 we can choose Aj c A ,
JA j I -- c bn for more than l 2/2 values of j< 12 in such a way that [AJ2 c E. By
Lemma 1, we have

i(G) --
c6n

(1 2/2

We are now in a position to prove Lemma 2 .

Proof of Lemma 2. Just as in the proof of Lemma 3, if the lemma fails with
l = 2k + 2, then we may assume that omitting o(n) vertices Wn arbitrarily,
A(G[V \W]) > n2 holds and that for every A c V, A and for every
M, I {x E V : d(x, A) % 1/m 1AI} I = o(n) . Using these, for every m and sufficiently

large n, we can choose disjoint sets {x i : i < m), A i : i <m in such a way that
Rxi : i < m}] 2 n E _ 0 and for A = U Lam,,, A„ T(x i , A) = A i and lA i l -- 1/mn2 hold
for i < m . Now applying Lemma 8 for the graphs G [{x i : i < m} U A] we get a
contradiction . 0

Now we can prove our main lemma .

Lemma 9. Assume i(G) = o(n" 1) k -- 1 . Then there are Wn c V, l and a Go such
that IWn I = o (n), Go is 1-canonical on V \ Wn and

A(G [V \ Wn I AG,) -- l.

Proof. We use the notation fx, gx introduced in Lemma 6 and we repeat the
greedy algorithm described in the proof of Lemma 7, i .e . for every fixed l and for
every n % l we define a sequence (x i : i < l} by recursion on i < l as follows : xi is an
element of V \ {x; : j < i} satisfying fx 1 i(xi ) = gxli(n) . If for some l we have
gx(n) = o(n), then by Lemma 6 there are Wn c V, h and Go such that
I W'I = o(n), G is 2i '-canonical on V \Wn and

A(G[V \Wn]AGo) = o(n) .

Then, by Lemmas 2, 3, and 4, we can omit Wn , IWn I =o(n) vertices so that for
some l

A(G[V vWJAGo[Vv WJ) _ l .

Hence we may assume that the following holds infinitely many n :
(*) There is a sequence {x i : i < l} of distinct elements such that

Vi < l3cp E (2)` d(xi , T(x I i, (p) , cn) n d(xi , T(x i , cp) > cn)

for some c > 0 .
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We may as well assume that (*) holds for all n and prove that if (*) holds for
large enough 1, then i(G) , c„nk+1 for some co > 0 infinitely often .

First remark that (*) holds for any subsequence of (x i : i < 1) . Now, by Lemma
5, we may assume that

(VE < 2) I {0 < i < 1 :xi E T((xp), (E)) A 3cp(cp(o)

= 1 - E A d(x i , F(x I i, (p)) -- cn n d(xi , T(x I i, cp))) , cn } I , k + 1,

as otherwise we are done .
It follows that for either the graph or its complement the following statement is

true .
There is a set

l
T c1-{0},

	

ITI ,	l
2(k + 1)2k+1 '	 >Sk+1

such that {x i : i c- T} c T(x„), and we can omit W, vertices, IWn I = o (n), of T (xo )
in such a way that for all i, j E T and for all z E F(xo)\W , {z, x i } E Eli
{z, xj } E E. Now by a repeated application of this argument we obtain that if
1 > 4 .511 (k+1) then for either the graph or its complement the following holds :

(1) There is a set Y = { y i : i < 1,}, [Y]2 c E, a c, > 0 and a sequence of pairwise
disjoint subsets of V such that

AiJ--c 1 n,A i (--F(y i ) for i<1 1 ;

Aj c T(yi ) AAi fl l(y1+1) = Ai n F(yj ) for i <j < 1, ;

and either A ; n P(yí+ ,) ,czn for i + 1<1, or Ai c F(yj) for i <j < 1,, for C2> 0 -
We will assume that (1) holds for G. If in the last statement the first alternative

holds, then applying Lemma 5 with y =y,~_, we get that

i(G) % czn`' 3 with some c3 > 0 .

Thus we may assume that A; c F(y) for i <j < 1, . However, in this case Lemma 8
yields i(G) % c()n"' provided 1, is large enough .

To conclude the proof of Theorem 1, it remains only to prove the following .

Lemma 10 . Assume G has n vertices, i(G) = o(n k+' ) for some k , 1 . Assume
further that 1 is minimal with respect to the following property :

(*) There are c > 0 and s and an 1-canonical graph G o = (V, E„) with canonical
classes (A i : i < 1), JA i I > cn for i < l and A(GAG,) -- s .

Then 1 < k and we can find W, c V, I W,I = o(n) such that setting G, = GAGS, all
components of G,[V \W„] have size at most m = k + 1 -1 .

Proof. Set m = k + 1 -1 if Z -- k and m = 0 otherwise. Assume for a contradiction
that the claim is not true . Then for some c,, cz >0, c z < 4c, we can find pairwise
disjoint sets {A i' : i < 11 and a set B such that

(1) JAS l = c, n, Ai c A i for i < 1.
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(2) For A= U i<l Ai, B( -- A, IB I= C2n .
(3) GJB] consists of components of size m + 1, and GJA] has only edges
contained in GJB] .

We claim that i(G[A]) , C3n"' for some C3 > 0. Let AL'= Ai \ B for i < l. Then
JAtl % 3/4c, n . Let now X, Y cA and let jr be an isomorphism of G[X] and G[Y] .
Assume further that ix n A l ; cl/2 for i < l.
For U E X set fr(u) = j if g(u) E Aj . Using ix n Ai'l -- 2 IB 1, for large enough n

there are l + 1 elements of x n A with image in A \ B, hence we can choose
x i zkyi E X fl A with 7(x i ), 7(yi ) E A\B and it(x i) _ fr(y i ), for i < l. Then the
minimality of l implies that jr(xi) ~r(x;) for i * j < l . Using again the minimality
of l and the fact that

fx i :i<1) U f,n(xi ) :i<l}cA\B

we get that if u, v I fxi : i < l } then u, v c A' for some v < l if and only if

(Vi <l)(fu,xi}EEG::> fv,xi}) EE

and also that if u, v ~ far(xi ) : i < l} then u, v c Av for some v < l if and only if

(Vi < 1)({u, ir(x i)) E E

	

fv, ar(xi))) E E.

Now for each u E Ai n X, 1r(u) E An(x _ ) . Indeed, for u E Ai n X, u x i , yi we have

(Vi < 1)(f u, x i ) E E

	

f yi , xi ) E E)

q (Vi < l) (f ,T(u), jr (xi ) I E E <* f jr (yi), ;r(Xi)) E E)

;r(u) E AA (Y,)

qjr(u) _ jr (X i ) .

It follows that

(4)

	

7r(Ainx) = A n(x ,) n Y for i < l .

Now, for each i < l, GJAJ = G[AJ or GJAJ = G[A i ] . Also, for each i < j < l,
GJA i , A;] = G[A i , A,] or GJA i , AJ = G[A i, A;] . Considering this, (4) implies
that ir is an isomorphism of G,[X] onto G i[Y] . In the case m = 0, (4) implies that
i(G) % Can t for some C3 > 0. In the case m > 0 and all the components G1 [X n B]
have size at least two, then

Tr(X n B) = Y n B and 7r(A i, nx)=A i,nY for i<1 .

As there are Con ways to choose the cardinalities IB n Ail for i < l, and since
G I [B] has C5n m pairwise nonisomorphic subgraphs each having no isolated points,
for some C4i C 5 > 0, we are done . 0

2 . One more result and some problems

One may conjecture that if G is a strong Ramsey example, then G is close to a
random graph, hence i(G) is very large, say exponential . As is shown by the
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attempt described in [1], this will be difficult to prove . We only have one result
pointing in this direction .

Theorem 2. Assume G is a graph with n-vertices c > 0, k > 2c log 2 and

Kc log n,c log n T G, G .

Then, for every sufficiently large n, i(G) a 2n/4k

Proof . We may assume that there is an x E V with

d(x) % (n/loge n), d(x) % z n .

Let A c T(x), B =P(x) with JAI= [(n/loge n)], IBI = [2] . Let 3 _ {T(x) f1
A : x c B'}, IB'I > 3 , B' c B. Assume first ICI > n . Let C c B', I CI = t(n/3k)]
be such that r(y) n A * T(z) nA for y *- z E C. Consider the graphs G[{x} U
A U Y] for Yc C. If n • JAI! + 1 of them are pairwise isomorphic, then there are
two, say

G[{x} UA U Yo] and G[{x} UA U Yl ]

which are isomorphic by an isomorphism ar keeping x and the elements of A
fixed. Clearly such a must keep the elements of Yl, fixed, hence Yo = Y1 . It
follows that in this case

i(G) % 2[n/3k] (n , n n/log 2 n)-1 > 2nAk

holds for sufficiently large n . Hence we may assume that there is a sequence
Bl : i -- l of pairwise disjoint subsets of B such that IB; l = k and r(y) f1 A = r(z) n
A whenever y, z E Bi for i < l, for an l satisfying k • l > 2c log n, i .e. for an
Z = [c l(log n/log 2)] with cl < 1 .

Let D = U i<,B i . It now follows that there is an E cA, I E I % JAI .
2-c ' (logn/log2) % n' - `' • (log n)-2 such that T(u) n D = T(v) n D for u, v E E. As
n" • (log n)-2> c log n for sufficiently large n, this contradicts the assumptions
of the theorem . (]

Clearly, the above computation can be slightly improved, but we have
examples to show that the assumptions of Theorem 2 do not imply i(G) >
2(2n log k/k)

At present we are unable to extend Theorem 2 to graphs G for which

Kc log n, c log n, c log n T G, G.
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