ON THE NUMBER OF DISTINCT INDUCED SUBGRAPHS OF A GRAPH

P. ERDŐS and A. HAJNAL

Mathematical Institute of the Hungarian Academy of Sciences, Realtanoda utca13-15, 1053 Budapest, V., Hungary

Let G be a graph on n vertices, i(G) the number of pairwise non-isomorphic induced subgraphs of G and $k \ge 1$. We prove that if $i(G) = o(n^{k+1})$ then by omitting o(n) vertices the graph can be made (l, m)-almost canonical with $l + m \le k + 1$.

0. Introduction

We need some notation to state our main result.

Definition 1. $G = \langle V, E \rangle$ is *l*-canonical if there is a partition $\langle A_i : 0 \le i < l \rangle$ of the vertex set V such that for $i, j < l, x, x' \in A_i, y, y' \in A_i$

$$\{x, y\} \in E \Leftrightarrow \{x', y'\} \in E.$$

Definition 2. For $G = \langle V, E \rangle$, $G' = \langle V, E' \rangle$ put $G\Delta G' = \langle V, E\Delta E' \rangle$, the symmetric difference of G and G'.

Definition 3. For $G = \langle V, E \rangle$ set $i(G) = |\{G[W]: W \subset V\}/\cong |$ i.e. denote by i(G) the number of pairwise non-isomorphic induced subgraphs of G.

Definition 4. $G = \langle V, E \rangle$ is (l, m)-almost canonical if there is an l-canonical graph $G_0 = \langle V, E_0 \rangle$ such that all the components of $G\Delta G_0$ have sizes at most m.

During the Cambridge Combinatorial conference held in March 1988 the second author stated the following conjecture.

Assume $i(G) = o(n^2)$. Then one can omit o(n) vertices of G in such a way that the remaining graph is either complete or empty.

This was proved later independently by the two of us and by Alon and Bollobás [1]. We can actually prove the following stronger result.

Theorem 1. $\forall \varepsilon > 0 \forall k \ge 1 \exists \delta > 0 \forall n \forall G \text{ with } n \text{ vertices } i(G) \le \delta n^{k+1} \Rightarrow \exists W \subset V,$

0012-365X/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

 $|W| \le \varepsilon n$, such that $G[V \setminus W]$ is (l, m)-almost canonical for some l, m satisfying $l + m \le k + 1$.

Note first that this implies the conjecture, as $l+m \le 2$ implies l=m=1. We would like to mention that this strong formulation of the theorem was inspired by a result of Zs. Nagy, who proved and strengthened a conjecture of the second author concerning infinite graphs. He proved that if for a graph $G = \langle \omega, E \rangle$, where ω is the set of natural numbers, i(G) is less than the continuum, then for some $l, m < \omega$, the graph G is (l, m)-almost canonical. His result extends to weakly compact cardinals κ in place of ω . This result will be published elsewhere.

The main aim of this paper is to prove Theorem 1. This will be done in Section 1. In Section 2 we will discuss some further results and problems.

1. Proof of Theorem 1.

First we list our notation. Most of it is standard; we list it for the convenience of the reader. However, we will point out that, applying double-think, we use the convention $n = \{0, ..., n-1\}$ whenever it is convenient for us.

- (1) For a set A, $[A]^2 = \{\{u, v\} : u, v \in A \land u \neq v\}$, the set of unordered pairs of A; $G[W] = \langle V, E \cap [W]^2 \rangle$ is the subgraph of $G = \langle V, E \rangle$ induced by W.
- (2) For $A, B \subset V$ with $A \cap B = \emptyset$, $[A, B] = \{\{u, v\} : u \in A \land v \in B\}$; $G[A, B] = \langle A \cup B, E \cap [A, B] \rangle$ is the bipartite subgraph of G induced by A and B.
- (3) G

 is the complement of G, i.e. G

 = ⟨V, [V]²\E⟩.
- (4) For x ∈ V, A ⊂ V, Γ(x, A) = {y ∈ A: {x, y} ∈ E}, and Γ(x) = Γ(x, V);
 d(x, A) = |Γ(x, A)|, d(x, V) = d(x). We let Γ̄, d̄ denote the same functions for Ḡ.
- (5) $(A)^r$ is the set of sequences of length r formed for the elements of A. For $x \in (A)^r$ and i < r, x_i is the ith member of the sequence. For r = 0, $(A)^r = \{\emptyset\}$. For $x \in (V)^r$, $\varphi \in (2)^r$ put

$$\Gamma(x, \varphi) = \{z \in V : \forall i < r (\{z, x_i\} \in E \Leftrightarrow \varphi_i = 0)\}.$$

Note that $\Gamma(\langle u \rangle, \langle 0 \rangle) = \Gamma(u)$, $\Gamma(\langle u \rangle, \langle 1 \rangle) = \overline{\Gamma}(u)$ for $u \in V$, and $\Gamma(\emptyset, \emptyset) = V$.

- (6) $\Delta(G) = \max\{d(x): x \in V\}; \ \Delta(G, A, B) = \max\{d(x, B): x \in A\}.$
- (7) For A ∩ B = Ø, U, W ⊂ A ∪ B put G[U]_{=A,B}G[W] if there is an isomorphism π between G[U] and G[W] such that π(U ∩ A) = π(W ∩ A).
- (8) For A ∩ B = Ø we write

$$i(G, A, B) = |\{G[W]: W \subset A \cap B\}| \cong_{A,B}|,$$

i.e. the number of the equivalence classes with respect to the equivalence relation $\cong_{A,B}$. We will often use the fact that

$$i(G, A, B) \ge i(G[A, B]).$$

Our proof of Theorem 1 is quite lengthy. First, by proving a sequence of easy lemmas, we will establish that the theorem is (almost) true without the restriction $l + m \le k + 1$. This will be done in Lemma 9.

Then, in Lemma 10, we prove that this implies the theorem. We would like to point out that our proof yields a similar result in case k tends to infinity slowly (e.g. if $k = o(\log_3(n))$), but we do not go into the technical details.

First we give a rough estimate for i(G) in the case of a disconnected graph.

Lemma 0. Assume G has r components of sizes n_i : i < r. Then

- (a) $i(G) \ge (r!)^{-1} \prod_{i \le r} n_i$
- (b) If $n_i \ge l$ for i < r then $i(G) \ge {r \choose l}^l$.

Lemma 1. Assume $\{x_i: i < l\}$, $A_i: i < l$ are pairwise disjoint subsets of V, $[\{x_i: i < l\}]^2 \cap E = \emptyset$, $U_{i < l}A_i = A$, $[A]^2 \subset E$, $\Gamma(x_i, A) = A_i$ and $|A_i| \ge t$ for i < l. Then

$$i(G) \ge {t \choose l}$$
.

Lemma 2. For every k there is an l such that whenever $\Delta(G) = o(n)$ and $i(G) \leq O(n^k)$ then there is a $W_n \subset V$, $|W_n| = o(n)$ such that

$$\Delta(G[V \setminus W_n]) \leq l$$
.

Lemma 2 is an important tool in our proof but we can only prove it later, after the proof of Lemma 8. First we prove a consequence of it.

Lemma 3. For every k there is an l such that whenever c > 0; $A, B \subset V$; $A \cap B = \emptyset$; $|A|, |B| \ge cn$, $\Delta(G, A, B) = o(n)$ and $i(G, A, B) = O(n^k)$ then there is a $W_n \subset V$, $|W_n| = o(n)$ such that

$$\Delta(G[A \setminus W_n, B \setminus W_n]) < l.$$

Proof. By omitting o(n) vertices, we may assume $\Delta(G[A, V]) = o(n)$. By averaging we can see that for $C \subset A$ or $C \subset B$, $C \neq \emptyset$ and for every integer m

$$\left|\left\{y \in B : d(y, C) \geqslant \frac{1}{m}|C|\right\}\right| = o(n)$$

and

$$\left|\left\{y\in A:d(y,\,C)\geq\frac{1}{m}\left|C\right|\right\}\right|=o(n).$$

Using these, we can either pick, for every m and for sufficiently large n, an induced subgraph of G[A, B] with m components, each having size at least $\frac{1}{m}n^{\frac{1}{2}}$, or we can omit o(n) vertices from $A \cup B$ so that for the remaining graph

G[A', B'] we have $\Delta(G[A', B']) \leq n^{\frac{1}{2}}$. In the first case, by Lemma 0.a, we have

$$i(G[A, B]) \ge O\left(\frac{l}{m!m^m}n^{m/2}\right)$$
 for every m .

In the second case, if the conclusion of Lemma 3 does not hold for an l, we can choose an induced subgraph of G[A', B'] having at least $n^{\frac{1}{2}}/2l$ components of sizes l. Then, by Lemma 0.b,

$$i(G[A, B]) \ge \frac{n^{l/2}}{(2l)^l}$$
.

Hence $l \ge 2k + 2$ satisfies the requirements of the Lemma. \square

Lemma 4. Assume $r \ge 1$, $x \in (V)^r$, $\varphi_0 \ne \varphi_1 \in (2)^r$. Let $A = \Gamma(x, \varphi_0)$, $B = \Gamma(x, \varphi_1)$. Then

$$i(G) \ge i(G, A, B)n^{-r}$$
.

Proof. Assume that $W_i \subset A \cup B$ for $i \leq n'$ and that the $G[W_i]$ are pairwise non-equivalent with respect to $\cong_{A,B}$. We claim that the graphs

$$G_i = [W_i \cup \{x_v : v < r\}], i \le n'$$

are not pairwise isomorphic. Indeed, otherwise for some $i \neq j \leq n^r$ there is an isomorphism π of G_i and G_j with $\pi(x_v) = x_v$ for v < r. Then π maps $W_i \cap A$ onto $W_i \cap A$, a contradiction. \square

Lemma 5. Let c > 0, $r, l \ge 1$, $y \in V$, $x \in (V)^r$, $x_i \notin \Gamma(y)$ for i < r. Assume further that there are $\varphi_j \in (2)^r$, j < l such that

$$|\Gamma(y) \cap \Gamma(x, \varphi_j)| \ge cn \text{ for } j < l.$$

Then

$$i(G) \ge (nr!)^{-1}(cn)^{l}$$
.

Proof. For each sequence $v \in (cn)^l$ let W_v be a set such that

$$\{y\} \cup \{x_i : i < r\} \subset W_v \subset \{y\} \cup \{x_i : i < r\} \cup \bigcup_{j < l} (\Gamma(y) \cap \Gamma(x, \varphi_j))$$

and

$$|W_v \cap \Gamma(y) \cap \Gamma(x, \varphi_i)| = v_i$$
, for $j < l$.

If nr!+1 of the different $G[W_v]$ are isomorphic, then r!+1 are pairwise isomorphic by isomorphisms keeping y fixed. Such an isomorphism keeps the set $\{x_i:i< r\}$ fixed. Hence there are $v\neq v'$ and an isomorphism π of $G[W_v]$ and $G[W_v]$ such that $\pi(y)=y$, and $\pi(x_i)=x_i$ for i< r. But for any such π

$$\pi(\Gamma(y) \cap \Gamma(x, \varphi_j) \cap W_v) = \Gamma(y) \cap \Gamma(x, \varphi_j) \cap W_v$$
 for $j > l$.

Hence v = v', a contradiction. \square

Lemma 6. Assume $x \in (V)^l$. For $y \in V$ let

$$f_x(y) = \max\{\min\{d(y, \Gamma(x, \varphi)), \bar{d}(y, \Gamma(x, \varphi))\}: \varphi \in (2)^l\}$$

and

$$g_x(n) = \max\{f_x(y) : y \in V \setminus \{x_i : i < l\}\}.$$

Assume $g_x(n) = o(n)$. Then there are $W_n \subset V$ and G_0 such that $|W_n| = o(n)$, G_0 is $\leq 2^l$ -canonical on $V \setminus W_n$ and $\Delta(G[V \setminus W_n] \Delta G_0) = o(n)$. Moreover, each of the classes of the canonical partition coincides with some $\Gamma(x, \varphi) \setminus W_n$.

Proof. Put $A_{\varphi} = \Gamma(x, \varphi)$. We claim that we can omit o(n) vertices W_n so that for $A'_{\varphi} = A_{\varphi} \setminus W_n$

$$\min\{\Delta(G, A'_{\varphi}, A'_{\psi}), \Delta(\bar{G}, A'_{\varphi}, A'_{\psi})\} = o(n)$$

and

$$\min\{\Delta(G[A_{\varphi}]), \Delta(\tilde{G}[A'_{\varphi}])\} = o(n),$$

holds for $\varphi \neq \psi \in (2)^l$. Indeed if for example the first of these claims is false for some $\varphi \neq \psi \in (2)^l$, then for some c > 0 and infinitely many n, we would have say

$$|\{x \in A'_{\varphi}: d(x, A'_{\psi}) \ge cn\}| \ge cn$$

and

$$|\{x \in A'_{\varphi}: \bar{d}(x, A'_{\psi}) \ge cn\}| \ge cn.$$

Then, by the assumption, for infinitely many n,

$$|\{x \in A'_{\psi}: d(x, A'_{\psi}) > \frac{3}{4} |A'_{\psi}|\}| \ge cn$$

and

$$|\{x \in A'_{w}: \bar{d}(x, A'_{w}) > \frac{3}{4} |A'_{w}|\}| \ge cn$$

hence for some $y \in A'_{\psi}$, $f_x(y) > \frac{c}{2}n$ for infinitely many n, a contradiction. \square

Lemma 7. For every k there is an l such that whenever $y \in V$, $A \subset \Gamma(y)$, $B \subset \overline{\Gamma}(y)$, c > 0, |A|, $|B| \ge cn$ and $i(G) \le O(n^k)$ then there are $W_n \subset V$ and a G_0 for which $|W_n| = o(n)$, G_0 is l-canonical on $(A \cup B) \setminus W_n$ and

$$\Delta(G[A \setminus W_n, B \setminus W_n]\Delta G_0) \leq l.$$

Proof. We use the notation f_x , g_x introduced in the proof of Lemma 6 for the graph G' = G[A, B] with $V' = A \cup B$. For an $x \in (V)'$ and $i \le r$ we denote the restriction of x to i by $x \mid i$. For every fixed l and for every $n \ge l$ we define a sequence $\langle x_i : i < l \rangle$ by recursion on i, using a greedy algorithm: we let x_i be an element of $V' \setminus \{x_i : j < i\}$ satisfying

$$f_{x|i}(x_i) = g_{x|i}(n).$$

We now claim that $g_x(n) = o(n)$ for an $x \in (V')^{l_1}$ with $l_1 \le 2k + 3$. Indeed if

 $g_r(n) \ge c_1 n$ for some $c_1 > 0$ for infinitely many n, then for all these n we have

$$\forall_i < l_1 \exists \varphi \in (2)^i (d(x_i, \Gamma(x \mid i, \varphi)) \ge c_1 n \land \bar{d}(x_i, \Gamma(x \mid i, \varphi) \ge c_1 n).$$

Then either there is a subsequence $\{x_{i_v}: v < k+2\} \subset A$ such that for k+2 functions $\psi \in (2)^{k+2}$ we have

$$|B \cap \Gamma(\langle x_i, : v < k+2 \rangle, \psi)| \ge c_1 n$$

or the same holds when the roles of A and B are interchanged. This however, by Lemma 5, contradicts our assumption. This proves the claim. The claim and Lemma 6 imply that there is a 2^{ℓ_1} -canonical graph G_0 and $W'_n \subset V$ such that $|W'_n| = o(n)$ and

$$\Delta(G'[V' \setminus W'_n] \Delta G_0) = o(n).$$

Let $\{A_j: j < 2^{l_1}\}$ be the canonical classes of G_0 . We may assume (increasing l_1 to $2l_1$), that $A_j \subseteq A$ or $A_j \subseteq B$, hence we may assume that $G_0[A_j] = G'[A_j]$ has no edges. By Lemmas 3 and 4, using the last clause of Lemma 6, we can omit W_n , $|W_n| = o(n)$ vertices in such a way that $\Delta(G'[V \setminus W_n] \Delta G_0[V' \setminus W_n]) \le l$ with $l \le l_1 + 2k + 2 \le 4k + 5$. \square

Lemma 8. For all k there exists an l such that whenever there are disjoint subsets $\{x_i: i < l\}$, $A_i: i < l$ and c > 0 satisfying $\{\{x_i: i < l\}\}^2 \cap E = \emptyset$ and

$$A = \bigcup_{i < l} A_i$$
, $\Gamma(x_i, A) = A_i$; $|A_i| \ge cn$ for $i > l$

then $i(G) \ge c_1 n^k$ for some $c_1 \ge 0$ infinitely often.

Proof. Assume that $\{x_i: i < l\}$ and $\{A_i: i < l\}$ are as above. We prove that $i(G) \ge c_1 n^k$ holds for some $c_1 > 0$ infinitely often, provided l is large enough. By Lemma 7, there exists an l_1 and l_1 -canonical graphs $G_i: < l$ such that

$$\Delta \left(G\left[A_i, \bigcup_{j \neq i, j < l} A_i\right] \Delta G_i\right) \leq l_1.$$

Using a Ramsey type argument we can select a subsequence $\{x_{i_j}: j < l_2\}$, $c_2 > 0$ and $A'_{i_j} \subset A_j$ such that by putting $y_j = x_{i_j}$, $A''_j = A'_{i_j}$ we have $|A''_j| \ge c_2 n$ and either

(1)
$$[A_i'', A_i''] \subset E$$
, for $j < t < l_2$

or

(2)
$$[A_i'', A_i''] \cap E = \emptyset$$
, for $j < t < l_2$,

provided l is large enough compared to k, l_1 , and l_2 . If case (2) holds, by Lemma 0(a) we have

$$i(G) \ge i \left(G \left[\{x_j : j < l_2\} \cup \bigcup_{j < l_2} A_j'' \right] \right) \ge c_3 n^{l_2}$$

for some $c_3 > 0$. If case (1) holds, then either for some $c_4 > 0$ and for more than

 $l_2/2$ values of j, $\tilde{G}[A_j'']$ has a component of size at least $c_4n^{\frac{1}{2}}$ and in this case Lemma 0(a) implies that $i(\tilde{G}) \ge c_5n^{l_2/4}$ for some $c_5 > 0$, or else we may assume that for more than $l_2/2j$, the components of $\tilde{G}[A_j'']$ have sizes at most k. This follows from Lemma 0(b). Then for some $c_6 > 0$ we can choose $\tilde{A}_j \subset A_j''$, $|\tilde{A}_j| \ge c_6n$ for more than $l_2/2$ values of $j < l_2$ in such a way that $[\tilde{A}_j]^2 \subset E$. By Lemma 1, we have

$$i(G) \ge {c_6 n \choose l_2/2}$$
. \square

We are now in a position to prove Lemma 2.

Proof of Lemma 2. Just as in the proof of Lemma 3, if the lemma fails with l=2k+2, then we may assume that omitting o(n) vertices W_n arbitrarily, $\Delta(G[V \setminus W_n]) \ge n^{\frac{1}{2}}$ holds and that for every $A \subset V$, $A \ne \emptyset$ and for every m, $|\{x \in V : d(x, A) \ge 1/m |A|\}| = o(n)$. Using these, for every m and sufficiently large n, we can choose disjoint sets $\{x_i : i < m\}$, $A_i : i < m$ in such a way that $[\{x_i : i < m\}]^2 \cap E = \emptyset$ and for $A = \bigcup_{i > m} A_i$, $\Gamma(x_i, A) = A_i$ and $|A_i| \ge 1/mn^{\frac{1}{2}}$ hold for i < m. Now applying Lemma 8 for the graphs $G[\{x_i : i < m\} \cup A]$ we get a contradiction. \square

Now we can prove our main lemma.

Lemma 9. Assume $i(G) = o(n^{k+1})$, $k \ge 1$. Then there are $W_n \subset V$, l and a G_0 such that $|W_n| = o(n)$, G_0 is l-canonical on $V \setminus W_n$ and

$$\Delta(G[V \setminus W_n]\Delta G_0) \leq l.$$

Proof. We use the notation f_x , g_x introduced in Lemma 6 and we repeat the greedy algorithm described in the proof of Lemma 7, i.e. for every fixed l and for every $n \ge l$ we define a sequence $\{x_i : i < l\}$ by recursion on i < l as follows: x_i is an element of $V \setminus \{x_j : j < i\}$ satisfying $f_{x|i}(x_i) = g_{x|i}(n)$. If for some l we have $g_x(n) = o(n)$, then by Lemma 6 there are $W'_n \subset V$, l_1 and G_0 such that $|W'_n| = o(n)$, G is 2^{l_1} -canonical on $V \setminus W'_n$ and

$$\Delta(G[V \setminus W'_n]\Delta G_0) = o(n).$$

Then, by Lemmas 2, 3, and 4, we can omit W_n , $|W_n| = o(n)$ vertices so that for some l

$$\Delta(G[V \setminus W_n] \Delta G_0[V \setminus W_n]) \leq l.$$

Hence we may assume that the following holds infinitely many n:

(*) There is a sequence $\{x_i: i < l\}$ of distinct elements such that

$$\forall i < l \exists \varphi \in (2)^i d(x_i, \Gamma(x \mid i, \varphi) \ge cn) \land \bar{d}(x_i, \Gamma(x_i, \varphi) \ge cn)$$

for some c > 0.

We may as well assume that (*) holds for all n and prove that if (*) holds for large enough l, then $i(G) \ge c_0 n^{k+1}$ for some $c_0 > 0$ infinitely often.

First remark that (*) holds for any subsequence of $\langle x_i : i < l \rangle$. Now, by Lemma 5, we may assume that

$$(\forall \varepsilon < 2) \mid \{0 < i < l : x_i \in \Gamma(\langle x_0 \rangle, \langle \varepsilon \rangle) \land \exists \varphi(\varphi(o)) \}$$

$$= 1 - \varepsilon \land d(x_i, \Gamma(x \mid i, \varphi)) \ge cn \land \bar{d}(x_i, \Gamma(x \mid i, \varphi))) \ge cn\} \mid \le k + 1,$$

as otherwise we are done.

It follows that for either the graph or its complement the following statement is true.

There is a set

$$T \subset l - \{0\}, \qquad |T| \ge \frac{l}{2(k+1)2^{k+1}} \ge \frac{l}{5^{k+1}}$$

such that $\{x_i : i \in T\} \subset \Gamma(x_0)$, and we can omit W_n vertices, $|W_n| = o(n)$, of $\bar{\Gamma}(x_0)$ in such a way that for all $i, j \in T$ and for all $z \in \bar{\Gamma}(x_0) \setminus W_n$, $\{z, x_i\} \in E \Leftrightarrow \{z, x_j\} \in E$. Now by a repeated application of this argument we obtain that if $l > 4.5^{l/(k+1)}$ then for either the graph or its complement the following holds:

(1) There is a set $Y = \{y_i : i < l_1\}$, $[Y]^2 \subset E$, a $c_1 > 0$ and a sequence of pairwise disjoint subsets of V such that

$$|A_i| \ge c_1 n$$
, $A_i \subset \overline{\Gamma}(y_i)$ for $i < l_1$;
 $A_i \subset \Gamma(y_i) \land A_i \cap \Gamma(y_{i+1}) = A_i \cap \Gamma(y_i)$ for $i < j < l_1$;

and either $A_i \cap \tilde{\Gamma}(y_{i+1}) \ge c_2 n$ for $i+1 < l_1$ or $A_i \subset \Gamma(y_i)$ for $i < j < l_1$, for $c_2 > 0$.

We will assume that (1) holds for G. If in the last statement the first alternative holds, then applying Lemma 5 with $y = y_{t_1-1}$ we get that

$$i(G) \ge c_2 n^{l_1-3}$$
 with some $c_3 > 0$.

Thus we may assume that $A_i \subset \Gamma(y_i)$ for $i < j < l_1$. However, in this case Lemma 8 yields $i(\tilde{G}) \ge c_0 n^{k+1}$ provided l_1 is large enough. \square

To conclude the proof of Theorem 1, it remains only to prove the following.

Lemma 10. Assume G has n vertices, $i(G) = o(n^{k+1})$ for some $k \ge 1$. Assume further that l is minimal with respect to the following property:

(*) There are c > 0 and s and an l-canonical graph G₀ = ⟨V, E₀⟩ with canonical classes ⟨A_i: i < l⟩, |A_i| ≥ cn for i < l and Δ(GΔG₀) ≤ s.

Then $l \le k$ and we can find $W_n \subset V$, $|W_n| = o(n)$ such that setting $G_1 = G \Delta G_0$ all components of $G_1[V \setminus W_n]$ have size at most m = k + 1 - l.

Proof. Set m = k + 1 - l if $l \le k$ and m = 0 otherwise. Assume for a contradiction that the claim is not true. Then for some c_1 , $c_2 > 0$, $c_2 < \frac{1}{4}c_1$ we can find pairwise disjoint sets $\{A'_i : i < l\}$ and a set B such that

|A_i| = c₁n, A_i ⊂ A_i for i < l.

- (2) For $A = \bigcup_{i < l} A'_i$, $B \subset A$, $|B| = c_2 n$.
- (3) G₁[B] consists of components of size m + 1, and G₁[A] has only edges contained in G₁[B].

We claim that $i(G[A]) \ge c_3 n^{l+m}$ for some $c_3 > 0$. Let $A_i'' = A_i' \setminus B$ for i < l. Then $|A_i''| \ge 3/4c_1n$. Let now $X, Y \subset A$ and let π be an isomorphism of G[X] and G[Y]. Assume further that $|X \cap A_i''| \ge c_1/2$ for i < l.

For $u \in X$ set $\tilde{\pi}(u) = j$ if $\pi(u) \in A'_j$. Using $|X \cap A''_i| \ge 2 |B|$, for large enough n there are l+1 elements of $X \cap A''_i$ with image in $A \setminus B$, hence we can choose $x_i \ne y_i \in X \cap A''_i$ with $\pi(x_i)$, $\pi(y_i) \in A \setminus B$ and $\tilde{\pi}(x_i) = \tilde{\pi}(y_i)$, for i < l. Then the minimality of l implies that $\tilde{\pi}(x_i) \ne \tilde{\pi}(x_j)$ for $i \ne j < l$. Using again the minimality of l and the fact that

$$\{x_i: i < l\} \cup \{\pi(x_i): i < l\} \subset A \setminus B$$

we get that if $u, v \notin \{x_i : i < l\}$ then $u, v \in A'_v$ for some v < l if and only if

$$(\forall i < l)(\{u, x_i\} \in E \Leftrightarrow \{v, x_i\}) \in E$$

and also that if $u, v \notin \{\pi(x_i): i < l\}$ then $u, v \in A'_v$ for some v < l if and only if $(\forall i < l)(\{u, \pi(x_i)\} \in E \Leftrightarrow \{v, \pi(x_i)\}) \in E$.

Now for each $u \in A_i' \cap X$, $\pi(u) \in A_{\pi(x_i)}$. Indeed, for $u \in A_i' \cap X$, $u \neq x_i$, y_i we have

$$(\forall i < l)(\{u, x_i\} \in E \Leftrightarrow \{y_i, x_i\} \in E)$$

$$\Leftrightarrow (\forall i < l)(\{\pi(u), \pi(x_i)\} \in E \Leftrightarrow \{\pi(y_i), \pi(x_i)\} \in E)$$

$$\Leftrightarrow \pi(u) \in A'_{\bar{\pi}(y_i)}$$

$$\Leftrightarrow \bar{\pi}(u) = \bar{\pi}(x_i).$$

It follows that

(4)
$$\pi(A_i' \cap X) = A_{\bar{\pi}(x_i)} \cap Y$$
 for $i < l$.

Now, for each i < l, $G_1[A_i] = G[A_i]$ or $G_1[A_i] = \tilde{G}[A_i]$. Also, for each i < j < l, $G_1[A_i, A_j] = G[A_i, A_j]$ or $G_1[A_i, A_j] = \tilde{G}[A_i, A_j]$. Considering this, (4) implies that π is an isomorphism of $G_1[X]$ onto $G_1[Y]$. In the case m = 0, (4) implies that $i(G) \ge c_3 n^l$ for some $c_3 > 0$. In the case m > 0 and all the components $G_1[X \cap B]$ have size at least two, then

$$\pi(X \cap B) = Y \cap B$$
 and $\pi(A_i'' \cap X) = A_i'' \cap Y$ for $i < l$.

As there are c_4n ways to choose the cardinalities $|B \cap A_i^n|$ for i < l, and since $G_1[B]$ has c_5n^m pairwise nonisomorphic subgraphs each having no isolated points, for some c_4 , $c_5 > 0$, we are done. \square

2. One more result and some problems

One may conjecture that if G is a strong Ramsey example, then G is close to a random graph, hence i(G) is very large, say exponential. As is shown by the

attempt described in [1], this will be difficult to prove. We only have one result pointing in this direction.

Theorem 2. Assume G is a graph with n-vertices c > 0, $k > 2c \log 2$ and

$$K_{c \log n, c \log n} \not= G, \tilde{G}.$$

Then, for every sufficiently large n, $i(G) \ge 2^{n/4k}$.

Proof. We may assume that there is an $x \in V$ with

$$d(x) \ge (n/\log^2 n), \ \bar{d}(x) \ge \frac{1}{2}n.$$

Let $A \subset \Gamma(x)$, $B \subset \bar{\Gamma}(x)$ with $|A| = \lfloor (n/\log^2 n) \rfloor$, $|B| = \lfloor \frac{n}{2} \rfloor$. Let $\mathscr{F} = \{\Gamma(x) \cap A : x \in B'\}$, $|B'| > \frac{n}{3}$, $B' \subset B$. Assume first $|\mathscr{F}| > \frac{n}{3k}$. Let $C \subset B'$, $|C| = \lfloor (n/3k) \rfloor$ be such that $\Gamma(y) \cap A \neq \Gamma(z) \cap A$ for $y \neq z \in C$. Consider the graphs $G[\{x\} \cup A \cup Y]$ for $Y \subset C$. If $n \cdot |A|! + 1$ of them are pairwise isomorphic, then there are two, say

$$G[\{x\} \cup A \cup Y_0]$$
 and $G[\{x\} \cup A \cup Y_1]$

which are isomorphic by an isomorphism π keeping x and the elements of A fixed. Clearly such a π must keep the elements of Y_0 fixed, hence $Y_0 = Y_1$. It follows that in this case

$$i(G) \ge 2^{\lfloor n/3k \rfloor} \cdot (n \cdot n^{n/\log^2 n})^{-1} > 2^{n/4k}$$

holds for sufficiently large n. Hence we may assume that there is a sequence B_i : $i \le l$ of pairwise disjoint subsets of B such that $|B_i| = k$ and $\Gamma(y) \cap A = \Gamma(z) \cap A$ whenever $y, z \in B_i$ for i < l, for an l satisfying $k \cdot l > 2c \log n$, i.e. for an $l = \lfloor c_1 (\log n / \log 2) \rfloor$ with $c_1 < 1$.

Let $D = \bigcup_{i < l} B_i$. It now follows that there is an $E \subset A$, $|E| \ge |A|$. $2^{-c_1(\log n/\log 2)} \ge n^{1-c_1} \cdot (\log n)^{-2}$ such that $\Gamma(u) \cap D = \Gamma(v) \cap D$ for $u, v \in E$. As $n^{1-c_1} \cdot (\log n)^{-2} > c \log n$ for sufficiently large n, this contradicts the assumptions of the theorem. \square

Clearly, the above computation can be slightly improved, but we have examples to show that the assumptions of Theorem 2 do not imply $i(G) > 2^{(2n \log k/k)}$.

At present we are unable to extend Theorem 2 to graphs G for which

$$K_{c \log n, c \log n, c \log n} \not= G, \tilde{G}.$$

Reference

[1] N. Alon, B. Bollobás, Graphs with a small number of distinct induced subgraphs, this issue.