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Let (5 be o graph on a vertices, () the number of pairwise non-isomorphic induced
subgraphs of G and & = 1. We prove that if (i) = o'y then by omitting o(n) vertices the
graph can be made (f, mj-almost cancnical with { + m=k + 1.

0. Intreduction

We need some notation to state our main result.

Definition 1. G = (V, E) is [-canonical if there is a partition {A;:0=7<[) of the
vertex set V such that for i, j<lL x, x' €A, v, ¥ €A,

{x.yleEa{x',y'}ek

Definition 2. For G={(V. E), G'={V. E") put GAG' = {V. EAE'}, the sym-
metric difference of G and &',

Definition 3. For G = (V, E} set i(G) = |{G[W]:WcV}/=]| i.e. denote by
i{G) the number of pairwise non-isomorphic induced subgraphs of .

Definition 4. G = (V. E} is (I, m)-almost canonical if there is an [-canonical
graph G, = (V, E,) such that all the components of GAG), have sizes at most m.

During the Cambridge Combinatorial conference held in March 1988 the
sccond author stated the following conjecture.

Assume i(G) = e(n®). Then one can omit e{n) vertices of & in such a way that
the remaining graph is either complete or empty.

This was proved later independently by the two of us and by Alon and
Bollobds [1]. We can actually prove the following stronger result.

Theorem 1. Ve= 0¥k = 130 = 0¥aVG with n vertices i(G)= én*"'=3IW c V,
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|W|=en, such that G|V \W| is (I, m)-almost canonical for some |, m satisfving
I+m=k+1.

Note first that this implies the conjecture, as [ +m =2 implies f=m=1. We
would like to mention that this strong formulation of the theorem was inspired by
a result of 5. Napy, who proved and strengthened a conjecture of the second
author concerning infinite graphs. He proved that if for a graph G = (m, E},
where @ is the set of natural numbers, {(() is less than the continuum, then for
some [, m <, the graph G is (I, m)-almost canonical. His result extends to
weakly compact cardinals k in place of w. This result will be published clsewhere,

The main aim of this paper is to prove Theorem 1. This will be done in Section
1. In Section 2 we will discuss some further results and problems.

1. Proof of Theorem 1.

First we list our notation. Most of it is standard; we list it for the convenience of
the reader. However, we will point out that, applying double-think, we use the
convention n={{), ..., n — 1} whenever it is convenient for us.

(1) Foraset A, [A]"={{u, v}iu, veA au#uv}, the set of unordered pairs of
A; G[W]={V, EN[W]) is the subgraph of G = {V, E) induced by W.

(2) ForA, Bc VwithANB=9, [A, B]={{u.v}:uedAd nveB}; G|A, B]=
(AUB, EN[A, B]} is the bipartite subgraph of G induced by A and B.

(3) G is the complement of G, i.e. G={(V, [V]"\E}.

(4) For xeV, AcV, Nx, A)={yed:{x,y}eE}, and T(x)=T{x, V);
d(x, A)=|I'(x, A)|, d(x, V) =d(x). We let I', d denote the same functions
for G.

(5) (A) is the set of sequences of length r formed for the elements of A. For
xef{A)Y and i<r, x is the ith member of the sequence. For r=10,
(A) = (@}, For x e (VY, @€ (2) put

Nx, p)={zeV:¥Vi<r{{z, x,}e E& g =0}
Note that I'({u), (0N =T(w), ({u), (1}))=7T(u) for ueV, and
rg, é=\Vv.

(6) A(G)=max{d(x):xeV} A(G, A, B)=max{d(x, B):xeA}.

(7) For ANB=8, U WecAUB put GIU .. zG[W] if there is an isomorph-

ism m between G[U] and G[W] such that (/M A)=x(W NA).
(8) For AN B =@ we write

G, A, By=|{G[W]:WcANB}| =4 4,

i.e. the number of the equivalence classes with respect to the equivalence
relation =, 5. We will often use the fact that

(G, A, B)=i(G[A, B)).
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Our proof of Theorem 1 is quite lengthy. First, by proving a sequence of easy
lemmas, we will establish that the theorem is {almost) true without the restriction
{4+ m =k + 1. This will be done in Lemma 9.

Then, in Lemma 10, we prove that this implies the theorem. We would like to
point out that our proof yields a similar result in case k tends to infinity slowly
{e.g. if Kk =o(logiy(n))), but we do not go into the technical details.

First we give a rough estimate for i(G) in the case of a disconnected graph.

Lemma 0. Assume G has r components of sizes n, i <r. Then
{a} E{G} = {r!}_ll ]-[r-c.'ur fy
(b) If ;=1 for i <r then i(G)=(5)".

Lemma 1. Assume {x;:i<[l}, A;:i<l are pairwise disjoint subsets of V,
[{x: i< FNE=9, U-A =A, [AFcE, INx,A)=A, and |A|=1 for i<l
Then

i
[ = .
iG) (s)
Lemma 2. For every k there is an | such that whenever A(G)=o(n) and
i{G) = O(n") then there is a W, < V, |W,| = o(n) such that

AGIV\W,]) <L

Lemma 2 is an important tool in our proof but we can only prove it later. after
the proof of Lemma 8. First we prove a consequence of it.

Lemma 3. For every k there is an 1 such that whenever c=0; A, BV
ANB=; |A|, |Bl=cn, A(G, A, B)=o0(n) and i(G, A, B) = Q(n*) then there is
aW, eV, |W,|=aln) such that

A(G[A\W,, B\W,]) <L

Proof. By omitting o(n) vertices, we may assume A(G[A, V])=o(n). By
averaging we can see that for C= A or C = B, C+0 and for every integer m

1
{yEB:d{y. C}B;|C|} =o(n)

and

[}'EA:d{y. C}#iiCl} = a{n).

Using these, we can either pick, for every m and for sufficiently large n, an
induced subgraph of G[A, B] with m components, each having size at least L n!,
or we can omit o(n) vertices from 4 U8 so that for the remaining graph
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G[A', B'| we have A(G[A', B'])=n". In the first case, by Lemma (.a, we have
f

mim

i(G|A, B])= {]‘( = n“’z) for every m.

In the second case, if the conclusion of Lemma 3 does not hold for an {, we can
choose an induced subgraph of G[A', B'] having at least n?/2{ components of
sizes /. Then, by Lemma (L.b,

2

) H
i(G[A, B])= "

Hence { = 2k + 2 satisfies the requirements of the Lemma. O
Lemma 4. Assume r=1, xe(V), @q#¢,€(2). Leat A=TI(x, ¢,), B=
Fx, ¢,). Then
iG)=i(G, A, Bjn™".
Proof. Assume that WeAUB for i=n" and that the G[W,] are pairwise
non-equivalent with respect to =, 5. We claim that the graphs
G=[WUlx.:v<r}], i=n

are not pairwise isomorphic. Indeed, otherwise for some { #j=n" there is an
isomorphism m of G, and G, with w(x, ) =x, for v=r, Then & maps W. M A onto
W, A, a contradiction. [

Lemma 5. Letc=0, r.I=1, yeV, xe(V), x; ¢ T'(y) for i <r. Assume further
that there are ¢, € (2Y, j<<I such that

FAGRIAFRES qaj,-}l'&cn forj<1.
Then

iG)=(nr) Yen),

Proof. For each sequence v € (cn)' let W, be a set such that
{(riv{gii<rieWc{y}U{ni<rjull (F(y}NIx, ¢))
j=t

and
W, nI(yynIx @)=v, for j<l

If ar!+1 of the differemt G[W,] are isomorphic, then r!+ 1 are pairwise
isomorphic by isomorphisms keeping y fixed. Such an isomorphism keeps the set
{x;:i<r} fixed. Hence there are v# v’ and an isomorphism & of G[W,] and
G W, ] such that w(y) =y, and m(x;) = x, for i <r. But for any such &

mI(y) O Cx, @) OW)=T(y)NITx, @)W, for j=1.

Hence v = v, a contradiction. O
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Lemma 6. Assume x (VY. For yeV ler

fily)=max{min{d(y, ['(x, @)}, d(y, I'lx, @))}: @ (2)'}
and

g.An) =max{f(y):y e VNix:i<l}}.

Assume g.(n) =oln). Then there are W, = V and G, such that |W,| =o(n), G, is
=2"-canonical on V\W, and A(G[V\W,|AG,)=o(n). Moreover, each of the
clusses of the canonical partition coincides with some '(x, )\ W,

Proof. Put A, = I'(x, @). We claim that we can omit o(n) vertices W, so that for
A=A, \W,

min{A(G, A}, A}), A(G, A}, A,)} = o(n)
and

min{A(G[A,]), A(G[AL])} = o(n),

holds for ¢ # 4 € (2). Indeed if for example the first of these claims is false for
some @ # 1 € (2)', then for some ¢ >0 and infinitely many n, we would have say

Hxed,:dx, A )=cn}|=cn
and
HxeA,:d(x, Ay)=cn}|=cn.
Then, by the assumption, for infinitely many n,
{x Ay dlx, Ay) =3 |A} =cn
and
[{xeAL:dlx, AL) =3lAL} =cn

hence for some y € A}, f.(y¥)> % n for infinitely many n, a contradiction. [

Lemma 7. For every k there is an | such that whenever veV, AcT(y),
BeT(y), e=0, |A|, |B|=cn and i(G)= O(n*) then there are W, = V and a G,
for which |W,| =o(n), G, is [-canonical on (A U B)\W, and

A(G[A\W,, B\W,]AG,) =1.

Proof. We use the notation f, g, introduced in the proof of Lemma 6 for the
graph G'=G[A, B] with V' =AU B. For an x € (V)" and i=r we denote the
restriction of x to i by x |i. For every fixed [ and for every n =/ we define a
sequence (x;:i <[} by recursion on i, using a greedy algorithm: we let x; be an
element of V'\{x;:j <i} satisfying

lel{xl'} = g.i ':i(" }'
We now claim that g.(n)=o(n) for an xe (V') with {,=2k+3. Indeed if
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g, (n)=c,n for some ¢, >0 for infinitely many n, then for all these n we have
¥, <1, 3pe ) (dx, Nx|i, e))=cin ad(x;, Cix | i, g)=cn).

Then either there is a subsequence {x;,:v<k+2}cA such that for k +2
functions € (2)*** we have

[BAT({x, :v<k+2), ) =cn

or the same holds when the roles of A and B are interchanged. This however, by
Lemma 5, contradicts our assumption, This proves the claim, The claim and
Lemma 6 imply that there is a 2'-canonical graph G, and W,V such that
|Wal=o(n) and
A(G'[V'\W,] AGy) = o(n).

Let {A;:f < 2"} be the canonical classes of Gy, We may assume (increasing /; to
24,), that A;c A or A;c B, hence we may assume that Gy[A,]= G'[A;] has no
edges. By Lemmas 3 and 4, using the last clause of Lemma 6, we can omit W,,
|W,|=o(n) vertices in such a way that A(G'[V\W, JAG[V'\W,])=! with
I=l+2k+2=dk+5 O

Lemma 8. For all k there exists an [ such that whenever there are disjoint subsets
{x;:i<l}, A;:i<land ¢ =0 satisfying [{x, i <D}NE=8and

A=1JA;, Tx, A =A;|Al=cn for izl

=l
then i(G) = c,n" for some ¢, =0 infinitely often.

Proof. Assume that {x;:i<[} and {A,:i<[} are as above. We prove that
{(G)=c n" holds for some ¢, >0 infinitely often, provided [ is large enough. By
Lemma 7, there exists an [, and /,-canonical graphs G, : </ such that

a(G[A,, U A,}.ﬁﬁ,) <1,

feij=l

Using a Ramsey type argument we can select a subsequence {x.:j<U5L}, ;=0
and Aj = A, such that by putting y; = x;, Aj= A; we have |4]]= c;n and either

(1) [A}, All=E, for j=r<Il
or
(2) [ALANNE=#, for j<t<b,

provided [ is large enough compared to k, ;, and £,. If case (2) holds, by Lemma
{(}{a) we have

iG) EI(G[{-"’;:!' <hju rl-'?'i'z A}"D =cyn'

for some ¢y = 0. If case (1) holds, then either for some ¢, >0 and for more than
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1,/2 values of j, G[A]] has a component of size at least et and in this case
Lemma O(a) implies that i(G)=¢;n"™* for some ¢; =0, or else we may assume
that for more than /,/2j, the components of G[A}] have sizes at most k. This
follows from Lemma O(b). Then for some ¢;>0 we can choose AJCA:‘.
|A|=¢cgn for more than /2 values of j<I, in such a way that [A,]'c E. By
Lemma 1, we have

;':;G}a(;’;). 0

We are now in a position to prove Lemma 2.

Proof of Lemma 2. Just as in the proof of Lemma 3, if the lemma fails with
{=2k+2, then we may assume that omitting o(n) vertices W, arbitrarily,
A(G[VA\W,])=n! holds and that for every AcV, A#® and for every
m, |{x € V:d{x, A) = 1/m |A|}| = o(n). Using these, for every m and sufficiently
large n, we can choose disjoint sets {x;:i<=m}, A;:i<m in such a way that
[xi:i<m}PNE=@and for A= U,., A, (x,A)=A, and |A,|= 1/mn? hold
for i <m. Now applying Lemma & for the graphs G[{x:i<m}UA| we get a
contradiction. [

Now we can prove our main lemma.

Lemma 9. Assume i(G)=o(n*""), k =1. Then there are W, = V, [ and a G, such
that |W,| = e(n), G, is [-canonical on V\W, and

A(GIV\W,]AG,) =L

Proof. We use the notation f, g, introduced in Lemma 6 and we repeat the
greedy algorithm described in the proof of Lemma 7, i.e. for every fixed [ and for
every n =! we define a sequence {x;:{ <1} by recursion on i <! as follows: x, is an
element of V' ({x;:fj=<i} satisfying [ (x)=g,n). If for some [ we have
gdn)=wo(n), then by Lemma & there are W,cV, [, and G, such that
W, =e(n), G is 2"-canonical on V\W/, and

AG[VA\W . ]AG,) = o(n).

Then, by Lemmas 2, 3, and 4, we can omit W,, |W,|=o0(n) vertices so that for
some [

AG[VAW,JAG [V AW, ]) =1

Hence we may assume that the following holds infinitely many n:
(*) There is a sequence {x,:i <[} of distinct elements such that

Yi<[3qe(2)dx, MNx|i, ¢)=cn) nd(x, [(x, @)=cn)

for some ¢ =0,
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We may as well assume that (*) holds for all # and prove that if (*) holds for
large enough /, then {(G)=c,n*""' for some ¢; =0 infinitely often.

First remark that (*) holds for any subsequence of (x,:i<1[}). Now, by Lemma
5, we may assume that

(Ve<2) | {0<i<lixye F({xy), {e)) » Ip(plo)
=l—endx, Nx|i, @))=cn adlx, Nx |i, @) =en} | =k +1,

as otherwise we are done.
It follows that for either the graph or its complement the following statement is
true.
There is a set
[ {

such that {x,:ie T} = I'(x,), and we can omit W, vertices, |W,| =o(n), of I'(x,)
in such a way that for all {,jeT and for all ze l(x))\W,, {z,x)cEs
{z, x,} e E. Now by a repeated application of this argument we obtain that if
[ = 4.5+ then for either the graph or its complement the following holds:

(1) There isaset ¥ = {y:i<li}, [Y = E, a¢; =0 and a sequence of pairwise
disjoint subsets of V such that

|4, =en, A, T(y) for i<l
A I(y) AANT(Y)=ANT(y) for i<j<ly

and either A; N J""{y,-H}?czﬂ fori+1<lorA,eI(y)fori<j<{, forc,>0,
We will assume that (1) holds for . If in the last statement the first alternative
holds, then applying Lemma 5 with y =y, _, we get that

HGY=can”  with some 3> ()

Thus we may assume that A, = I'(y) for i =j <1,. However, in this case Lemma 8
yields i(G) = con®"! provided [, is large enough. [

To conclude the proof of Theorem 1, it remains only to prove the following.

Lemma 10. Assume G has n vertices, i(G)=o(n*"") for some k=1. Assume
Jurther that | is minimal with respect to the following properiy:

(*) There are ¢ =0 and s and an [-canonical graph G, = {V, E,) with canonical
classes (A, 2i<I), |A/|=en for i<l and A(GAG,)=35.

Then | = k and we can find W, c V, |W,| = o(n) such that setting G, = GAG, all
components of G,[V\W, | have size at most m =%k +1 -1,

Proof. Set m =k +1—1!if ! =k and m =) otherwise. Assume for a contradiction
that the claim is not true. Then for some ¢, ¢, =0, ¢, < {c, we can find pairwise
disjoint sets {A/:i </} and a set B such that

(1) |A/|=¢in, Al = A; for i <1,



Lhstinet Induced Subgraphs of a Graph 153

(2) For A= U, A], Bc A, |B|=can.
(3) G[B] consists of components of size m+ 1, and G,[A] has only edges
contained in G,[B].

We claim that i(G[A]) = ¢ n'™™ for some ¢;>0. Let AY= A/\B for i <[ Then
|Afl =3/dein. Let now X, Y = A and let o be an isomorphism of G[X] and G[Y].
Assume further that |[X NAll=c¢, /2 fori</l

For u € X set A(u)=j if m{u)eA;. Using |X NA]}=2|B|, for large enough n
there are [+ 1 elements of X M .AJ with image in AM\B, hence we can choose
xn#=ypeXNA] with m(x;), a(w)eANE and &(x;)=&(y), for i<l Then the
minimality of [ implies that #(x,) # #(x;) for i #j <[ Using again the mimmality
of / and the fact that

fri<iU{m(x):i<l}=A\B
we get that if u, v ¢ {x;:i <!} then u, v € A}, for some v</{if and only if
(Vi<D({u, e E<{v, gl)eE
and also that if u, v ¢ {m(x;):7 <!} then u, v € A}, for some v </ if and only if
(Vi <I)({u, m(x;)} € E< (v, mx)}) e E.
Now for each u e A] N X, mu) € Ay, Indeed, for u e A/ N X, u#x, y, we have
(Vi<D({u, x;} e E{y, x,} € E)
e (Vi<D({x(u), m(x;)) € E<{a(y), x(x,)} € E)
@HIH}EA;&HJ
& lu) = i),
It follows that
4) AANX)=Az,NY for i<l

Now, for each i <[, G\[A;]=G]A,] or G,[A,]=G[A,]. Also, for each i <j<I,
G[A,, A]]=G[A,, A] or G|[A,, A]=G[A, A]. Considering this, (4) implies
that o is an isomorphism of G,[X] onto G,[¥]. In the case m =0, (4) implies that
i(G) = csn' for some c;= 0. In the case m =0 and all the components G,[ X N B]
have size at least two, then

TAXMEB)=YNE and m(ANX)=A/NY for i</

As there are cyn ways to choose the cardinalities |B nAj] for i <[, and since
(7,| B| has ¢sn™ pairwise nonisomorphic subgraphs each having no isolated points,
for some ¢4, €5 >0, we are done. O

2. One more result and some problems

One may conjecture that if 7 is a strong Ramsey example, then G is close to a
random graph, hence i((7) is very large, say exponential. As is shown by the
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attempt described in [1], this will be difficult to prove. We only have one result
pointing in this direction.

Theorem 2. Assume G is a graph with n-vertices ¢ =0, k>2c log2 and
Kc logn,clogn :# G! G'
Then, for every sufficiently large n, i(G)=2""*,

Proof. We may assume that there is an x & V with
d(x)=(n/log*n), d(x)=1n.

Let AcT(x), Bc(x) with |A|=|(n/log?n)|, |B|=4]. Let F={I(x)N
A:xeB'}, |B'|=%, B'= B. Assume first |F| >4 . Let Ce B', |C|=1{(n/3k)]
be such that I'(y)NA#I(z)NA for y+#z e C. Consider the graphs G|{x}U
AUY]for Y=C. If n-|A|l + 1 of them are pairwise isomorphic, then there are
twa, say

G[{x}UAUY)] and G[{zx}UAUY]]

which are isomorphic by an isomorphism 7 keeping x and the elements of A
fixed. Clearly such a 7 must keep the elements of ¥, fixed, hence ¥,=Y,. It
follows that in this case

E[G}len’“] _{" : nm’]ug"rt}—l = sk
holds for sufficiently large n. Hence we may assume that there is a sequence
B;:i=1of pairwise disjoint subsets of B such that |B;|=kand My)NnA=T(z)N
A whenever y, zeB, for i<, for an [ satisfying k-[>2clogn, i.e. for an
I = |e,(logn/log2)] with ¢; < 1.
Let D= \J;B. It now follows that there is an EcA, |E|=|A|
2-eillegnioR 2} = yl-r1. (logn)~2 such that Mu)ND=T(v)ND for u,veE As

n'"“- (logn)~" = ¢ log n for sufficiently large n, this contradicts the assumptions
of the theorem. O

Clearly, the above computation can be slightly improved, but we have

examples to show that the assumptions of Theorem 2 do not imply {(G) >
2{2:1 Ingtl’.t]l

At present we are unable to extend Theorem 2 to graphs G for which

Kr' Bog e Do n, e bog s ﬁt G1 'G'
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