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A b s t r a c t . The function a(r) (n), which represents the r-th iteration of a (n) (the
number of non-isomorphic Abelian groups with n elements), is studied . Upper bounds fer a (r) (n)
are established, as well as the asymptotic formula for sums of K(n), where K(n)=min {r :a(r)(n)=
=1}. Connections with analogous problems for the iterations of d(n) (the number of divisors
of n) are discussed .

1 . Introduction

Let a(n) denote the number of non-isomorphic Abelian (commutative)
groups with n elements. It is well known that (see [5]) a(n) is a multiplicative
function of n (a(mn)=a(m)a(n) for coprime m and n) such that a(pk)=P(k)
for every prime p and integer k>1 (here and later p, pi, p.2, . . . denote pri-
mes), where P(k) is the number of unrestricted parititons of k . Hence P(1)=1,
P(2)=2, P(3)=3, P(4)=5, and as k-->oo

P(k) =(I +0(1)) (4,/3k) -1 expf7c(2kf 3) 1 /
2 },

which is a classical formula due to Hardy and Ramanujan see [13] p 240
The values ofa pk do not depend on p but only on k so that a n is a prime
independent" multiplicative function satisfying a p =1 for every prime p
One can easily exhibit other integer valued arithmetic functions with similar
properties and one such function is S n the number of non isomorphic
finite semisimple rings with n elements see [10] Thus in what follows
one could easily generalize the problems and results to a suitable class of
non negative prime independent integer valued multiplicative functions
such that f p =1 for every prime p However in order to keep the exposition
clear and simple we shall deal only with the case f n =a n
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From known results on a n we mention

lim sup
log a n log log n _ log 5
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n co
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4

which was proved by E Kratzel [12] log n=1n n is the natural logarithm
of n and

3

	

M
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Am x11 R x A

	

k/m

	

1 3
n x

	

m=1

	

k=1 k#m

Here Y is the Riemann zeta function and R x is the error term in the asymp
totic formula 1 3 for which the best published estimate R x <x97 fssl logasx
is due to G Kolesnik [11] here and later f x <g x and f x =0 g x both
mean J f x J <Cg x for x>xo and C Cl C2 are some unspecified
positive constants For other recent results on a n the reader is referred
to [6] [7] [9] and Ch 14 of [8] The aim of this paper is the study of the
iterates of a n For any arithmetic function f:NON and any integer r>1
one can define

f r n =f f f n
r times

as the r th iterate 6f f so that in this notation f 1 n =& Iff n is multi
plicative then in general already f 2 n is not multiplicative which makes
the study of the iterates of multiplicative functions difficult If r>2 is fixed
then two among the most natural problems concerning fM n are the eva
luation of sums off r n and the determination of the maximal order of
f r n In the case of f n =d n = I 1 the number of divisors ofn these

ab=n
problems were treated by Erdős and Kátai [2] [3] In [3] it was proved that

d r n = 1 o 1 Á x log x

	

A >0 x *oo

	

1 4
n<x

holds for r=4 which was shown earlier by L Kátai to be true for r=2 3
also An old conjecture of Bellman and Shapiro see [1] states that 1 4
lolds for any fixed r>2 logrx=log log _1x is the r fold iterated logarithm
On the other hand Erdős and Kátai proved in [2] that for every s>0

d r n < exp { log n 1 1rf£}

	

1 5

and that
d r n > exp { log n 1 1 r £}

	

1 6

holds for infinitely many n which means that they have essentially deter
mined the maximal order of dwr n Here lr is the r th Fibonacci number :
I 1=0 to =l 1 =1r t 1r_2 for r>1

When one considers the above two problems for air> n then it turns
out that the situation is in a certain sense opposite to the one for d r n
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where 1 4 is known only for r<4 but L5 up to " is the best possible
Namely it was proved by A Ivié [7] that

G
a a n

G
a e n = CV o xr12 logo x

	

1 7
n<x

	

n<x

for a suitable C>0 and since trivially a r n <a n the method of [7] ob
viously gives also

atrl n =Br x=O Xl/2log4 X

	

Br >0

	

1 8
n<x

for any fixed r>1 which can be compared to 1 4 In particular 1 8 shows
that a r n possesses a positive mean value for any fixed r>l and the error
term uniform in r in 1 8 is sharp Thus this problem is satisfactorily
resolved but determining the maximal order of a r n turns out to be dif
ficult The methods of [2] which yield 1 5 seem to be of no avail here
and we aree at present unable to determine precisely the maximal order of
a r n There is however another problem involving a r n which is so
mewhat different from the corresponding problem for d r n and with
which we can deal successfully Since a p =1 and d p =2 for all primes
p it makes sense to define

k n =mir {r :d * n =2}
and

K n =min {r :a r n =1}

The existence of both k n andK n is easily established and in [3] it was
shown that

0< lim sup	
k n

	

<
0C 1 9

n log log log n

It was noted in [3] that the summatory functions of k n iz very difficult to
estimate On the other hand we shall establish in Th 2 a sharp asymptotic
formula for the summatory function ofK n which implies that Ktn has
a positive mean value The upper bound in I 9 remains true if k n is re
placed byK n This will follow trivially from cur upper beund for a r n
in Th l but we are unable to determine whether the lim sup in question
forK n is positive or which seems to us to be more likely true is equal
to zero We also think that

lim sup K n =oo

	

1 10
n ao

but we are unable to prove 1 10 at present

2 Statement of results

Before we formulate our results we note that there are many n for
which a a n must be fairly large Namely let

n= plp" px 2
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where pp is the j th prime munber Then

a n =Pk 2 =2k
2 1

a a n =P k>exp Ck1 / 2 C>0

which follows from 1 1 But the prime number theorem gives

log n=2 G log p= 2 o 1 pk= 2 o 1 k log k k > oo
p<pk

hence k>log n/log2n and 2 1 implies that
a a n =a 2 n>exp Cj log n/log log n 11 2 C>0 2 2

holds for infinitely many integers n Lower bounds for a r n for r>3 are
difficult to obtain since very little is known about the structure of prime
factors of P k The situation with upper bounds for a r n is better and
we shall prove

THEOREM 1 There is a constant B>0 such that

a 2 n =a a n <exp

	

log

n

7/1
}

	

3
log

	

1s 16

	

2

and if c is the constant defined by
log a r n <r log n

	

2 4

then for r>3

Cr<1 cr 1 3 cr 2

	

C1=1 C2=
7

	

2 5
2

	

8

	

8

As in § 1 let K n for a given n be the smallest r such that a r n =1
Then we have

THEOREM 2 There is a constant E>1 such that for any given E>0

K n =Ex 0 x112 e

n<x

While the asymptotic formula 2 6 is sharp the bounds for the con
stants cr defined by 2 4 can probably be improved In the proof of Th
1 we shall use the upper bound

Ca P n < "1/2

which is the immediate consequence of 1 1 and w n <log n/log2n where
as usual w n denotes the number of distinct prime factors of n and U n
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is the number of all prime factors of n Better bounds than 2 7 would
lead to better results in Th 1 and in particular we conjecture that

w P n <<logc n

	

2 8

for some suitable C>0 which would give c2<3/4 in Th 1 If true 2 8
seems unattainable by present methods

3 Upper bound estimates for iterates

In this section we shall prove Th 1 The crucial element in the proof
is the upper bound for w a n contained in the following

Lemma 1

w a n < log n 31 4 log log n 11 1 8

Proof Let n=pí11 p11 r=w n be the canonical decomposition of n

Then

a n =P «1 P ar

and in bounding w a n we can suppose that the aj s are distinct since
w mk =w m If S>2 is a parameter which will be determined later then
using 2 7 we obtain

w a n =w 1 1 P xi rl P ai

since

a$ = S2 n <
log n

= t

	

log 2

r
To estimate R=R S n =

	

1 note that from n=H paf> H Pat
a >s

	

r=i

	

a >S

<_

	

w P a~»

	

w P aa
a <S

	

« >S

S112

	

1

	

a¢1/2

log S a <_S

	

a >S log at

5312

	

1

	

r

	

1/2

	

112
	 ~

logs log S ;=1 U >S

S3 / 2

	

1 log n 112

	

1 l1 2

~log S log S

	

a >s
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we have PR is the R th prime

log n>S log p>SR log R
P~PR

Hence for logA n<S<logB n 0<A<B< i we have

R=R S n =

	

1<
logn

	

3 2
a >S

	

S log log n

Therefore we obtain

w
a n

<
Ss12

	

S 11 2 log n
log S log S log log n 112

< log n s14 log log n 11 1 8
on taking

S= lc;g n 1 12 log log n 1 14

This ends the proof of Lemma 1 but we remark that our method can be
used to bound w f n for a fairly wide ciass of prime independent integer
valued multiplicative functions In particular we obtain

/

	

log n

	

11a
w d n

~11og2 n logs n

	

3 3

Namely
w d n} =w f1 oci 1 rj aí 1

a <S

	

ar>S

<w 11 O 1 1» G w aí 1
m<S

	

a >S

1 ~ log aXd10g2 ai<SJlog S F

	

1092 n/logs n
P<S I

	

a >S

	

a >S

S log n
<t

	 log n 112
log S S logs n \loge n logs n

on taking

S
log n logs n 112

logs n

where we used again 3 2 Note that the order of d d n is closely
to the order of oj d n since trivially

d n _~ 1?:E Et2 S =2w n
s ;n

	

sln

related
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hence wtn <log d n co d n <log d d n and on the other hand

since acing 1 2 we

r
log d n =~ log xí l «r log log n=w n log log n

i=t

which then yields
w d n <log d d n < d n log log n

	

3 4

We also remark that 3 3 remains valid if d n =dz n is replaced by dk n
k>2 fixed which represents the number of ways n can be written as a
product of k factors This is a multiplicative function satisfying

dk ~« _ a 1 aá k 1
k 1 !

Having at our disposal Lemma 1 it is a fairly simple matter to prove
2 3 and 2 5 Namely from 1 1 we have by the Cauchy Schwarz inequality

a n =P al P a <ex C :E aí112 <ex C w n S2

	

3 5P

	

~

	

~

	

P

	

n 1 1 2
i=t

It follows that
a a n <exp C w a n Q a n 1l2

<< exp Cl{ log n 314 log2n 11 Is log n/log2n } 1 1 2 =

=exp CI log n 7 1 8 log2n 19 1 1 s á

have

S2 a n < log a n < log n

log 2

	

log log n

To prove 2 5 we use induction trivially ci=1 and c2<7/8 by 2 3 and
3 5 with n replaced by a r 1 n This gives by Lemma 1 for r>3

a r n =a a r 1 n <exp C{w a a r 2 n Q a r 1 n 1112

<exp Cl{ log a ? 2 n 314 loo a r 1 n }112

<exp íC2 log n 3c Y 4e 18 ~

where C2>0 possibly depends on r Hence 2 4 holds with cr satisfying
2 5 We ould have also obtained 2 4 with certain negative powers of
1og2n multiplying log n cr but th s did not seem of great importance

4 Proof of the asymptotic formula for iterates

In this section we shall prove the asymptotic formula 2 6 of Th
2 The proof will use the following
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with suitable constants df k>0 M orec ver for some suitable constants Cl
C2 C3>0

dj x<Cj exp C2 1ag C32Jk log log CsVk

	

4 2

Proof For j=1 4 1 and 4 2 reduce to a result proved by A M6
[7] so that we can suppose j>2 Note that in the terminology of Ivic Te
nenbaum [9] the function f n =a D n j>1 fixed is an s function This
means thatf n f s n where s=s n is the squarefull part of n s is squarefull
if p2 i s whenever p is a prime such that p I s Hence frLm [9] we have 4 1
with

00
0<dj x=6n2

	

Sri 1 1/p _h

	

4 3
s=1 ap s =k

	

pas

where summation is over all squarefull s empty sum being understood
as zero Let sl be the smallest squarefull s for which a D s =k if no s> : ch
s1 exists then dp x=0 Using multiplicativity and the properties of the
partition function we have a n <n /2 for n>no which combined with

1 2 gives for j>2
k=aW sl < a s1 2 1 J<Co exp C12 J log sl/log log si

s1 >exp C2 log 24/Co log log 2 k Co
and

Lemma 2 For j>l and k>2 we have uniformly

1 =d x X 0 x112 log2 x
n<x aV n =k

dp x<6r 2 G s 1<s1 112<C exp C2 log Cs2Jh log log C32Jk
szsi

as asserted Here we used the fact that the elementary formula

1 =_ 3 /2 x112 p x 113
s<x

	

~ 3

gives by partial summation
s 1<y 112

S? y

A more careful argument based on Th l would give

dj x<Clexp C2 log k 1 ~ 3 C3=á/8j7 ; C1 C2>0 k>2 j>jo 4 4

We pass now to the proof of Th 2 We shall use only the weak bound
K n <log n n>no although K n <logsn follows easily from Th 1 We
can write

2 K n _ 2 2 1
n<x

	

1<k<1og x n<x K n =k
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If K n =1 this means that n is squarefree Hence

1=

	

2 n =67L 2x O xi12
i Sx K n =1

	

n<z

Since a n =1 is equivalent ton being squarefree this means that ifK n =k
k>2 then we must have a k l n =r r squarefree and r> l Hence for
k>2 Lemma 2 gives

1
nSx K n =k

	

n=x a k 1 n r 1<r=squarefree

r=2

1=

~ g2 r dk l r x } O x112 10g2 x
2 < r :5;xe

g2 r dk 1 r J X O x112 E

with the error term uniform in k for any fixed s>0 Thus we obtain

1=x ~

	

2 g2 r dk 13r O x112 e
25k51ogx n<_x K n =k

	

25_k5_logx r=2
ao

	

ac

	

m
=x~ ~ E1 2 Y dk1r O x112 e } O ~ ~ 1£2 Y dk l r

k=2 r=2Xk>logx r=2
Using 4 2 it is seen that the last double s zm is majorized by

00
:S eXP C2 109 C4 2k r log log C4 2A r

k>log x r=2
CO

exp Cs 2109 z
~ exp C2 log r log log C4 r Gx A
r=2

for any fixed A>0 Inserting the preceding estimates in 4 5 we obtain
Th 2 with

E=67c 2
~ µ2 Y dk hr •

k=2 r=2
Trivially E>1 since K n =1 for sgLarefree n which have density 6>< 2
and K n >2 for other n

We conclude by making two remarks If 0<F n <<exp Cn then our
arguments would give an asymptotic formula analogous to 2 6 for the
sum of F K n The second remark concerns the constant Br in the asymptotic
formula 1 8 It is easy to see that lim Br=1 but it is also possible to show

r o0
that Br converges very quickly to 1 Namely we have

x 1
I a r n =x 1 ~

	

~

	

k
nsx

	

káxE nSx a * n =k
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hence using 4 1 4 2 and letting x > oo we obtain
W

Br =

	

k dr k
k=I

Similarly from
x 1

	

1 =x I :S

	

:S

	

1
n5x

	

kSxe oaSx a • n =k

we obtain
M

1 =

	

dr k
k=1

Using then 4 4 we obtain

0<Br 1=

	

k 1 dr k`exp { C2 1og3 G~r ~
k=2

for r>ro and some C>1 C2>0 Presumably a lower bound for Br I ana
logous to 4 6 also holds for infinitely many r but this does not seem easy
to show Perhaps even Br=l for r>rl might be true ; this would follow
from 1 10
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