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Abstract. The function a'*y(n), which represents the r-th iteration of a(n) (the
ntumber of non-isomorphic Abelian groups with n elements), 1s studied. Upper bounds fer a') (n)
are established, as well as the asymptotic formula for sums of K(n), where K(n)=min {r:a®)X(n)=
=1}. Connections with analogous problems for the iterations of d(n) (the number of divisors
of n) are discussed,

1. Introduction

Let a(n) denote the number of non-isomorphic Abelian (commutative)
groups with # elements. It is well known that (see [5]) a(n) is a multiplicative
function of n (a(mn)=a(m)a(n) for coprime m and n) such that a(p¥)=P(k)
for every prime p and integer £=>1 (here and later p, p1. p2, . . . denote pri-
mes), where P(k) is the number of unrestricted parititons of k. Hence P(1)=1,
P(2)=2, P(3)=3, P(4)=5, and as k—®

P(E)=(1+0(1)) (44/3k) exp{=(2&/3)'/2},

which is a classical formula due to Hardy and Ramanujan (see [13], p. 240).
The values of a(p¥) do not depend on p but only on £, so that a(n) is a ,,prime-
-independent® multiplicative function satisfying a(p)=1 for every prime p.
One can easily exhibit other integer valued arithmetic functions with similar
properties, and one such function is S(n), the number of non-isomorphic
finite semisimple rings with » elements (see [10]). Thus in what follows
one could easily generalize the problems and results to a suitable class of
non-negative, prime independent, integer valued multiplicative functions
such that f(p)=1 for every prime p. However, in order to keep the exposition
clear and simple, we shall deal only with the case f(n)=a(n).
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From known results on a(n) we mention

loga (n)loglogn_ log5 (1.2)

lim sup
n— 0 logn 4

which was proved by E. Kritzel [12] (log n=In# is the natural logarithm
of »n), and
3 @

D am)y=73 Anx'm+R(x), An= T[] T(k/m). (1.3)

n=x it=| k=1, k#m
Here ¥ is the Riemann zeta-function, and R(x) is the error term in the asymp-
totic formula (1.3), for which the best published estimate R(x)<<x%7/381 Jogdbx
is due to G. Kolesnik [11] (here and later f(x)<<g(x) and f(x)=0(g(x)) both
mean |f(x)|<Cg(x) for x>x, and C,Ci,Cq, ... are some (unspecified)
positive constants). For other recent results on af#n) the reader is referred
to [6], [7], [9] and Ch. 14 of [8]. The aim of this paper is the study of the
iterates of a(n). For any arithmetic function f:N-—>N, and any integer r>1
one can define

FO W= f()..))

r times

as the r-th iterate of £, so that in this notation f) (n)=f(n). 1f f(n) is multi-
plicative, then in genéral already f® (n) is not multiplicative, which makes
the study of the iterates of multiplicative functions difficult, If »>2 is fixed,
then two among the most natural problems concerning f( (#) are the eva-
luation of sums of f) (n) and the determination of the maximal order of
f® (n). In the case of f(n)=d(n)= z 1 (the number of divisors of n), these

ab=n

problems were treated by Erdés and Kadtai [2], [3]. In [3] it was proved that
Za‘"‘) (m)=(1+o(1))A, x log: x (A4r>0, x— 0) (1.4)

n=x

holds for »=4, which was shown earlier by I. Kdtai to be true for +=2,3
also. An old conjecture of Bellman and Shapiro (see [1]) states that (1.4)
tolds for any fixed »=>2 (logrx=log(logr—1x) is the r-fold iterated logarithm).
On the other hand, Erd6és and Katai proved in [2] that for every e>0

dm (m) < exp{(logml/i-e} (1.5)
and thar
d®" (m) > exp{(logn)l/t—t} (1.6)

holds for infinitely many », which means that they have essentially deter-
mined the maximal order of d\n). Here I is the »-th Fibonacci number:
1-—1=0, !{J:l: I!r=l€l1‘--1'l‘|l’|l-—3 for ?‘21.

When one considers the above two problems for a{”(»), then it turns
out that the situation is in a certain sense opposite to the one for d(n),
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where (1.4) is known only for r<Z4, but (1.5) (up to ,,£%) is the best possible.
Namely, it was proved by A. Ivi¢ [7] that

Sala(n)=3a® (m)=Cx+0O (x2loghx) (1.7)

n=x n=x
for a suitable C>0, and since trivially a{”{(n)<<a(#) the method of [7] ob-
viously gives also

Za(’”’ (n)=B,x+0(x2logtx) (By>0) (1.8)

for any fixed »>1, which can be compared to (1.4). In particular, (1.8) shows
that a”(n) possesses a positive mean value for any fixed r>1, and the error
term (uaiform in ») in (1.8) is sharp. Thus this problem is satisfactorily
resolved, but determining the maximal order of a'"}(») turns out to be dif-
ficult. The methods of [2] which yield (1.5) seem to be of no avail here,
and we are at present unable to determine precisely the maximal order of
a”(n). There is, however, another problem involving () which is so-
mewhat different from the corresponding problem for d((n), and with
which we can deal successfully. Since a(p)=1 and d(p)=2 for all primes
p, it makes sense to define

k(n)=mir {r:d(n)=2}
and
K(n)=min {r:a®(n)=1}.

The existence of both k(n) and K(n) is easily established, and in [3] it was
shown that

0< lim sup —ﬂ—<m. (1.9)
n-o" logloglogn

It was noted in [3] that the summatory functior: of k(n) iv very difficult to
estimate. On the other hand, we shall establish in Th. 2 a sharp ssymptotic
formula for the summatory function of K(n), which implies that Kin) has
a positive mean value. The upper bound in (1.9) remains true if &(x) is re-
placed by K(n). This will follow trivially from cur upper beund for a(n)
in Th. 1, but we are unable to determine whether the lim sup in question
for K(n) is positive or (which seems to us to be more likely true) is equal
to zero. We also think that

lim sup K(n)= o0, (1.10)

fi— @

but we are unable to prove (1.10) at present.

2. Statement of results

Before we formulate our results we note that there are many n for
which a(a(n)) must be fairly large. Namely, let

n=(p1ps. . .pr)%
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where p; is the j-th prime number. Then.

a(n)=Pk(2)=2%,

Q.1
a(a(n)=rP(k)>exp (Ck2) (C>0),

which follows from (1.1). But the prime number theorem gives

logn=2 3 log p=2+o(1))pe=2+o(I)klogk (k->c0),

P=Pk

hence &>log nflogan, and (2.1) implies thot
a(a(n))=a®(n)>exp (Ci(log n/log log n)12)  (C1>0) (2.2)

holds for infinitely many integers n. Lower bouads for q"}{n) for r>3 are
difficult to obtain, since very little is known about the structure of prime
factors of P(k). The situation with upper bounds for a)(n) is better, and
we shall prove

THEOREM 1. There is a constant B>0 such that

Bl 7/8
a® (1)=a (@ () <exp [&;ﬁ%ﬁ} @3)
and if ¢, is the constant defined by
log a”(n) <, (logn)®, (2.4)
then for »>3
Ci"i%cr-—l+_z"0r-2 (c1=1, ce,:%). (2.5)

As in § 1, let X(#n) for a given n be the smallest r such that a®(n)=1,
Then we have

THEOREM 2. There is a constant £>>1 such that for any given ¢>0
> K (n)=Ex+ O (x1/2+). (2.6)

n=x

While the asymptotic formula (2.6) is sharp, the bounds for the con-
stants ¢r (defined by (2.4)) can probably be improved. In the proof of Th.
1 we shall use the upper bound

o (P(m)<

1/2
Lo @7
logn

which is the immediate consequence of (1.1) and w(r)<log n/logan, where
as usual w(n) denotes the number of distinct prime factors of n (and Q(n)
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is the number of all prime factors of n). Better bounds than (2.7) would
lead to better results in Th. 1, and in particular we conjecture that

o (P(%))<logC n 2.8)

for some suitable C>0, which would give ¢3<<3/4 in Th. 1. If true, (2.8)
seems unattainable by present methods.

3. Upper bound estimates for iterates

In this section we shall prove Th. 1. The crucial element in the proof
is the upper bound for w(a(n)), contained in the following

Lemma 1.
wla(n))<(log n)34(log log n)~11/8, (3.1)
Proof. Let n=p2 ... p¥ (r=uw(n)) be the canonical decomposition of n.
Then
a(n)=P(x1)...P(er),

and in bounding «(a(n)) we can suppose that the oy’s are distinct, since
o{mF)=w(m). If S=>2 is a parameter which will be determined later, then
using (2.7) we obtain

w(@@)=w(]] Ple) [T P (o))

u=S w>S
< 3 oPl)+ 3 o@ ()
=5 > 8
S1y2 ogl/2

<

log Sw=s o =>8 log otg

S312 1 . 1/2 142
g2 g 2 s 1)
<log S log$8 (,Zl i) (u:g.s‘
S3/2 1 1/2
+—— (logn 1-"2( 1)
<log S log$ (ogm mz>s ’

since

G’.f=Q (ﬂ)glogn .
log 2

IR

To estimate R=R(S,n)= 3 1, note that from n=[1pp= 1] 2
a>S5 w>S

i=1
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we have (pg is the R-th prime)
log n>8 z log p>SRlog R.

P=Pr

Hence: for logdn<S<logfn (0<A<B<1) we have

logn
R=R(8§,n)= 1L —.
) ugs Sloglogn

(3.2)

Therefore we obtain

S3/2 S-12logn
o (a(m)<-—+ E
logS log S (log log n)L/2
<(log n)*4 (log log n)~1118
on taking
S=(lvg n)2 (log log n)~1/4.
This ends the proof of Lemma 1, but we remark that our method can be

used to bound (f(n)) for a fairly wide ciass of prime-independent, integer-
valued multiplicative functions. In particular, we obtain

e (n))<(—“’~g—f—)”2- (33)
logznlogsn
Namely,
wd®m)=o(J] (u+1) JT («+1))

o&=S o=>S

<o([] D)+ 3 olut1)

=8 o >S

< 3 1+ > log ayflogz <L Sflog S+ > logzn/logsn

P=8S+1 =8 =8

S logn ( logn )U2
logS Slogsn \loganlogsn
on taking
S— ( logn lo_giﬁ)”ﬂ,
logan

where we used again (3.2). Nore that the order of d(d(n)) is closely related
to the order of w(d(n)), since trivially

dm)=31=3 p2 () =20,

&n 3|
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hence wn)<log d(n), w(d(n))<Llog d(d(»)), and on the cther hand

log d(n)=7 log (x+1)<Lr log log n=w(n) log log n,

i=1
which thea yields
o(d(n))<log d(d(n))<Kw(d(n)) log log n. 3.4)
We also remark that (3.3) remains valid if d(n)=dz(n) is replaced by di(n)
(A>2 fixed), which represents the number of ways »n can be written as a
product of k facters. This is a multiplicstive function satisfying
(e+1)...(a+k—1)
di (p%) = ‘
> () (R—1)!

Having at our disposal Lemma 1, it is a fairly simple matter to prove
(2.3) and (2.5). Namely, from (1.1) we have by the Cauchy-Schwarz inequality

a(n)=P(a1)...P (ar)<<exp {Ci ou”z]<exp (C (o () Q (m)12). (3.5)
It follows that
a(a(n))<exp (C(w(a(n))Qa(n))'2)
< exp(Cr{(log n)¥4(logen) 11 /8(log nflogon)} /%)=
=exp (Ci(log n)"/5(logan)—19/16),
since using (1.2) we have
loga (n) log n
Q —
CeNE= log2 log logn

To prove (2.5) we use induction (trivially ¢;=1 and ¢3<<7/8 by (2.3)) and
(3.5) with n replaced by a"-}(n). This gives by Lemma 1, for r=>3,
a(n)=a(a"-D(n))<exp (C{wlala™>(m))Ua(n))}12)
<exp (Gif(log a2 ()3 log ar-D(m)}112)

< exp (Cz (Iog n)(kf—-s"' 4Cr—1);‘3),

where C:>0 possibly depends on ». Hence (2.4) holds with ¢, satisfying
(2.5). We -ould have also obtained (2.4) with certain negative powers of
logen multiplying (log #)¢, but th's did not seem of great importance.

4. Proof of the asympiotic formula for irerates

In this section we shall prove the asymptotic formula (2.6) of Th.
2. The proof will use the following
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Lemma 2. For j>1 and k>2 we have uniformly
| =djxx+ 0 (x1/2log? x)

r<x,alf)(n)=F
with suitable constants djx=>0. Morecver for some suvitable constants Ci,
Ca, Cs>0
dj x<Cj exp (—Cs log (C327k) log log (Cs27E)). (4.2)
Progf. For j=1 (4.1) and (4.2) reduce to a result proved by A. Ivi¢
[7], so that we can suppose j=>2. Note that in the terminology of Ivi¢-Te-
nenbaum [9] the function f(n)ﬁaU){n) (=1 fixed) is an s-function. This
means that f(n)= f(s(n)) where s=s(n) is the squarefull part of n (s is squarefull
if p? | s whenever p is a prime such that p | s). Hence frcm [9] we have (4.1)
with

0<dip=6r2 5  (TIU+1p)D 43)

s=latt )=k  p|s

where summation is over all squarefull s (empty sum being undeistood
as zero). Let s; be the smallest squarefull s for which o (s)==% (if no stch
s1 exists, then dpx=0). Using multiplicativity and the properties of the
partition function we have a(n)<nl/? for n>=>ng, which combined with
(1.2) gives, for j=>2,

E=aW(s1)<(al51)) 217 <Cp exp (C12/ log s1/log log s1).
s1=>exp (Cq log (27&[Co) log log (2k)Co)),
and
dpe<6m2 2 s1<&Lsy 2 < Cy exp (—Cq log (Cs27k) log log (Ca2/k))

=81
as asserted, Here we used the fact that the elementary formula
> 1= SG3/2) X124 O (x11%)
s=x; t( )
gives by partial summztion

Z sl y1i2,

5=y

A more careful argument, based on Th. 1, would give

dsx<Ci exp (— Cg(log(k—f—l)) )(cs AV/8]T ; C1,Co>0, k=2, j=>jo). (4.4)

We pass now to the procf of Th. 2. We shall use only the weak bound
K(n)<log n(n=>ng), although K(n)<logsn follows easily from Th. 1. We
can write

SKm= > ( > D (4.5)

n<=x 1=k<logx n=xKn)=k



On the iterates of the enumerating function of finite Abelian groups 21

If K(n)=1, this means that #n is squarefree. Hence
1= u?(m)=6n2x+0 (x112).

r<x,Kn)=1 n=x

Since a(n)=1 is equivalent to n being squerefree, this means that if K(n)=£k
(k=2), then we must have a®-1(n)=r, r squarefrec and r>1. Hence for
k>2 Lemma 2 gives

1= z 1

nSx,Kn)=k n<x,a(® ) (n)=r, | <r=squarefree
— Z p2 (1) (di-1,r x+ O (x12 log? x))
2= rsa®

~(5 e dx-l,r) x40 (a1249),

r=2

with the error term uniferm in & for any fixed e>0. Thus we obtain

1= Z i w2 (7) di_1,r + O (x1/24€)

2=k=logx n=x K=k 2=kslogx 2

==X
k

I N8

ﬁ w2 () dg-10+ O (x1/2+6)+ O (x 5 § w2 (r) dx-x.r)—
r=2

2 S k>logx r=2

Using (4.2) it is seen that the last double sam is majorized by

(-]

> Z exp (—Czlog (Cs 2% r) log log (C4 2% 7))

k>logx r=2

<Lexp (—Cp21%8%) 5 exp (— Calogrloglog (Car))<x—4

r=2

for any fixed A>0. Inserting the preceding estimates in (4.5) we obtain
Th. 2 with

E=6n2+% > p?(r)de-br.

k=2 r=2

Trivially E>1, since K(n)=1 for squarefree n (which have density 6n2)
and K(n)>2 for other n.

We conclude by making two remarks. If 0<<F(n)<exp (Cn), then our
arguments would give an asymptotic formula analogous to (2.6) for the
sum of F(K(#n)). The second remark concerns the constant B, in the asymptotic
formula (1.8). It is easy to see that lim B,=1, but it is also possible to show

r—so0

that B, converges very quickly to 1. Namely we have

x1 Z a® (m)=x1% k,
nsx ksx® n=x,a("i(nl=k
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hence using (4.1), (4.2) and letting x—> o0 we obtain

Br = 2 k dr,k-
k=1

Similarly from
¥y 1=x17% z 1

nsx k=xe nSx,alN(n)=k
we obtain
Ji= 2 dr,k-
k=1
Using then (4.4) we obtain
0<B,—1=73 (k—1)drp<exp {— Ca (log 3)°"} (4.6)
=2

for =7 and some C>1, C3>0. Presumably a lower bound for B,—1 ana-
logous to (4.6) also holds for infinitely many r, but this does not seem easy
to show. Perhaps even By=1 for > might be true; this would follow
from (1.10).
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