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Abstract. It is shown that the classical Ramsey numbers T( m, ta) satisfy 

r(m,n) 2: r(m,n- 1) + 2m- 3, 

and.forl <k<n-2. 

r(m,n) >r(m,n-k)+r(m,k+ 1)-l. 

Consequences of the first result for some generalized Ramsey numbers will be consid- 
ered. 

If m and n are integers 2 2, define the (classical) Ramsey number r( m, n) to 
be at least integer t such that if the edges of the complete graph Kt are colored 
red and blue, either a red K, or a blue K, must occur. These numbers have been 
extensively studied; see [2] for a survey. Various inequalities for r( m, n) are 
known; for example, 

(1) 

However, very little is known about the differences involving T-( m, n), such as 
dm,n) - 7(m,n- 1) or7(m,n) -r(m- l,n- 1). Itseemsverydiflicultto 
estimate these differences, but we have been able to establish the following. 

Theoreml. r(m,n)2r(m,n-l)c2m-3form,n22. 

Corollary. r(m,n) >r(m- l,n-1)+2m+2n-8fOfm,n<2. 

Thecasem = 3 of Theorem 1 was proved by Graver and Yackel; see Corol- 
lary 4 on page 149 of [3]. We also note that Theorem 1 strengthens the trivial 
result 

r(m,n) 2 r(m,n- 1) + m- 1, 

which was noted in [2]. In turn, this is a special case of the following. 
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Theorem 2. If 1 2 k 5 n - 2, then 

r(m,n) >r(m,n-k)+r(m,k+ 1)-l. 

This theorem is nearly trivial, so we prove it l&t. Before giving the proof, we 
make the following definition. Call a coloring of Kt ( m, n) -good if no red K,,, 
or blue K,, occurs. 
ProofofTheorem2: Setq = (m,n- k),rz = (m,k+ 1). TakeaKr,-1 witha 
( m , n - k) -good coloring, and a disjoint K, -1 with a ( m , k + 1) -good coloring. 
Join these two complete graphs entirely by blue edges, producing an edgecolored 
K r,+n-2. It is clear that this complete graph contains no red K,, and the largest 
bluecompletegraphthatoccurshasnomorethan(n-k-1)+(k+1-1) = n-l 
vertices. Therefore, r( m, n) > rl + r2 - 2, completeing the proof. 

We now turn to the less-trivial Theorem 1, 

Proof of Theorem 1: We begin with a (m, n- 1) -good colored G = K,J , where 
r = r( m, n - 1). G must contain a red K,-1 , since otherwise we could add 
a new vertex and join it to all of G with red edges, yielding a (m, n - 1) -good 
coloring of K,(,,,l) . We actually use only the fact that G contains a red Km-z. 
Denote the vertices of this Km-2 by ul , . . . , IL,,,-2. As a first step, adjoin m - 2 
more vertices, denoting them by vi , . . . , ~~-2. For each i, join vi to u( with a blue 
edge: for each other vertex z in G, join vi to z with the same color as ui is joined 
to z. Thus, UiUj is red for each i $ j. Likewise, color vivj red for each i j j. SO 
far, we have colored a graph H = Kr+,,,-3, in effect by duplicating the Ui. 

In H, no red K, occurs, since a u and v could not both be used in any such 
K,, and therefore and red K, found could be converted to one that used only the 
ui, contradicting the assumption that the original coloring was (m, n - 1) -good. 
On the other hand, blue K-1 does occur; but any such must use exactly one pair 
(ui,uj),andnootheruoru. 

We now adjoin m - 1 more vertices, labeling them 21, *. . , z,-1 , and we must 
describe the coloring of all the edges involving the xi. First, color xixj red for all 
i + j, and color Siy blue for all vertices y that are not a Uj, Vi, or an xi. It remains 
to color the edges uixj and vixj. Color tlisj red if i 2 j; otherwise blue. On the 
other hand, color vixj red if i < i; otherwise blue. 

To finish the proof we must show that this 2-colored Kr+2,,+4 contains no red 
K, and no blue K,. Suppose first that, on the contrary, there exists a red K,,,. 
Since H contains no such subgraph, this red K, must use some vertices Xi, and 
hence only these and some of the u’s and v’s Let Xk and st be the x’s of minimum 
and maximum index respectively in this red K,; thus there are no more than 
1 - k + 1 such x’s. Furthermore, the tli that could occur must satisfy i 2 1, and the 
uj that could occur must satisfy j < k. Therefore, we can use at most m - 1 - 1 
u’s and k - 1 v’s, so that the x’s, u’s, and v’s amount to at most m - 1 vertices, 
a contradiction. 

116 



Now suppose that there exists a blue K,, which clearly must use exactly one 
Z, say xi. Therefore, this K, must use a blue K,+r from H. But as noted above, 
this Kn-l must use a pair ( Uj, Vi). However, this is impossible, since either xiuj 
or XiUj must be red. This completes the proof. 

It is clear that Theorem 1 is far short of what must be true. For instance, in view 
of (l), the value of P( n, n) - r( n - 1, n - 1) must be exponentially large in n 
on the average, and it seems almost certain that this difference has an exponential 
lower bound as well. 

However, Theorem 1 is strong enough to have consequences for generalized 
Ramsey numbers. (If G and H are graphs, V-( G, H) is defined like T-( m, n), but 
with G and H in place of K, and K, respectively.) For instance define KiI to 
be a Kk with vertex-disjoint stars having a total of 1 edges emanating from’the 
vertices of the Kk. There is not a unique way to adjoin the 1 edges of Kk, but we 
will take K;$ to be an arbitrary but fixed member of this family of possiblities. Of 
course, one of the possibilities is that all 1 edges are adjacent to just one vertex of 
the Kk. 

We have the following consequence of Theorem 1. 

Theorem3. Form,n> 3 andm+ n> 8, 

r( Ktyn-3 I K&3 1 = r( m, 4. 
Proof: The proof will be by induction on m + 71 with the m = n = 4 and the 
{m, n} = { 3,5} cases left to the reader. Suppose the result fails and begin with 
a (K&l-3 9 qn-3 )-good coloring of K, with r = r( m, n) . We can assume that 
there is a red K,. Some vertex u of the K, is adjacent in red to at most m - 4 
vertices not in K,, for otherwise there would be a red Kh,m-3. Therefore, u has a 
blue neighborhood N with at least r( m, n) - 2 m - 4 > r( m, n- 1) vertices, If 
n 2 4, then by induction N contains either a red K$ m-3 or a blue KLZ_, n-4 . In 
the first case we are done, and in the second case the vertex u and some additional 
blue adjacencies of I, in N along with the blue KLt, ,n-4 gives the desired result. 
If n = 3, we use the fact that P( m, 3) 2 4 m - 7, which follows by induction 
from T( m, 3) 2 r( m - 8,3) + T( 9,3) - 1 and known bounds on T( m, 3) for 
3 _< m < 10 [2]. Therefore N has at least 2m - 3 vertices. A blue edge in N 
gives a blue KlP3 , and otherwise there is a red K2,,,-3 in N, which completes 
the proof. 

Let Ek.1 be the graph obtained from a Kk by adjoining a vertex adjacent to 
1 vertices of Kk. Thus, in particular, kk,k = &+ 1. Another consequence of 
Theorem 1 is the following. 

Theorem 4. Form,n 2 3 mdrn + n 2 8, 

d~m,p,~~q~ = dm,n> 

wilhp = 
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Proofz Thethreecaseswhenm+n= 8 canbeverifieddirectlyusingr(3,3) = 6, 
r(3,4) = 9,r(3,5) = 13,andr(4,4) = 18,sowewillproceedbyinduction 
onm+R 

We first verify the weaker result r( m, n) = V-( K,, &,) . Start with a (Km, 
Eqq ) -good coloring of a K, with r = r( m, VI). There is a blue K,, and since 
r-n>r(m- l,n),thereisaredK,,,-1 (eveninthecasewhenm=3)thatis 
vertex disjoint from the blue K,,. Each vertex of the K, is adjacent in blue to at 
least one vertex of the Km-l, so some vertex of the K,,,-1 is adjacent in blue to at 
least [n/( m - l)] vertices of the K,,. This proves the weaker result. 

This weaker result and the same strategy will yield a proof of Theorem 4. 
In Theorem 4 the full strength of Theorem 1 WY not needed in fact, only 

T( m, n) 2 r( m, n- 1) + m. With this in mind, let K,,r be the family of graphs 
obtained from K,,, by adjoining m - 3 independent vertices such that each is 
adjacent to 1 vertices of K,. (if p and ‘H are families of graphs, then V( 6, X) 
only requires the existence of some graph in 0 or some graph in H.) The same 
strategy used in the proof of Theorem 4 (induction with a weaker one-sided inter- 
mediate statement r-( &, K,) = r( m, n) proved), along with the full strength 
of Theorem 1, gives the following. 

Theorem 5. Form,n> 3 mdm+ n> 8, 

d&p,C+q) = r(m,n) 

wiulp = 
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