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Let n be an integer. We write its standard factorization inmto
primes

i L
NS0 Gy see G with q1{q2<,..<qh.
We define:
k=1 k-1
fin) = 11.31 a,/a; 4 i Fim) = 151 (1-gq./q,,,)-
=l 1 : Pl % 1
et 3 R T L TR g 15§<,th 9 8

and #(n) = k. When k = 1, the above empty sums are 0, Moreover, we
say that n is a champion for the function £ (or an f-champion) if

m 4n = fim) € fin).

In {Erd 2], it was shown that n{x) = N p was a f-champion for x
plx
large enough, but was not a F-champicn for all x large enough. We
shall eonsider here the following problem. Is nix) a h-champion?

a h-champion?
In [Erd 23] and [De K], function h is studied. It is shown that

Lo i) <¢ hitnix)) ¢ 2ognix) Jog log log nix)

(14
(Iag log nix)) tlog log n!tz

For all n, we have:
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log n
Bin) S0 < o Temn
Let t; = 3, t, = 5, ty = Ty t4: 11, ts = 13, ... be the seguence of
twin primes, and let us assume that this sequence is infinite and that
t.lir o k logzk. Then for the sequence 0, = t.lt.2 e, 'l:.k, it is not
difficult to see that

log nk

L
hir ) ~ Iog log e ¥

With (1}, this relation shows that, for x large enough, nix) i= not a
h-champion. But we have agsaumed a strong hypothesis about twin primes,
Without any conjecture, we shall prove:

Theorem |. Let nix) = 0'p. For x large encugh, nix) is not a

plx
h-champion, i.e. there exists m ¢ n{x) with him} > hin(x)).

Proof, It follows from Maler's result (cf [Mail) that there exists
an absolute constant D » 1, such that for all k and for x large enough,
1/D

there exist between x and x, k consecutive primes Pyresoaby and a
constant depending on k, say e{k), with the property:

Pi+1‘PiEI‘kilD£ %) F{x’l lsiﬂk—l,

where plx) is a function going to infinity with x.
We apply this result with k = 2D + 3. Moreover between x and 2Zx,
there certainly exist 2 prime ay and Ay such that the difference

9y — G4 < % log x. We consider

nix} 49, 2

m = < s ni{x).

Pyt Pppug = o f2DHLI/D

Thuz m i= smaller than ni{x) for x large enough. Further:

Zh+2
1 » 1

him) 2 hintx}) + — - 3 S 17
99 =1 PRy

E 10 (2D + 2)
2 Hinix))+ 11 log % 'k]_ui x plx)
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which is bigger than hin(x)) for x large encugh.
Unfortunately we were not able to prove the same theorem than

theorem 1 for the function h. To get the ssme result we need £ very
strong conjectures:

(H1} Yero Vo, 3.\:0 Mhﬂmtfﬂrxzxumﬂyzxf.
Hp) o SRl = = w) S 4

(HZ) There exists a fixed § < 1/100 such that, for x large enough,
it is always possible to find between x and x 4 x’a. four primes
Qyr Gp =9y * 2, Gy = a; + 6, q =q, + 8.

Hypothesis (H1} has been partially proved by Hoheisel for a fixed
€ < 1. The Riemann hypothesis implies (H1) for all € » 1/2. We shall
prove:

Theorem 2. Under the assumption of (H1) and (H2}, for x large
enough, nix) = 0l p is never a h-champion number.

pix
To prove theorem 2, we need 3 lemmas,

Lemms 1. There is an absolute constant K such that for all
wy, d 6%, 2Ly~

E 168 —5— 0 {1+ 1/p).
q prime log“y pld
x-yigix

|q—d! is prime

Moreover

£ 2 I (14 1/p) ¢ K log x.
I4dgx = pld

Proof. The first part is & classical application of sieve's method,
{cf{Hall, Cor. 2.4.1, or [S9ie] for an effective value of K). For the

second fact, let us call wid) = | {1+ 1/p). It iz a multiplicative

dpld

function, and,

Ewid) €H (1% wipl .00t H{pk! . S

dtx péx
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using Mertens formula (of [Har]) to

We complete the proof by
and cbeserving that the second product is

eatimate the first pernl.'hu
convergent.

!""'ﬁ T =
hi=

let 0 < @ ¢ # €1 be fived real numbers.
ke define

Ulx wly ‘} = Wam—
:—x"ips:—x' =P

Under the assumption of hypothesis (H1), we have for x going to
infinity:
Uix,e 8 = - a4oll).

Froof . We apply (Hl) with e = #, §, x 8nd y = x — p. We get for
p € x-x", and x large enough :

(1-9) (%= x
e € r(x) - Rip) € (1o pe

1-3 D M )| 1
log xi{xix]l-xip)} $ x-p - log x wlxl—={p)) *

Further, we epply (Hl) with e = o, ¥, x, ¥ = x':

(2) 1—5—'-“::'5 rix) - wix - x7) 5-1%}!;3:'.

The same inequality holds with J instead of w,
Then we have

] 1+ I
Ulx, e ) £ ]_E'; L - Tixi-wipl
: x"msx-x

1/3
ﬂxl—rix-x‘[: cikrix)-wix=-x")
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R o
luxxlj

(- . (eg)d
log x log =

-

Where j runa between
We deduce:

Ulx, o ) € (149) (f=atoll)).

In the same way we can obtain the lower bound

Ulx, o, 8) 2 (1-q)(f-etolll),

and choosing § as amall as we want completes the proof of lemma 2.

Lemna 3. For q prime, and real x, we define:
Vig) = E +mqu,x] = 3 IT“LII :
psq TP a<psx

Then we have under the assumption of (H1):
{3) lim Vig) 2> 1,
and for 0 < & € 1,

x

(4) E Vig) + Wig,x) € (l+ato(l}) T

x-—x.(qfx

Proof'. With the notation of lemma 2, we gel:
Vig) 2 Ulg,a,1)

for all a » 0, and thus lim Vi(g) > 1. We observe that replacing
hypothesiz (H1) by Hoheisel's theorem: will give

Lim V(q) > 0.
We have now to prove (4). We choose ¢ > (0, and € < a. Then, we have:

£ Uleel)+ T (2 1),
x-x" Cqix dgx© x-x"4qgx
g—d prime

Lemma 2 tellg us that first sum is




{rlx) = Tle=xT)) (1-e+0(l))

[ ]
which, by (H1} is smaller than (1+y) ;:j—x (1+o(1)}). Applying lemma 1

to the second sum shows that it is bounded above by

% 1 A
K X 2_2 ﬂd {1+I-]JSBI{ o el
d<x€ aeflog®x Pl o

And, since we can choose ¢ as small as we want; this completes the
proof of

]
b Vig) = (1+a(l})) 123 =
' -
x=x <qfx
It remains Lo evaluate
£ Wegxl= E  (E =l i)
[ (] ¢ P (3 P
x=-x qfx x=% g€y  qgipigtx g+x <pix
1
§ Popu w4 P 2Ll
dx L] ] g, ¢ P9
X=-% Lg% ¥=x (plx x-x {gip-x

qtd prime

We treat the first sum by lemma 1 as above. The second sum iz smaller:
than

I U {pyec,n)
x-—x'<p,£x
by chserving that p-—p' < x-x" and p—x"“ < p-p°. This sup is, as above,
[
smaller than a 1% {14g+0(1)), which ends the proof of lemma 3.
Proof of theorem 2.

We firat choose & = 1/100. Let T = wix) - l!x-x‘-'] ad N the

number of primes q verifying x-x"¢q€x and V(gq) + W(aq,x) > 1+2a, It
follows from lemma 2 that

N(1+2a) + (14o(1))(T-N} € (l+a+a(l))T
which implies




Kt ¥

N € (1/2 + ol1))T

and then it is possible to find 5 primes p,, 1 <1 < 5 between x - x7
and x and such that

H{piﬁ + W[pi.xﬂ <1 + 2.

Since Vip,) 2 1 +o(1), this implies W(p,,x) < Ze+o(l).

Wesetn= | andw S
plx B plpﬁpﬂpilpﬁ
We have:
- 5 l
hin} = h(m) + % (Vip,) + Wip,,x)] + B
i=] 1(1(3{5
5
£ h{m} + X IVipi? + EW{pipx}]
i=1

16) hin) Chim) & 5.+720 & ¥ pll)

Further, we use hypothesias (HEZ) to get four primes Gyoeeeaty such that

wx” £ 9 4 :lc-iﬂc:hI and:qz =qp+ 2k Qy =gy * &y q =1, + H: We set

n’ = md,d,qqa,.

Ther
ﬂ{n'::ﬁ{m;-&é{ﬂ 1—:-1‘ 1 -{»41
i=1 pgx 4P 1Gigs 3Py 28
1€5<4
1 T T
Sh{m}+4ﬂ i ¥ ¥ ¥ ofl)
Pix xi-xhp ﬁ

(B

him) + 4U{x+2®,20,1) + ﬂ + o(1)

h(m) + 4(1-2a) + 33 + o(1).

"

With (3), we obtain:
h(n’) 2 h(n) + g7 - 288 + o(1) 2 h(n)

for x large encugh. And since
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2a. 4
B’ s n [ x+x .:'
(x=x")

{n

n cannot be a champion mumber for I;.
Llet x =41, n= 0 p, J. Selfridge has observed that
pédl

hized) 5 hin).

But it seems much more difficult to find the smallest x such that

I p is not a champion for h,
péx
We shall end this paper with some remarks and problems. It is

. ’ : log n ]
well lmown that the maximal order of w#in) is W{ I4+a(l)). In
[Erd 1], it is proved that

. clogx , _  l-cto(l)
Card [n € x; "“‘.31.:310;;:]‘“

for 0 ¢ e ¢ 1. In [Erd 2], it is proved that the maximal order of Fin)
is (1 + o(1)) JTog n. It is interesting to study:

!r__{x} = Cardin € x: Fin) > oyfIog x |

for 00 ¢ c ¢ 1. For emall o, it is easy to get a lower bound for ic;_-:J.
We define k as the largest integer such that

gklk+1)/a ¢

mﬂfnrﬁﬂiSk,wemnsideram:ximprimepibelmwgi:utn

(82,211, vhere # s & Pixed rea) mumber, % <a@¢l, We set

o= B p.. Clearly n £ x and
igice *

F(n) > :k—&-z}{j-ﬁjzlﬁi2:1-%+a{1::~.ﬁm ?

How many such n’s do we have?




A8y

i 3 Youipe
0 (w2 )-wia2™)) 2 n o ]
Jidige Jigige B2 T

where ¢ is a fixed constant. An estimation of this last product shows

thar forc(ﬁai—z{l-%},wh&ve

!'pixi 2 x exp (= L ¥ log % loglog ),
1 2log 2

1t is possible to improve the above reasomning, and for instance to get
a lower bound for i‘c{x: for all oy 0 < c < 1, by using the technics of

[Erd 2].

As ohserved by G. Tenenbaum, an upper bound of the same form, but
with a different constant, can be cbtained: Since Fin) £ «in), we
have: :

’l‘c:x.! € card(n € x; #in) 2 ey 10E % |
{z—cq‘luﬁx{ b Ei.l'l'nII

nfx

for all = » 1. The above sum can be evalued by convolution method, and
we get

¥_(x) <« 2V 108 % cliog X1 2,

Choosing z = (of Tog x)/loglog x gives:
(6} 'cﬂx} £ x expl-(c/2 + oll) Wiog x loglog x].

It is possible to improve slightly the constant c/2 in the shove
expreasion. Using optimization results of [Erd 2] show that if #(n) €

o Tog i, with 0 ¢ e ¢ 2, then E(n) £ dicic v log n (1 + oll)), where

2(1 - czﬂl yic 1,

i[c::l-%mﬁp-l

o, (6B} is valid with "E“c.' instead of Ic on the left hand side.

Let us denote by 7v(n) the mumber of divisors of n, we write the
divisors



rin)-1 r{nj-1
gin) = 1_1 dg/d, o Gin) =§ (1~d,/d, 4}
i=] i=1
rin}-1 1 . 1
Hin) = E e L iR 1
i=1 i+l 4 14 < jérin)
From the cobvious inequality
1 -d. ,f"dlﬂ log {d lfd i
we easily deduce
(7 rin} = 1 - leg'n £ gin) £ v(n) - 1.

In [Nic], (r+f)-champion nunbers were considered when f is a slowly
increasing function, By the same method, it is not difficult to prove
that a r-champion mumber large enough is a g—champion, and that if n is
a g-champion, it is largely composite (i.e. m ¢ n 2 rim) € rinj).

In fact, the calculation of r-champions and g-clmmpmrm showsa that
they exactly coincide from the very beginning up to 6 millionz. We do
not see how to prove that they coincide up to infinity.

The calculation of G—champions up to 6 millions shows that all
r—champions are o champions, and that largely composite numbers look
like G-champicns with a few exceptions. For instance 672 is a
C—champion and is not largely composite, and 630 and 660 are largely
compoaite but not G-champions. We do net seg at all how to prove
something about that. In fact, (7)) tells us that
Gin} = rin}) = 1 — g{n} £ log n, which is very small comparatively to
high values of rin}.

Computing Hin) gives 14 values of n, the largest of which is 5040,
for which Hin) * rin). We conjecture that for n » 5040, we have
Hi{n} < rin).

More information about these functions can be found in [Bal], [Exd
al, [Ten], [Vosel.

We thank very much G, Tenenbaum, and the referees for several valusble
suggestions,
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