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1 . Introduction

Let N denote the set of positive integers and put (1, NJ = (1- . ' NJ. We
use I S I to denote the cardinality of the finite set S. If S is a given set and
A1	k are subsets of S with

S= 0- 1 At, A j n A? = 0 for i 41,
then {A1. k} will be called a k-partition (or k-coiouring) of S, and the
subsets A1	k will be referred to as classes . Let f : M t

	

N be a given
function. If

(1) n = f(a,,-, at)

with ai, . . . , at belonging to the same class, then this will be called a rnonochro-
matic representation of n in the form (1)

For a fixed k-partition and f we consider the set of integers, which have a
monochromatic representation and investigate
a) how dense this set must be?
b) for which S C_ .I it must contain an element in S?
c) what sort of structural properties this set has?

We consider first the case f (xi, x 2 ) = x t -= x 2 .
Let C resp . C2 denote the set of integers resp . the set of even integers which
have a monochromatic representation in the form

(2)

	

n = a 1 r a2 with a1 7--'a,

Put CM = C - (1, MI and C 2~ = C2 n [1, Mi .

( 1 ),(2) Research partiaily supported by Hungarian National Foundation for
Scientific Research grant no . 1811



K.F . Roth conjectured ísee 41 and (91, p .112) that there is an absolute
constant c > O such that for an arbitrary k-partition

(3) ~CM >em.

(Note that if also a l = a 2 is allowed, then this is trivial.)
We prove this conjecture in a sharper and more general form . We study

some related problems too .

The Case f (x !, x2) = x l - x,-

Theorem 1 .
(i) To every k > 2 there exists an Mo(k) such that for an arbitrary k-partition

of M

(4)

Moreover
(ü) For every 2-partition

i
%1+~\
4
\

	

2

(iii) There is a 2-partition so that

(6)

	

2" ¢ C 2 for n E N

Proof.
(i) The proof will be based on the following

Lemma 1 . If d E N, M > Mo (d), B C (1, M1 and

(7)

	

I B I > 3M I-2_d

then there exist positive integers u, v l , . . . , vd such that vi T vi for i r- j
and all the 2 d sums

(5)

C i> -2 3M 1-2-k if M > A!o (k) .

~CM> -- log logm

( 8 )

belong to B .
s-1

~i E {O, 1}
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This is a density version of Hilbert's lemma [10] (which is considered as the
first Ramsey-type result) . See also (8[ . It can be proved similarly to Lemma
7 in [14[ (see also [3[ and (20[) . However for the sake of completeness, we give
the proof here .

Proof of Lemma l . It suffices to show the existence of sets go, B1 , . . ., ad
and distinct positive integers v i , v2, . . . , vd such that

(9)

	

Bo = fl,

(10)

	

Bj U {b + vj : b E Bj} C 3i-l for j= 1,2, . . .,d

and

(11)

	

13, 1 >1B

[2' (3i1Í)-(2'-1) for j=0,1,2, . . .,d.

In fact, if g o , 31 , . . ., ad, vl, . . . , vd satisfy these conditions and u E ad, then
by (9) and (10), u +

Ej
1 atv; E B for ej = 0 or 1, while (7) and (11) imply

that ad is not empty. This then will complete the proof of Lemma 1 .
We are going to construct go , 31 . . ., Bd, v 1i . . . , vd recursively. Let Bo = B .

Assume now that 0 < j < d - 1 and, in the case 1 > 0, v l , . . . , vj have already
been defined. For I < h < M - 1, let f (Bj, h) denote the number of solutions
of

b - Y = h, where b, Y E Bj .

Then in order to define Bj+1 and v1+1, we need an estimate for

L = max f (Bj, h)

where the maximum is over all h with h E [1, M], h 0 {vl , v-2, . . ., vj } .
Clearly, for all h we have f (Bj, h) <I Bj [ . Also

M-1

	

- ~ I
B1 I

( 12 )

	

T f(Bj , h) -

	

2
h=1

since b - Y E (1, MJ for any pair b, Y E Bj with b > Y . If we majorize f (Bj, h)
by I Bj I for h E {v1 i v2, . . .,vjI and by L otherwise, (12) implies

so ihat

\IBjf\
<j1 Bj 1 +(tYf - 1 - j)LGjI Bj[+LM,

)2

(13)

	

L> 21 (1Bj 1 2
-1 Bj1- 2j1 Bj~)=IB

1 3
1Bj1-2-3

49
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From (7) and (11), we have (for M larger than some absolute and com-
putable constant)

I
Bj

>I B I2J (3M)-(2'-1) > (3Mi-2_d
)

21
(3M) -(2'-I)

= 3M1-2~
_d

> 3M1-2 - > 3 +6d > 3 +6j,

so that (11) and (13) imply

L >'
B~ Í • Í Bj I >

1
(1B I~ (31bf)(2' -1)12 =

3M

	

3M

(14)
_[ B (2'+i (3M)-(+2'+'-1)

Let v,+1 E [1, MJ\{vl , v2 i . . . , vi} denote an integer for which the max-
imum in the definition of L is attained, i .e ., L = f (Bj, vj+l) with v1+1
{v l , v-2, . . ., vj .'r, and let

Bj+l = {b : b E ,3j, b + vj+l E Bj} .

Thus (10) holds for j + i in place of j and since I Bj+l 1= L, (14) implies that
(11) holds also for j +1 in place of j . This completes the proof of the existence
of B0 9 3 1 , . . . 7 3á, vl	vd with the desired properties, so that Lemma 1 is
proved .

To prove the first statement in Theorem 1, we assume that there are
more than 3M 1_z-`

-,
even integers not exceeding M which do not have a

monochromatic representation in the form (2) ; let us denote the set of these
integers by B . Then (3) holds with k + 1 in place of d, thus if M is sufficiently
large, then by Lemma 1 there exist positive integers u, v l , v 2 , . . . , vk+l such
.hat all the sums

belong to B . Then

k+1
U +

	

~w; where ci = 0 or 1
i=1

k+1
U =

	

0 vi EB
i=1

and since B consists of even numbers, thus also u = 2z is even . The integers
z + v l , z + v2, . . . , z + vk+ l are distinct, thus by the pigeon hole principle, there
exist 1 < i < j < k+1 such that al = z + vi and a2 = z + vj belong to the
same class . Then a l + a2 is a monochromatic sum with al az , and
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al +a2=(z+vj)+(z+Vj)=2z+Vi +Vj=u+V;+Vj

But this contradicts the definition of B , and the proof of the first half of The-
orem 1 is completed .
(ü) Let 8 = {b l , b2 i . . . , bt} (where bl < b2 < . . . < bt) denote the set of

those even integers not exceeding 2M which do not have a monochromatic
representation in the form (2) .
Suppose

(15)

	

bj+2 < by + bj+1

for some j . Then there are positive integers x, y, z for which

x+y=bj

x + z =bj+,

y + z =bj+2

At least two of these numbers belong to the same class . This contradicts
to the definition of B . Hence for every j

(16)

	

bj+2 > by + bj+l

which proves (ü)
To prove (iii) we define the set A 1 recursively. Let 1 E A 1 . If A n (1,2k-1 ]

has been defined, then let 2 k E Ií, and for 2k-1 < n < 2~, n E A, íff
2k - n 0 A, n [I, 2'x' 1 ] . Furthermore let A 2 = V\A1 . Then obviously 2" C
for n = 1, 2, . . . .

Observe that I Cm I need not be much greater then I C' f I as the following
example shows : A 1 = {2j - 1 : j E M }, A2 = {2j : j E ,V} . However the
situation is different for k < 3 and for k > 4 .

Theorem 2 .

(
(i) There is an absolute constant C so that if k < 3 then at any k-partition

17)

	

~CMI>
I
2

I
-1 if M>C .

(ü) If k > 4, there exists a k-partition such that

(18)

	

( CM 1< `

	

cklog Yl,

where c is an absolute constant.

Proof of (i) . Case k = 2 .
Without loss of generality we can assume that x E A, for 1 < x < a and

a+1EÁ2 .
Then y E C for 3 < y < 2a - 1 . On the other hand for every y > 0 either

y + a E C or y+a+1 E C .



Case k = 3
Suppose 2x 1 E At if 1 < x < a and 2a + 1 E A 2 . Then

(19)

	

2YEC if 2<y<2a.

We may assume that there is an n > 2a such that

(20)

	

2n C and 2n-10C

and

(21)

	

C2n j< 2

Case 1 2n < 6a . Put 2n = 4a + 2t, (t < a) . First we prove

2a + 2 E A2 .

Namely if 2a + 2 E A t , then 2z-1 + 2a + 2 E C for 1 < x < a . Hence

C2n > 2a + a

which contradicts (21) .
Now suppose 2a + 2 E A 3 . Then 2n - (2a + 2) = 2a + 2t - 2 E At U A2 . In

case 2a + 2t - 2 E A t

2x-1+2a -1- 2t-2EC for I<x<a.

This implies
C2,,, > 2a + a

which contradicts again to (21) .
In case 2a + 2t - 2 E A2

2n - 1 = (2a + 1) + (2a - 2t - 2) E C

would follow, which contradicts to (20) .
Thus 2a + 2 E A2 .
Consider now the integers in [2a + 2, 2a + 2t! . For every

2a _ y E A3 implies 2a + 2t - y E A3 .

Therefore at least t integers in [2a + 2, 2a + 2t] belong to A t U A 2 .
If there is an even x E A I U [2a + 2, 2a + 2t], then

4a<x+2v-1<4a+2t=n for 1<v<a.

Hence

i C2 n i> 2a + a

which contradicts (21) .
If all the t even integers in [2a + 2, 2a + 2t] belong to -42, then for 1 < u <

t-1
(2a-2+2u)+2a-1 E C

y, 0<y<2t



and

This would imply
C2,,, > 3a.

This finishes the case when 2n < 6a .
Case 2 2n > 6a .
Since 2n ¢ C, at least ' 2 even numbers below 2n are in A1 U A2 . Thus

at least ' 22 - a even numbers below 2n -.2a are in A 1 U A2. Therefore at least
n-2 -

2 > n122 are in A, resp. in A2 . Adding to these numbers 2a - 1 or
2a + 1 we gain " 122 odd numbers in C. Hence by Theorem 1

C2r,>n-6n 16
+n122 >n if

n is large enough .
Proof of (ü) . We may suppose that k = 4Z where e is odd. Define to by

2t0-1 < 2t < 2 4O

For z'= 1, 2, . . ., t we are going to define subsets .94i-j, j = 0,1, 2, 3 recursively.
Let for j = 1, 3

and

(2a + 2 + 2u) + 2a + 2 E C

A4i-j n [1, 2 t°] _ {n : n - i (mod e), n
2~

(mod 2)} n (1,2 É Oj

A 4i_j n (1,2 10] =

	

if J=0,2 .

Assume now that A4i-i n [1, 2 1 ] have been defined for j = 0,1,' , 3, i =
1, . . . , U + 1 . Let r i ( t) defined by

2i - 2t+ 1 + ri(t) (mod 22), 0 < ri(t) < 21 .

Now we define A4i-j n [2 t + 1, 2t+111 in the following way : let 2 t < n < 2t+1

For 2 1 < n < 2t+ 1 n E A 4í_3 iff n is even and

n = i ( mod t), 2t+1 - rift) - n A4i-3 n (1, 2 11,2 I n
n E A4í_2 iff n is even and

n - i ( mod f), n A4i-3,

n E A4i-i iff n is odd and

n - i (mod 2), 2t+1 + ri (t) - n A4i-1 n (1, 2 t ], 2 1 n

n E A4i iff n is odd and

n =- i (mod Q), n A 4 i-1,

Then clearly the sets A4i_j, 1 < i < t, 0 < j < 3 give a 4e-partition
of N. Furthermore it can be seen easily that all the monochromatic sums
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a t + a2 i a l ,,- a 2 are even and none of these sums is equal to a number of
the form 2 4 + 2 1 where t > t o and 0 < j < t - 1. This completes the proof of
Theorem 2 .

By Theorem 1, there are more than z - cl M1_2"-' integers in (1,M1
which have a monochromatic representation in the form (2), and by Theorem
2, the number of these integers can be less than 'u - c7k log M. It follows from
a result of .Erdős and Sárközy (Theorem S in (5]) that if k E N, M E N, M >
Mo (k), t E if and M2/3 (logM) 2 < t < M, then almost all the sets B with
3 C (1, M], ( B J= t are such that for every k-partition of [1, M] "there is (at
least one) element in 3 which has a monochromatic representation in the form
(2) . (In fact, the following sharper statement is true : almost all of these sets
B are such that for every A with A C [1, Z] and ( A ]> k (M/21, there is an
element in B which can be represented in the form (2) with a E A, a' E A .)
Ruzsa (16] proved that if f (x) -i +oo, then there exists an infinite sequence
D of positive integers such that D(x) _ Z: d<y 1= 0(f(x) (log x) 2 ), and if A is

fED
a sequence of positive integers with positive upper asymptotic density, then D
intersects the set of the integers of the form a + a' where a E A, a' E A. These
results suggest that the upper bound `z - ck logM is closer to the truth than
the lower bound .

Recently Balog, Fűrstenberg, Sárközy, Stewart, Lagarias, Odlyzko,
Schearer [11, (7], [131, (14], [17], (181, [19] and others have studied the solv-
ability of the equations

a - a' =x -
a-a'=p-1
a+a'=x-

a + a' =px, x "small (= 0(1))

with a, a' E A where A is a "dense" sequence of positive integers . These
results and Hindman's theorem (2i, [11] led us to consider the corresponding
"monochromatic" questions .

Theorem 1 implies that e .g. the equations

al + a2 =2p

al+a2=P - 1

have monochromatic solutions with a l y--- a2 .

Our result is not strong enough to obtain for arbitrary k that

al +a 2 = x 2

has a monochromatic solution with a l 7- a2 . However a simple argument leads
to
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Theorem 3 . If k < 3, then for any k-partition of M there are infinitely many
squares in C .

Proof. We use the following simple (and well known)

Lemma 2 . For every e > 0 there are infinitely many integers n so that

n=a +g'

has at least three (in fact arbitrary many) integer solutions where
n

	

n
x2 , y2 E ~ ~ (1 - e), ~ ( 1 + e)

Now let
21+26=2;+25 x3+x4

with x, E ~z (1 - e), z (1 + e)I , 1 _< i < 6 .
Then an easy calculation shows, that the system

ul + u2 =y1
2

u3 + u4 =x5
u2+u3=x;

2ul + u4 =Zs

u1 + u3 =23

U2 + U4 =24

in u~(i < i < 4) has a solution in distinct positive numbers . Since at least two
of the u;'s belong to the same class, one of the z? (1 < i < 6) squares must
have a monochromatic representation .

If we have some informatíon on the structure of the classes A ; in the given
partition then the lower bound given for the integers that have a monochro-
matic representation in form (2) can be sharpened . In fact we have

Theorem 4 .
(1) For every e > 0 and k there exists an Mole, k) such that if we have a

k-partition of N where every class contains both even and odd integers
then .

~ 2 + 2k
-elMifM>Mo(s,k) .

(ü) For every k E N there is a k-partition of N so that every class contains
both even and odd integers and

~CM~<
(2+k

)M+1.
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Proof.
(i) can be proved by the method used in the proof of Theorem 2,
(ü) follows from the following construction : for i = 1,2, . . .,k let

A i = {n : n = 2i (mod21c) I U {n : n = 1 - 2i (mod2k)} .

It is easy to see that this k-partition of N has the desired properties .

The Case f (x l , x2) =I rxl + sx2 I .

Let r, s be integers . As before, let C denote the set of integers which have a
monochromatic representation in the form

(22)

	

n =[ ra l + sa e [ with al T a2 .

Let Cm _: C n [1,Mi . The following result is merely a simple modification of
Theorem 1 .

Theorem 5 . Let r 7- 0, s T 0, r + s 7- 0. Put [ r + s
6 > 0, k, r, s and for every k-partition

I CM 1> (1- E)
m

.

m. For every

This can not be essentially improved, since choosing

(23)

	

k = m and tli = {n : n = i (modm)}, 1 < i < m

only the multiples of m have a monochromatic representation in the form (22)
Note furthermore that Theorem 5 does not cover the case of the differences

al -a2 . Namely, in this case the density of the integers having a monochromatic
representation in the form (22) need not be greater than a positive absolute
constant. To see this, let us consider a large integer m and define the partition
as in (23) . Then only the multiples of m have a monochromatic representation
in the form (22) so that their density is m which -+ 0 if m

	

oo .
Proof. Assume that there are more than E''- positive multiples of m in [1, MI
which do not have a monochromatic representation in the form (2211 . Then
by Szemerédi's theorem Í201, for M > Mo (k, a, r, s) their set must contain an
arithmetic progression of 2([ r I + ! s J)k + 1 terms ; let us write this arithmetic
progression (all whose terms are multiples of m) in the form

(24) um- (I r I, + I s J)kv, um-(( I r I + I s j)k-1)v, . . ., um+(j r I + I s J )kv .
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Let us consider the integers u, u - v	u - kv . By the pigeon hole principle,
two of them, say a l = u + iv and a 2 = u jv (where i j) belong to the same
class. Then

rat + sae = r(u + iv) + s(u + iv) _ (r + s)u + (ri + sj)v .

Here we have
Iri+s i I<Ir k + I s I k = (I r i + I s I)k .

Since I r j-s I= m and all the numbers to (24) are positive, I rat -sae I is equal
to one of the numbers in (24) . But this contradicts the fact that none of these
numbers has a monochromatic representation in the form (22), and the proof
is -completed.

2. Some Unsolved Problems

Problem 1. Do there exist a and Q which depend only on k, so that for an
arbitrary k-partition

CM >

	

- (log M)C'(k)

or even more I Cú j> 'W - (log M)pl k l .

Problem 2. Let f (x) be a polynomial of integer coefficients such that 2 is
a prime divisor of it . Is it true that for any k-partition for some x (or for
infinitely many x)

at

	

a2 = f(x),

have a monochromatic solution with a t 7- a2?

Problem 3. Is it true that for every k-partition of j1, :Lf] almost ail the even
integers 2n in [1,MJ have more than c(k)n monochromatic representations in
form (2)? (Perhaps this holds with c(k) = k .)

Problem 4 a) For a given k-partition let nt < nt < . . . be the sequence of
those integers which have a monochromatic representation in form (2) . (C =
{ntj) . What can be said about the structure of the sequence {nil? (For
example it is easy to see that I n=+t - nt I< 2k .)

b) The complementary problem is to study the structure of the set
3 = M - C (the set of those integers which do not have a monochronaa.tic
representation in form (2)) .

Let 9(N ; E) be the graph with edgeset {(x,y) I x + y E B, x,y E MI .
Obviously at any k-partition the chromatic number of C(N ; E) is < k . Basically
this was used in the proofs above .



Problem 5. So far we have studied monochromatic representations in form
(1) in the special case when f(x1, . . .,xt) is a linear polynomial and t = 2. In
the paper Erdős-Sárkőzy (61 the case f (x l ,x 2 ) = xlx2 is considered .

What can one say on general polynomials f (x 1 , . - . , x t ) (whose coefficients
are integers)? What can be said in the most important special case when
f(xI ) x2, . . . , xt) is of the form g(x1) + . . . + g(xt)?

As Ruzsa [15[ observed, if

then for every k-partition
ICw1>c(k) •M

and I Cm 1 > cM cannot hold with an absolute constant c .

Acknowledgement. We would like to thank to l . Ruzsa for his helpful com-
ments .
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