4. On a Conjecture of Roth
and Some Related Problems I
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1. Introduction

Let N denote the set of positive integers and put (L, N| = {1....,N}. We
use | § | to denote the cardinality of the finite set S. If S is a given set and
A1y..., Ar are subsets of S with

S:U{‘

=1

Ai, AnA;=9 for i#7,

then {A1,...,Ax} will be called a k-partition (or k-colouring) of 5, and the
subsets Ay,..., Ax will be referred to as classes. Let f: N — N be a given
function. If

(1) n=f(ay,...,a4)

with d1,...,a¢ belonging to the same class, then this will be called a monochro-
matic representation of n in the form (1)
For a fixed k-partition and f we consider the set of integers, which have a
monochromatic representation and investigate
a) how dense this set must be?
b) for which § € N it must contain an element in S7
c) what sort of structural properties this set has?
We consider first the case f(zy,z2) = 71 + z1.
Let C tesp. C? denote the set of integers Tesp. the set of even integers which
have a monochromatic representation in the form

(2) n=ay;+ay with a; # aq

Put Cayy =CN([1,M| and C%, =C*n([1,M]|
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K.F. Roth conjectured 'see [4| and (9], p.112) that there is an absolute
constant ¢ > O such that for an arbitrary k-partition

{3) | CM i> eM.

(Note that if also a; = a, is allowed, then this is trivial.)
We prove this conjecture in a sharper and more general form. We study
some related problems too.

The Case f(z,,2;) =21 — 2

Theorem 1.
(i) To every k > 2 there exists an Mo (k) such that for an arbitrary k-partition
of N
M yiag. s
(4) H C‘ > g IM if M > My(k).
Moreover

(ii) For every 2-partition

i
(5) | c, [>¥—(103<1+‘/g)) log M

(iii) There is 2 2-partition so that

(6) 2*"gC? for neN

Proof.
(i) The proof will be based on the following

Lemma 1. Ifd€ N, M > My(d), 8 C [1,M] and
(7) | 8 |>3m*=7"

then there exist positive integers u, vy,...,vq such that v; # v; fort # j
and all the 2% sums

(8) u.+Z€cu,, g; € {0,1}

1=

belong to 3.
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This is a density version of Hilbert's lemma [10] (which is considered as the
first Ramsey-type result). See also (8|. It can be proved similarly to Lemma
7 in [14] (see also (3] and [20]). However for the sake of completeness, we give
the proof here.

Proof of Lemma 1. It suffices to show the existence of sets Bg, By,...,84
and distinct positive integers vy, vs,...,vq such that

(9) 8o = 8,
(10) Biju{b+v;:b€ 85} C Bj—y for j=12,...,d
and

(1) |8 1> 8 1% BM)~F=D for j=0,1,2,...,d.

In fact, if B89, B1,.-.,84, v1,...,v4 satisfy these conditions and u € 84, then
by (9) and (10), u + Y ¢, &iv; € 3 for &; = 0 or 1, while (7) and (11) imply
that By is not empty. This then will complete the proof of Lemma 1.

We are going to construct 89,31 ..., 84, ¥1,..., V4 recursively. Let By = 8.
Assume now that 0 < 7 < d — 1 and, in the case 7 > 0, vy,...,v; have already
been defined. For 1 < h < M — 1, let f(B;, ) denote the number of solutions
of

b—b' =h, where b € B;.

Then in order to define B;;; and vj.;, we need an estimate for

L = max f(8;,h)

where the maximum is over all A with & € [1, M|, h & {vy,ve,...,v5}.
Clearly, for all h we have f(B;,h) <| 3; |. Alsa

(12) DCTE 5]

h=1
since b — b’ € [1, M| for any pair b,b' € 8; with & > &'. If we majorize f(B;,h)
by | 85 | for A € {v1,v2,...,v;} and by L otherwise, (12) implies

B.i 2 . B ;
(I 2’ ') <78 |+M-1-5)L<j| 8| +LM,

so that

, B; :
(13) L> 5;7“ Bi I =18;|-27|8; )= ]3;{] (g | 35 | ‘g ‘33_) '
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From (7) and (11), we have (for M larger than some absolute and com-
putabie constant)

: o :
18 1218 1% BM)~®-1 > (3MH ) (M)~ =
=3M"?7 > 3M-?" 5 34+6d> 3+67,
so that (11) and (13) imply

181
3IM

L> 18 12 3 (ys Ex [3M)[""‘”)

(14) |
=3 ¥ (3p)=+FT -0,

Let v;1; € [1,M|\{v1,v2,...,v;} denote an integer for which the max-
imum in the definition of L is attained, i.e., L = f(Bj,vj4;) with v;4, &
{v1,v4,...,9;}, and let

Bis1={b:b€EB;, b+v41 € B;}.

Thus (10) holds for 7 + 1 in place of j and since | 8;4, |= L, (14) implies that
(11) holds also for j +1 in place of 7. This completes the proof of the existence
of Bg,81,.--,84, v1,...,vq with the desired properties, so that Lemma 1 is
proved.

To prove the first statement in Theorem 1, we assume that there are
more than 3M1~2"""" even integers not exceeding M which do not have a
monochromatic representation in the form (2); let us denote the set of these
integers by 8. Then (3) holds with & + 1 in place of d, thus if M is sufficiently
large, then by Lemma 1 there exist positive integers u,vy,vs,...,%k+1 such
zhat all the sums

k+1
u+ Eagv; where ;=0 or 1
i=1
belong to 8. Then

k+1
U=+ z 0-v;€8
=1
and since 8 consists of even numbers, thus also u = 2z is even. The integers
z+4+vy,z+v2,...,2+ vk are distinct, thus by the pigeon hole principle, there
exist 1 <4 <7 < k+ 1 such that a; = 2z + v; and a; = z + v; belong to the
same class. Then a; + a2 is a monochromatic sum with a; # a2, and
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ey +ay=(z+v)+(z+v) =22+ +v; =u+vi+v

But this contradicts the definition of 8, and the proof of the first half of The-

orem 1 is completed.

(ii) Let B = {b1,b2,...,b:} (where by < by < ... < b3) denote the set of
those even integers not exceeding 2M which do not have a monochromatic
representation in the form (2).

Suppose

(15} b:;+g < b:‘ ‘!" b.'H-l

for some 7. Then there are positive integers z,y, z for which

z+y=b;
T+ 2=0541
Y+ z=0542

At least two of these numbers belong to the same class. This contradicts
to the definition of B. Hence for every j
(16) bipa 2 by + bipy
which proves (ii)

To prove (iii) we define the set A, recursively. Let 1 € A;. If 4N [1,257!]
has been defined, then let 2 € A; and for 2! < n < 3k nog Ay iff
2% —n & Ay N (1,2%"!]. Furthermore let A2 = N\Ay. Then obviously 2" ¢ C
forn=1,2y. s

Observe that | Cps | need not be much greater then | C% | as the following
example shows: A; = {2f —1: j € N}, A2={25: j € N}. However the
situation is different for & < 3 and for k£ > 4.

Theorem 2.
(i) There is an absolute constant C so that if k < 3 then at any k-partition

M
(17) | Car |2 [?] -1 if M>C.
(11) Ifk > 4, there exists a k-partition such that
AM
(18) | Cur |< v cklog M,

where ¢ is an absolute constant.

Proof of (i). Case k = 2.

Without loss of generality we can assume that z € A; for 1 € z < a and
a+ 1€ Aj.

Then y € C for 3 < y < 2a — 1. On the other hand for every y > 0 either
y+aeac€Cory+a+1eC.



Case k=3
Suppose 2z —1€ Ay if1 <z <aand 2a+ 1 € A3. Then

(19) 2yeC if 2<y<2a.
We may assume that there is an n > 2a such that
(20) 2ngC and 2n—-1¢C
and

M
(21) i Can J< {?]

Case 1 2n < 6a. Put 2n =4a+ 2t, (t < a). First we prove
2a4+2 = A,
Namely if 2¢ +2 € A;, then 2z -1 +22+2¢€ C for 1 € z < a. Hence
| C2n [>2a+a
which contradicts (21).
Now suppose 2a +2 € A3. Then2n— (22 +2) =22 +2t—-2€ 4, UA4,. In
case 2a + 2t — 2 £ A4
2z-1+22+2t-2€C for 1<z<a
This implies
Con>2a+a
which contradicts again to (21).
Incase 2a +2t —2 € A,
2n—1=(2a+1)+(2a+2t-2)cC

would follow, which contradicts to (20).
Thus 22+ 2 € 4;.
Consider now the integers in [2a + 2, 2e + 2t}. Forevery y, 0 <y < 2t

2a +y € A3 implies 2a+ 2t —y € A3.

Therefore at least ¢ integers in [2a + 2, 2a + 2t| belong to A, U A,.
If there is an even z € A; U [2a + 2, 2a + 2t|, then

da<z+20—1<4a+2t=n for 1<v<a.

Hence

which contradicts (21).
If all the t even integers in [2¢ + 2, 2a + 2t| belong to A3, then for 1 < u <
t=1
(2 +2+2u)+2a+1&C
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and
(2a+2+22)+22+2€C

This would imply
i Caon |> 3a.

This finishes the case when 2n < 6a.

Case 2 2n > 6a.

Since 2n € C, at least ®5% even numbers below 2n are in A; U A2. Thus
at least ";2 — a even numbers below 2n — 2a are in A; U A;. Therefore at least
ﬂfi -2 > "1'.'23 are in A; resp. in A;. Adding to these numbers 2a — 1 or

2a + 1 we gain 3% odd numbers in C. Hence by Theorem 1

an>n—6n{%+n—q2>n if
12
n is large enough.
Proof of (ii). We may suppose that k = 4£ where £ is odd. Define ty by
gho=1 & 9f < ol
Fori=1,2,...,{ we are going 1o define subsets A4;—;, 7 = 0,1,2,3 recursively.
Let for j = 1,3
Agicyn[1,2%] ={n:n=1i(mod &),n = {%} (mod 2)} N [1,2%)]

and

Agi—j N [1,2:"1 =0 if j=0,2.

Assume now that A4_; N [1,2¢] have been defined for 7 = 0,1,2,3, i =
1,...,2¢+ 1. Let ri(t) defined by
21 = 2*71 4+ ri(t) (mod 2¢), 0 < rift) < 2L

Now we define A4i—; N [2° +1,2%1] in the following way: let 2¢ < n < 2¢F1.

For 2t <n < 2!t n € A4;_3 iff n is even and
n=1(mod£), 2! +ri{t) —n¢gdu-_3an(1,29,2]n
n € A4i—2 if n is even and
n=1t(modf), n¢& A4_s,
n € Agi—y iff n is odd and
n=1(mod£), 2" + rit) —n & Ay N[1,27,2 | n
n € Ay i nis odd and
n=1(mod?), n & Asi_1,

Then clearly the sets Ag;—;, 1 <1 < ¢ 0 < j < 3 give a 4¢-partition
of N. Furthermore it can be seen easily that all the monochromatic sums
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ay + a2, a1 # aq are even and none of these sums is equal to a number of
the form 2¢ + 27 where ¢t > to and 0 < j < £ — 1. This completes the proof of
Theorem 2.

By Theorem 1, there are more than % — ¢, M2 integers in {1, M]
which have a monochromatic representation in the form (2), and by Theorem
2, the number of these integers can be less than % —cak log M. 1t follows from
a result of.Erd6s and Sirkozy (Theorem 8 in (5]) thatif k€ N, M e N, M >
My(k), t € N and M?*/3(log M)? < t < M, then almost all the sets B with
3 C [1,M], | B |=t are such that for every k-partition of [1, M| there is (at
least one) element in 8 which has a monochromatic representation in the form
(2). (In fact, the following sharper statement is true: almost all of these sets
8 are such that for every A4 with 4 C [1,%] and | 4 [> £[M/2], there is an
element in B which can be represented in the form (2) with a € 4, ¢’ € 4.)
Ruzsa (16] proved that if f(z) — +oo, then there exists an infinite sequence
D of positive integers such that D(z) = ¥ i<z |= 0(f(z)(log 7)), and if A is
a sequence of positive integers with Positivedte;;)per asymptotic density, then D
intersects the set of the integers of the form a + o’ where a € 4, a’ € A. These
results suggest that the upper bound -‘%{- — ¢k log M is closer to the truth than
the lower bound.

Recently Balog, Firstenberg, Sirkézy, Stewart, Lagarias, QOdlyzko,
Schearer [1], [7], [13], [14], (17|, [18], [19] and others have studied the solv-
ability of the equations

a—a =z°
a—a' =p—1
a+a =z*

a+ a' =pz, £ "small” (= 0(1))

with a,a’ € A where A is 2 "dense” sequence of positive integers. These
resuits and Hindman’s theorem [2], [11] led us to consider the corresponding
" monochromatic” questions.

Theorem 1 implies that e.g. the equations
a; +ay =2p
ay +az =p—1
have monochromatic solutions with a; # a,.
Qur result is not strong enough to obtain for arbitrary & that
ay+az = z?

has a monochromatic solution with a; # a;. However a simple argument leads
1o
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Theorem 3. If k < 3, then for any k-partition of N there are infinitely many
squares in C.

Proof. We use the following simple (and well known)

Lemma 2. For every € > 0 there are infinitely many integers n so that
n=z%+y’

has at least three (in fact arbitrary many} integer solutions where

n

22,y € [2(1-5), 2i+e)

Now let
ST, (S S DU W
Iy tTg =Ty T I5 =23+ I}

with z; € [3(1—¢), 2(1+¢)], 1<i<6.

Then an easy calculation shows, that the system

| ed

%] + Uy =Iy
2

Ug T Uq =Tg
Ug + Ug =z§
2

Uy T Uy =Tg
2

Uy + U3z =I;3
2

e + U4 =Ty
in u;{1 <1 < 4) has a solution in distinct positive numbers. Since at least two
of the u;'s belong to the same class, one of the :‘2- (1 < 7 < 6) squares must
have a monochromatic representation.
If we have some information on the structure of the classes A; in the given
partition then the lower bound given for the integers that have a monochro-
matic representation in form (2) can be sharpened. In fact we have

Theorem 4.

(i) For every € > 0 and k there exists an Moy(e, k) such that if we have a
k-partition of N where every class contains both even and odd integers
then.

1 1
|Crm|> |+ -] Mif M > Mg, k).
2 2%

(ii) For every k € N there is a k-partition of N so that every class coAtains

both even and odd integers and

1 1
iCM|< (‘—+—

M+1.
2k>+



36 P. Erdds, A. Sirkézy, V.T.Sés

Proof.
(i) can be proved by the method used in the proof of Theorem 2,
(ii) follows from the following construction: for i = 1,2,...,k let

Ai={n:n =2i (mod2k)} U {n:n=1-2{ (mod2k)}.
It is easy to see that this k-partition of N has the desired properties.

The Case f(z,22) =|rz1 + 523 | .

Let r,s be integers. As before, let C denote the set of integers which have a
monochromatic representation in the form

(22) n=|ra; +sa;| with a; # a,.

Let Cpe =: C N [1,M]. The following result is merely a simple modification of
Theorem 1.

Theorem 5. Letr # 0, s #0, r+s # 0. Put|r+ s |= m. For every
€ >0, k,r, s and for every k-partition

M
> —E)|—.
| Ca [2 (1 —€)—

This can not be essentially improved, since choosing
(23) k=mand ;={n:n=1(modm)}, 1<i<m

only the multiples of m have a monochromatic representation in the form (22)
Note furthermore that Theorem 3 does not cover the case of the differences
a1—a2. Namely, in this case the density of the integers having a2 monochromatic
representation in the form (22) need not be greater than a positive absolute
constant. To see this, let us consider a large integer m and define the partition
as in (23). Then only the multiples of m have a monochromatic representation
in the form (22) so that their density is = which — 0 if m — oo.
Proof. Assume that there are more than € positive multiples of m in [1, M]
which do not have a monochromatic representation in the form [22|. Then
by Szemerédi’s theorem (20|, for M > My(k,=,r, s) their set must contain an
arithmetic progression of 2(] r | + | s |k + 1 terms; let us write this arithmetic
progression (all whose terms are multiples of m) in the form

(24) um—(|r|+|s kv, um—((| 7|+ |s)k—1)v,..., um+(j r | + | s |)kv.
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Let us consider the integers u,u +v,...,u + kv. By the pigeon hole principle,
two of them, say a; = u+ v and a3 = u + v (where i # j) belong to the same
class. Then

ray + say = r{u + 1) + s(u + jv) = (r + s)u + (ri + s7)v.

Here we have
[ri+sy|<lirik+]slk={(rl+]s]|)k

Since | r+s |= m and all the numbers in (24) are positive, | ray +saz | is equal
to one of the numbers in (24). But this contradicts the fact that none of these
numbers has a monochromatic representasion in the form (22), and the proof
is completed.

2. Some Unsolved Problems

Problem 1. Do there exist @ and 3 which depend only on &, so that for an
arbitrary k-partition
M
| Cu 1> = = (log )™

or even more | C3, |> ¥ — (log M)BE),

Problem 2. Let f(z) be a polynomial of integer coefficients such that 2 is
a prime divisor of it. Is it true that for any k-partition for some z (or for
infinitely many z)

21 Tay = f(z}-

have a monochromatic solution with ay # a.7?

Problem 3. Is it true that for every %-partition of [1, M| almost all the even
integers 2n in [1, M| have more than c(k)n monochromatic representations in
form (2)? (Perhaps this holds with ¢{k) = 5+.)

Problem 4 a) For a given k-partition let n; < ny < ... be the sequence of
those integers which have a monochromatic representation in form (2). (C =
{n;}). What can be said about the structure of the sequence {n;}? (For
example it is easy to see that | n;1; — n; |< 2k.)

b) The complementary problem is to study the structure of the set
3 = N — C (the set of those integers which do not have a monochrematic
representation in form (2)).

Let G(N;E) be the graph with edgeset {(z,y) | z+y € 8, z,y € N}.
Obviously at any k-partition the chromatic number of G(N; E) is < k. Basically
this was used in the proofs above.
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Problem 5. So far we have studied monochromatic representations in form
(1) in the special case when f(zy,...,z.) is a linear polynomial and t = 2. In
the paper Erdés-Sirkézy (6| the case f(z,,z2) = z,z is considered.

What can one say on general polynomials f(zy,...,z:) (whose coefficients
are integers)? What can be said in the most important special case when
f(z1,22,...,2¢) is of the form g(z,) + ... + g(z¢)?

As Ruzsa [15] observed, if

-
f(z1,22,23,24) = 73 + 23 + 23 + 24

then for every k-partition
| Car |> clk) - M

and | Ca [> ¢M cannot hold with an absolute constant c.

Acknowledgement. We would like to thank to I. Ruzsa for his helpful com-
ments.
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