Grandes valeurs de fonctions liées aux diviseurs premiers consécutifs d'un entier

Paul Erdős et Jean-Louis Nicolas

Abstract

Let n be an integer and $n=q_1^{\alpha_1}\cdots q_k^{\alpha_k}$ with $q_1<\cdots< q_k$ its standard factorization into primes. We set $\omega(n)=k$, $f(n)=\sum_{1\leq i\leq k-1}q_i/q_{i+1}$, $F(n)=\omega(n)-1-f(n)$. Large values of functions f and F are studied. More precisely, we say that N is a f-champion number if $n< N\Rightarrow f(n)< f(N)$. Several properties of champion numbers for both functions f and F are given. We also show that the maximal order of magnitude of F(n) is $\sqrt{\log n}-C'+o(1)$ where C'=1.70... is a constant. The proof uses classical theorems in optimization and known results about distribution of primes.

1. Introduction

Soit un nombre entier n et sa décomposition en facteurs premiers

$$n = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_k^{\alpha_k}$$
 avec $q_1 < q_2 < \dots < q_k$.

On définit les fonctions :

$$\omega(n) = k$$
,
$$f(n) = \sum_{i=1}^{k-1} q_i/q_{i+1},$$

$$F(n) = \sum_{i=1}^{k-1} (1 - q_i/q_{i+1}) = \omega(n) - 1 - f(n)$$
.

Lorsque k = 1, on pose f(n) = F(n) = 0.

On peut voir assez facilement que la fonction f a une valeur moyenne On écrit :

$$\frac{1}{x} \sum_{n \le x} f(n) = \frac{1}{x} \sum_{n \le x} \sum_{i} q_i / q_{i+1}.$$

En permutant les deux sommes, et en utilisant une méthode de crible, on obtient :

$$\lim \frac{1}{x} \sum_{n \leq x} f(n) = \sum_{q} \frac{1}{q^2} \left(\sum_{p < q} \prod_{p < r < q} (1 - 1/r) \right)$$

où p, q, r sont des nombres premiers.

Nous nous intéresserons aux grandes valeurs des fonctions f et F. Plus précisément nous dirons qu'un nombre n est un champion pour f, ou f-champion, si

$$m < n \Rightarrow f(m) < f(n)$$
.

Nous démontrons le théorème suivant :

Théorème 1. Soit p_i le $i^{\grave{e}me}$ nombre premier, et $N_k = p_1 p_2 \dots p_k$. Alors, pour k assez grand, N_k est un nombre f-champion.

Nous montrerons ensuite que, pour une famille infinie de nombres premiers p, incluant les nombres premiers compris entre 2 et 13, les nombres N_k/p sont f-champions pour k assez grand.

Enfin, sous une conjecture très forte sur la différence $p_{i+1} - p_i$, la conjecture de Cramer : $p_{i+1} - p_i = O(\log^2 p_i)$, nous montrerons que tous les nombres f-champions assez grands sont de la forme N_k ou N_k/p .

Lorsque k est fixé, le problème d'optimisation en nombres réels lié aux grandes valeurs de la fonction f, c'est-à-dire :

$$\begin{cases} \max \sum_{i=1}^{k-1} y_i/y_{i+1} \\ y_1 y_2 \dots y_k = n, \quad y_1 \leq y_2 \leq \dots \leq y_k \end{cases}$$

a évidemment pour solution $y_1 = y_2 = \cdots = y_k = n^{1/k}$. La condition supplémentaire que les y_i doivent être des nombres premiers distincts change complètement le problème.

Par contre, l'étude des grandes valeurs de la fonction F est très liée à la solution en nombres réels du problème d'optimisation

$$\begin{cases} \max \sum_{i=1}^{k-1} (1 - y_i/y_{i+1}) \\ y_1 y_2 \dots y_k \leq n, \quad 1 \leq y_1 \leq y_2 \leq \dots \leq y_k \end{cases}.$$

Nous donnerons la solution de ce problème, et nous en déduirons l'inégalité suivante :

soit $1 \le y_1 \le y_2 \le \ldots \le y_k$ des nombres réels, on a :

$$\sum_{i=1}^{k-1} (1 - y_i/y_{i+1}) \le \sqrt{\log(y_1 y_2 \dots y_k)},$$

d'où il découle immédiatement que

$$F(n) \le \sqrt{\log n}$$
 pour tout $n \ge 1$.

Nous démontrerons également :

Théorème 2. Il existe une constante C' (C' = 1.70...) telle que, lorsque $n \to +\infty$ on ait :

(i)
$$F(n) \leq \sqrt{\log n} - C' + o(1)$$

et telle que, pour une infinité de n, on ait :

(ii)
$$F(n) \geq \sqrt{\log n} - C' + o(1)$$
.

Nous démontrerons ensuite quelques propriétés des nombres F-champions, en utilisant le fait que (ii) du théorème 2 est vérifiée pour la suite des nombres F-champions. La structure des nombres F-champions est très différente de celle des nombres f-champions.

Des fonctions similaires à f et F ont été introduites, dans l'espoir de mieux cerner la distribution des diviseurs ou des diviseurs premiers d'un nombre entier.

J.M. De Koninck et A. Ivić ont considéré dans [De K-I] les fonctions h et H. Soit $\tau(n) = \sum_{d|n} 1$ et $1 = d_1 < d_2 < \ldots < d_{\tau(n)} = n$ les diviseurs de n, on a :

$$h(n) = \sum_{i=1}^{\omega(n)-1} \frac{1}{q_{i+1} - q_i} \text{ et } H(n) = \sum_{i=1}^{\tau(n)-1} \frac{1}{d_{i+1} - d_i}.$$

On peut également considérer les fonctions (cf. [Erd 2]):

$$\hat{h}(n) = \sum_{1 \leq i < j \leq \omega(n)} \frac{1}{q_j - q_i}$$
 et $\hat{H}(n) = \sum_{1 \leq i < j \leq \tau(n)} \frac{1}{d_j - d_i}$

et les fonctions :

$$g(n) = \sum_{i=1}^{\tau(n)-1} d_i/d_{i+1}, \quad G(n) = \sum_{i=1}^{\tau(n)-1} (1 - d_i/d_{i+1}).$$

L'étude de g et G est liée au résultat de Vose (cf. [Vose] et [Ten]). Contrairement à ce qui se passe pour f et F, la structure des nombres

g-champions et G-champions est assez voisine de la structure des nombres hautement composés de Ramanujan (c'est-à-dire les nombres τ -champions). Nous reviendrons dans un autre article sur ces différentes fonctions.

Nous utiliserons fréquemment les inégalités :

(1)
$$1 - 1/x \le \log x \le 1 - 1/x + (x - 1)^2/2 \; ; \; x \ge 1,$$

(2)
$$x \log 2 \le \log(1+x) \le x$$
; $0 \le x \le 1$.

On peut en particulier obtenir facilement un résultat moins fort que le théorème 2 : soit $z = \exp(\sqrt{\log n})$. Le nombre de diviseurs premiers de n qui sont $\geq z$ est inférieur à $(\log n)/\log z = \sqrt{\log n}$. On a donc, si $n = q_1^{\alpha_1} q_2^{\alpha_2} \dots q_k^{\alpha_k}$, avec $q_1 < q_2 < \dots < q_k$ et si r est défini par $q_r \leq z < q_{r+1}$:

$$F(n) = \sum_{i=1}^{r-1} (1 - q_i/q_{i+1}) + \sum_{i=r}^{k-1} (1 - q_i/q_{i+1}).$$

La première somme, par (1) est $\leq \log(q_r/q_1) \leq \log z$. La deuxième somme est inférieure à $k-r \leq \sqrt{\log n}$, et l'on obtient ainsi $F(n) \leq 2\sqrt{\log n}$.

Remerciements. Nous avons plaisir à remercier ici C. Malivert et J. Blot de l'équipe de recherche en optimisation de l'Université de Limoges qui nous ont aidés dans la résolution des problèmes d'optimisation conduisant à la démonstration du théorème 2.

NOTATIONS. p_i désignera toujours le ième nombre premier. p (sans indices), q, q_i désigneront des nombres premiers. On désignera par q^- et q^+ les nombres premiers immédiatement inférieur ou supérieur à $q \geq 3$. On aura ainsi $11^- = 7$ et $p_5^+ = p_6 = 13$.

La fonction $\lfloor x \rfloor$, le plancher de x, désigne le plus grand entier $n \in \mathbf{Z}, n < x$.

En plus des notations o et O de Landau, nous utiliserons les notations \ll et \approx :

$$f \ll g$$
 signifie $f = \mathrm{O}(g)$ et $f \asymp g$ signifie $f \ll g$ et $f \gg g$.

2. Quelques lemmes sur les nombres premiers

Lemme 1. On a pour $p_i \geq 2$, $p_i/p_{i+1} \geq 3/5$.

Démonstration. Soit $\theta(x) = \sum_{p \le x} \log p$. D'après les théorèmes 9 et 10 de [Ros-Sch 1], on a, pour $x \ge 101$,

$$0.84 \leq \theta(x)/x \leq 1.02.$$

On en déduit que $\theta(1.25x) \ge 1.05x > \theta(x)$, et donc pour $p_i \ge 101$, que $p_{i+1} \le 1.25p_i$. Il reste à calculer p_i/p_{i+1} pour $p_i < 101$.

Lemme 2. Soit $11/20 < \tau \le 1$, on a:

$$\pi(x+x^{\tau})-\pi(x)\gg x^{\tau}/\log x$$
,

avec $\pi(x) = \sum_{p \leq x} 1$.

Démonstration. Ce lemme est dû à Heath-Brown et Iwaniec (cf. [H-B-Iwa]). Il a été récemment amélioré par Mozzochi (cf. [Moz]) qui remplace $\frac{11}{20}$ par $\frac{11}{20} - \frac{1}{384}$.

Lemme 3. Pour tout $\varepsilon > 0$, on a:

$$\sum_{p_i \le x} (p_{i+1} - p_i)^2 \ll x^{23/18 + \epsilon} .$$

Démonstration. Ce lemme est démontré par Heath-Brown (cf. [H-B]).

Lemme 4. La série $\sum_{i=1}^{\infty} \left(\frac{p_{i+1}-p_i}{p_i}\right)^2$ est convergente. Sa somme est voisine de 1.6531.

Démonstration. Posons $S_k = \sum_{1 \le i \le k} (p_{i+1} - p_i)^2$. On a donc

$$\sum_{i=1}^{\infty} \left(\frac{p_{i+1} - p_i}{p_i} \right)^2 = \sum_{i=1}^{\infty} \frac{S_i - S_{i-1}}{p_i^2}$$

en convenant que $S_0 = 0$. Cette expression vaut encore :

$$\sum_{i=1}^{\infty} S_i \left(\frac{1}{p_i^2} - \frac{1}{p_{i+1}^2} \right) = \sum_{i=1}^{\infty} S_i (p_{i+1} - p_i) \frac{p_{i+1} + p_i}{p_i^2 p_{i+1}^2} .$$

Le lemme 2 nous donne $p_{i+1} - p_i \le p_i^{11/20+\epsilon}$, et le lemme 3 donne pour S_i la majoration :

$$S_i \leq i^{23/18+\varepsilon} .$$

Notre série est donc comparable à la série

$$\sum_{i \ge 1} i^{23/18 + 11/20 - 3 + \epsilon}$$

qui est convergente.

Observons que le même raisonnement nous donne :

(3)
$$\sum_{i \geq k} \left(\frac{p_{i+1} - p_i}{p_i} \right)^2 \ll \sum_{i \geq k} i^{-211/180 + \varepsilon} = O(k^{-1/6})$$

Le calcul numérique de la somme des 300 000 premiers termes de notre série, effectué par J.P. Massias, donne 1.6531.

Malheureusement la majoration ci-dessus n'est pas effective, et on ne peut savoir la précision de ce calcul numérique.

On peut montrer facilement que si la suite a_n est croissante et vérifie

$$a'n\log n \le a_n \le a''n\log n$$
 et $a_{n+1} - a_n \le \frac{\lambda_n}{\log n}$

avec 0 < a' < a'', on a:

$$\sum_{N \le n \le 2N} \left(\frac{a_{n+1} - a_n}{a_n} \right)^2 \le \frac{4\lambda a''}{a'^2 (\log N)^2} ,$$

et en déduire une majoration du reste de la série $\sum_{n} \left(\frac{a_{n+1} - a_n}{a_n}\right)^2$.

De la majoration obtenue par Rosser et Schoenfeld (cf. [Ros-Sch 2] Théorème 8)

$$|\theta(x) - x| \le 8.7 \ x/\log^2 x$$

où $\theta(x) = \sum_{p \le x} \log p$, et de

$$p_n \leq n(\log n + \log \log n)$$
,

on peut déduire :

$$p_{n+1}-p_n\leq 17.4n/\log n.$$

On peut, par ce moyen, majorer le reste de la série $\sum \left(\frac{p_{n+1}-p_n}{p_n}\right)^2$ mais cette majoration est très grossière.

Sous l'hypothèse de Riemann, L. Schoenfeld a obtenu (cf. [Sch]):

$$|\theta(x) - x| \le \frac{1}{8\pi} \sqrt{x} \log^2 x$$
; $x \ge 599$,

qui permet d'évaluer plus raisonnablement la précision du calcul de cette constante.

Lemme 5. La série $\sum_{i=1}^{\infty} \log \frac{p_{i+1}}{p_i} - \left(1 - \frac{p_i}{p_{i+1}}\right)$ est convergente. Nous désignerons sa somme par C. Une valeur approchée probable de C est : 0.5134.

Démonstration. D'après (1), cette série est majorée par

$$\sum_{i=1}^{\infty} \frac{1}{2} \left(\frac{p_{i+1} - p_i}{p_i} \right)^2 ,$$

qui converge d'après le lemme précédent. La valeur numérique indiquée est la somme des 300 000 premiers termes.

Lemme 6. Pour $1 \le x \le y$ posons $L(x,y) = \log \frac{y}{x} - (1 - \frac{x}{y})$. Soit $(q_i)_{i \ge 1}$ une suite strictement croissante de nombres premiers. On a lorsque $z \to +\infty$:

$$\sum_{\substack{i \ q_i \le z}} L(q_i, q_{i+1}) \ge C - \log q_1 + \log 2 + o(1)$$

où C est la constante du lemme précédent.

Démonstration. Si q_i et q_{i+1} ne sont pas des nombres premiers consécutifs, et si l'on rajoute p entre q_i et q_{i+1} , on perd

$$-L(q_i,p)-L(p,q_{i+1})+L(q_i,q_{i+1})=(1-q_i/p)(1-p/q_{i+1})>0.$$

On a donc

$$\sum_{\substack{i \\ q_i \le x}} L(q_i, q_{i+1}) + \sum_{\substack{i \\ p_i < q_1}} L(p_i, p_{i+1}) \le \sum_{\substack{i \\ p_i \le x}} L(p_i, p_{i+1}) = C + o(1)$$

et

$$\sum_{\substack{i \\ p_i < q_1}} L(p_i, p_{i+1}) \le \sum_{\substack{i \\ p_i < q_1}} \log \frac{p_{i+1}}{p_i} = \log \frac{q_1}{2}.$$

Lemme 7. On a:

$$egin{array}{lll} \sum_{i=1}^{k-1} p_i/p_{i+1} &=& k-1-\log p_k + \log 2 + C + \mathrm{O}(k^{-1/6}) \ &=& k-\log k - \log \log k + C + \log 2 - 1 + \mathrm{O}\left(rac{\log \log k}{\log k}
ight) \end{array}$$

où C désigne la constante du lemme 5.

Démonstration. On a, avec la notation du lemme 6 :

$$\sum_{i=1}^{k-1} p_i/p_{i+1} = k-1 - \sum_{i=1}^{k-1} (1 - p_i/p_{i+1})$$

$$= k-1 + \sum_{i=1}^{k-1} L(p_i, p_{i+1}) - \log \frac{p_{i+1}}{p_i}$$

$$= k-1 - \log p_k + \log 2 + \sum_{i=1}^{\infty} L(p_i, p_{i+1}) - \sum_{i>k} L(p_i, p_{i+1}).$$

On conclut en observant que, par (1), on a

$$L(p_i, p_{i+1}) \leq \frac{1}{2} \left(\frac{p_{i+1} - p_i}{p_i} \right)^2$$

et en appliquant (3).

On obtient la deuxième relation en utilisant :

$$p_k = k(\log k + O(\log \log k))$$
.

Lemme 8. Soit $1 \le i \le j-2$. On définit

$$S(p_i, p_j) = \left(\sum_{i \leq k \leq j-1} p_k/p_{k+1}\right) - p_i/p_j$$
.

On a alors:

$$S(p_i, p_j) \geq j - i - 1 - (p_j - p_i)^2/(2p_i^2)$$
.

Démonstration. On a :

$$S(p_i, p_j) = j - i - 1 - \sum_{i \leq k \leq j-1} (1 - p_k/p_{k+1}) + 1 - p_i/p_j$$
.

En utilisant (1),

$$S(p_i, p_j) \geq j - i - 1 - \Big(\sum_{i \leq k \leq j-1} \log \frac{p_{k+1}}{p_k}\Big) + 1 - p_i/p_j$$
.

On conclut en observant que la somme vaut $\log(p_j/p_i)$ et en appliquant de nouveau (1).

Lemme 9. Soit $N_k = \prod_{1 \leq i \leq k} p_i$. Soit $n < N_k$ et soit $\omega(n) = k - r$ avec $r \geq 1$. Soit t le nombre de diviseurs premiers de n qui sont $> p_k$. Alors on a $t \leq \sqrt{3rp_k \log p_k}$. Soit ξ , $0 < \xi < 1$. Alors le nombre s de nombres premiers $\leq p_k^{\xi}$ qui ne divisent pas n vérifie : $s \leq r/(1-\xi)$.

Démonstration. Un tel n peut s'écrire :

$$n=N_krac{Q_1^{lpha_1}\cdots Q_t^{lpha_t}}{q_1q_2\cdots q_{t+r}}q_1^{ieta_1}\cdots q_u^{ieta_u}$$

avec $p_k < Q_1 < \ldots < Q_t$, $\alpha_i \ge 1$, $q_1 < q_2 < \ldots < q_{t+r} \le p_k$, $q_1' < q_2' < \ldots < q_u' \le p_k$, $\beta_i \ge 1$ et $q_i' \ne q_j$ pour $1 \le i \le u$ et $1 \le j \le t+r$. On a t+r < k et:

$$1>rac{n}{N_k}\geq rac{Q_1\dots Q_t}{p_k^{t+r}}\geq p_k^{-r}\prod_{j=1}^t(1+j/p_k)$$

en utilisant $Q_j - p_k \ge j$. Il vient ensuite en remarquant que $j \le t \le k \le p_k$ et en utilisant (2) :

$$egin{array}{ll} r \log p_k & \geq & \sum_{1 \leq j \leq t} \log(1+j/p_k) \geq \log 2 \sum_{1 \leq j \leq t} j/p_k \ \\ & \geq & rac{t(t+1)}{2} rac{\log 2}{p_k} \geq rac{t^2}{3p_k} \end{array}.$$

On a de même :

$$1 > \frac{n}{N_k} \ge \frac{Q_1 \dots Q_t}{p_k^{\xi_s} p_k^{t+r-s}} \ge p_k^{-r+s(1-\xi)} .$$

Ce qui montre que $s \leq r/(1-\xi)$.

3. Étude des nombres f-champions

Lemme 10. Soit $q \ge 3$. On suppose que q ne divise pas m, mais que q^- divise m. Alors:

$$f(mq) \ge f(m) + q^{-}/q \ge f(m) + 3/5$$
.

Démonstration. Si tous les facteurs premiers de m sont $\leq q$, on a l'égalité $f(mq) = f(m) + q^-/q$. Sinon soit q' le plus petit diviseur premier de m qui suit q. On a :

$$f(mq) = f(m) + q^{-}/q + q/q' - q^{-}/q' \ge f(m) + q^{-}/q$$
.

Le lemme 1 nous donne $q^-/q \ge 3/5$.

Lemme 11. Soit n un nombre f-champion, et P = P(n) son plus grand facteur premier. On a : P^- divise n . Soit q_1 et q_2 les deux plus petits nombres premiers ne divisant pas n . Alors si $P(n) \ge 31$, on a $q_1q_2 > P(n)$.

Démonstration. Si P^- ne divisait pas n, on aurait $f(nP^-/P) > f(n)$ et n ne serait pas f-champion.

Supposons d'abord $q_1=2$, $q_2=3$. Si 5 ne divise pas n , on pose n' = 30n/P < n et

$$f(n') \ge 2/3 + 3/5 - 1 + f(n) > f(n)$$
.

Si 5 divise n, on pose n' = 6n/P < n et on a encore f(n') > f(n), ce qui contredit le fait que n est f-champion.

Supposons ensuite $q_1=2$, $q_2>3$. Le lemme 10, appliqué à m=2n/Pet $q = q_2$ donne, avec $n' = 2q_2n/P$:

$$f(n') - f(n) \ge 2/3 + 3/5 - 1 > 0$$

ce qui implique n' > n.

Si $q_1 > 2$, on applique deux fois le lemme 10 avec m = n, $q = q_1$, puis $m=nq_1$, $q=q_2$. On obtient ainsi avec $n'=nq_1q_2/P$,

$$f(n')-f(n)\geq \frac{6}{5}-1>0$$
.

Ce qui entraı̂ne n' > n et donc $q_1q_2 > P$.

Démonstration du théorème 1. Soit k assez grand, et n un nombre f-champion vérifiant $N_{k-1} < n < N_k$. Cela implique $\omega(n) = k - r$ avec $1 \le r \le (\log k)(1 + O(1))$ d'après le lemme 7. Le nombre n est sans facteur carré, et s'écrit avec les notations du lemme 9 :

$$n=N_k\frac{Q_1\ldots Q_t}{q_1\ldots q_{t+r}}.$$

Lorsque t = 0, le lemme 10 montre que $f(n) < f(N_k)$. On peut donc supposer $t \geq 1$. On définit deux suites $(i_s)_{1 \leq s \leq S}$ et $(j_s)_{1 \leq s \leq S}$ vérifiant $i_s+2 \leq j_s$ et $j_s \leq i_{s+1}$, de telle façon que :

$$\bigcup_{1 \leq s \leq S} \{p \; ; \; p_{i_s} p_k^{1/3}\} \; .$$

Notons que l'ensemble ci-dessus est l'ensemble $\{q_1,\ldots,q_{t+r}\}$ sauf au plus q_1 , dans le cas où $q_1 < p_k^{1/3}$, ceci par le lemme 11. Lorsque $q_1 < p_k^{1/3}$, on pose $\theta = 1$; lorsque $q_1 > p_k^{1/3}$, on pose $\theta = 0$,

et l'on a :

(4)
$$\sum_{1 \le s \le S} (j_s - i_s - 1) = t + r - \theta.$$

Avec la notation S du lemme 8, on pose $\sigma_1=2/3$ si $q_1=2$, $\sigma_1=S\left(q_1^-,q_1^+\right)$ si $q_1\geq 3$, et l'on a :

• si $q_{t+r} \neq p_k$:

$$f(n) = f(N_k) - \theta \sigma_1 - \sum_{s=1}^{S} S(p_{i_s}, p_{j_s}) + \frac{p_k}{Q_1} + \sum_{i=2}^{t} \frac{Q_{i-1}}{Q_i}$$

• si $q_{t+r} = p_k$, on a

$$p_{j_s} = p_{k+1}$$

et:
$$f(n) = f(N_k) - \theta \sigma_1 - \sum_{s=1}^{S} S(p_{i_s}, p_{j_s}) + \frac{p_k}{p_{k+1}} - \frac{p_{i_s}}{p_{k+1}} + \frac{p_{i_s}}{Q_1} + \sum_{i=2}^{t} \frac{Q_{i-1}}{Q_i}$$
.

Les deux formules coïncident lorsque $Q_1=p_{k+1}$, et dans tous les cas on a :

(5)
$$f(n) \leq f(N_k) - \theta \sigma_1 - \sum_{s=1}^{S} \mathcal{S}(p_{i_s}, p_{j_s}) + t.$$

On désigne par S' le plus grand s tel que $p_{i_s} \leq p_k^{9/10}$. Pour $s \geq S' + 1$, on a par (4) et le lemme 9:

$$j_s - i_s \le t + r + 1 \le p_k^{1/2 + o(1)} \le P_{i_s}^{5/9 + o(1)}$$

et donc, par le lemme 2,

$$p_{j_{\bullet}} - p_{i_{\bullet}} \leq p_{i_{\bullet}}^{5/9 + o(1)}$$
.

On a donc, avec le lemme 8 :

$$\sum_{s=S'+1}^{S} S(P_{i_s}, P_{j_s}) \ge \sum_{s=S'+1}^{S} (j_s - i_s + 1) - \sum_{s=S'+1}^{S} \frac{(p_{j_s} - p_{i_s})^2}{2p_{i_s}^2} .$$

Or, dans la dernière somme il y a au plus S termes, $S \leq t+r \leq p_k^{1/2+o(1)}$, et chacun de ces termes est majoré par

$$\frac{1}{2} p_{i_s}^{-8/9 + \mathrm{o}(1)} \leq \frac{1}{2} p_k^{-8/10 + \mathrm{o}(1)} \ .$$

On a donc

$$\sum_{s=S'+1}^{S} S(p_{i_s}, p_{j_s}) \geq \sum_{s=S'+1}^{S} (j_s - i_s + 1) + o(1) .$$

Le lemme 9 avec $\xi=9/10$ montre que $S'=\mathrm{o}(1)$ et que, pour $s\leq S'$, $j_s-i_s=\mathrm{O}(1)$. Le lemme 2 nous indique alors que $p_{j_s}-p_{i_s}=p_{i_s}^{11/20+\mathrm{o}(1)}$ et comme $p_{i_s}\geq p_k^{1/3+\mathrm{o}(1)}$ on a :

$$\sum_{s=1}^{S'} S(p_{i_s}, p_{j_s}) \geq \sum_{s=1}^{S'} j_s - i_s + 1 - \sum_{s=1}^{S'} \frac{(p_{j_s} - p_{i_s})^2}{2p_{i_s}^2}$$

$$\geq \sum_{s=1}^{S'} j_s - i_s + 1 + o(1).$$

On a donc, avec (4):

$$\sum_{s=1}^{S} S(p_{i_s}, p_{j_s}) \geq t + r - \theta + \mathrm{o}(1) .$$

Observons maintenant que $\sigma_1 \geq 2/3$. En effet, si $q \neq 2$,

$$\sigma_1 = 1 - (1 - q_1^-/q_1)(1 - q_1/q_1^+) \ge 1 - (2/5)^2$$

par le lemme 1. La formule (5) donne alors :

(6)
$$f(n) \le f(N_k) + \theta(1-\sigma_1) - r + o(1) \le f(N_k) - r + 1/3 + o(1)$$
.

Et comme $r \geq 1$, on a $f(n) < f(N_k)$, et donc N_k est f-champion.

On voit également que si $r \geq 2$, on a $f(n) < f(N_{k-1})$ et n n'est pas f-champion. Les nombres f-champions compris entre N_{k-1} et N_k ont donc k-1 facteurs premiers.

Définition. Pour p=2 , on pose $\psi(2)=1/3$, et pour $p\geq 3$:

(7)
$$\psi(p) = 1 - \mathcal{S}(p^-, p^+) = \left(\frac{p - p^-}{p}\right) \left(\frac{p^+ - p}{p^+}\right).$$

On dit qu'un nombre premier p est "bon" si pour q>p, on a $\psi(q)<\psi(p)$. Les "bons" nombres premiers ≤ 1 000 sont : 2,3,5,7,11,13,23,37,53,89,113,127,211,293,331,337,409,479,541,631,787,839.

Il n'est pas difficile de démontrer que l'ensemble des bons nombres premiers est de densité 0 dans l'ensemble des nombres premiers, en utilisant le résultat de P. Erdös (cf. [Erd 1]) amélioré par H. Maier (cf. [Maier]).

On observe que, si $p < p_k$, on a :

$$f(N_k/p) = f(N_k) - 1 + \psi(p) .$$

Il est clair que, si p n'est pas bon, N_k/p n'est pas f-champion pour k suffisamment grand.

Proposition 1. Soit p un "bon" nombre premier. Pour k assez grand N_k/p est f-champion.

La démonstration est très voisine de celle du théorème 1 : on considère un nombre n qui est f-champion et qui vérifie $N_{k-1} < n < N_k/p$.

D'après la démonstration du théorème 1, un tel nombre s'écrit :

$$n=N_k\frac{Q_1\ldots Q_t}{q_1\ldots q_{t+1}}.$$

Si t=0, et $q_1>p$, on a bien $f(n)< f(N_k/p)$ puisque p est "bon". Si $t\geq 1$, on a $n>N_k/q_1$, et donc $q_1>p$. La formule (6) est encore valable avec $\sigma_1=1-\psi(q_1)$ et r=1, et l'on obtient :

$$f(n) \leq f(N_k) - 1 + \psi(q_1) + o(1)$$
.

Or, $\lim_{p\to +\infty}\psi(p)=0$. Par conséquent $\psi(p)-\max_{q>p}\psi(q)=\varepsilon_p>0$, et l'on a :

$$f(n) \leq f(N_k/p) - \varepsilon_p + o(1) ,$$

ce qui assure que pour k assez grand, N_k/p est f-champion.

Proposition 2. Supposons vérifiée la conjecture de Cramer (cf. [Cra] et [Rie] p.85), $p_{k+1} - p_k \ll \log^2 p_k$. Alors les nombres f-champions assez grands sont de la forme N_k ou N_k/p , avec $p \leq p_k^{1/2+o(1)}$.

Démonstration. Soit n un nombre f-champion vérifiant $N_{k-1} < n < N_k$. Nous avons vu que $\omega(n) = k-1$. On définit Q_1, Q_2, \ldots, Q_t les grands diviseurs premiers consécutifs de n: on a $Q_i^+ = Q_{i+1}$ pour $1 \le i \le t-1$, Q_t est le plus grand facteur premier de n, Q_1^- ne divise pas n. D'après le lemme 11, on a $t \ge 2$. On désigne par q_1, q_2, \ldots, q_s les grands nombres premiers consécutifs $< Q_1$ et ne divisant pas n. On a : $q_s^+ = Q_1$ et q_1^- divise n. Comme n n'est pas de la forme N_k , $s \ge 1$.

Distinguons deux cas:

1er cas: $s \le t-1$. On considère $n' = \frac{q_1q_2\dots q_s}{Q_{t-s+1}\dots Q_t}n$. On a n' < n, donc f(n') < f(n), et avec les notations du lemme 8,

$$0 < f(n) - f'(n) = -S(q_1^-, Q_1) + \frac{Q_{t-s}}{Q_{t-s+1}} + \cdots + \frac{Q_{t-1}}{Q_t}$$
.

Le lemme 8 donne:

$$0 \le -s + \frac{(Q_1 - q_1^-)^2}{2(q_1^-)^2} + s - \frac{2}{Q_{t-s+1}} - \dots - \frac{2}{Q_t} \le \frac{(Q_1 - q_1^-)^2}{2(q_1^-)^2} - \frac{2s}{Q_t}.$$

La conjecture de Cramer nous donne :

$$Q_1 - q_1^- \ll (s+1)\log^2 Q_1 \le (s+1)\log^2 Q_t$$

et l'on en déduit :

(8)
$$(q_1^-)^2 \ll \frac{(s+1)^2}{4s} Q_t \log^4 Q_t .$$

Supposons $s \geq 2$, et soit j tel que $2 \leq j \leq s$. On a :

(9)
$$\frac{q_1q_2\dots q_j}{Q_{t-j+2}\dots Q_t} > 1.$$

En effet, si ce n'était pas vrai, on pose $n'' = \frac{q_1 \dots q_j}{Q_{t-j+2} \dots Q_t} n$; on aurait $n'' \le n < N_k$ et $\omega(n'') = \omega(n) + 1 = k$, ce qui est impossible. Appliquons le lemme 9 avec $k_0 = \pi(Q_1)$,

$$n_0 = \frac{Q_{t-s+2} \dots Q_t}{q_1 \dots q_s} N_{k_0} .$$

On a, d'après (9), $n_0 < N_{k_0}$, $\omega(n_0) = k_0 - 1$, et l'on en déduit :

(10)
$$s \le t - 1 \le \sqrt{3Q_1 \log Q_1} \le \sqrt{3Q_t \log Q_t}$$
.

Lorsque $s \geq 5$, (10) et (8) donnent:

$$q_1^- \ll Q_t^{3/4} (\log Q_t)^{9/4}$$

et (9) donne avec j = 5 en utilisant le lemme 1 :

$$q_1^-\gg Q_t^{4/5}$$

d'où une impossibilité pour Q_t assez grand. Lorsque $3 \leq s \leq 4$, (8) donne $q_1^- \ll Q_t^{1/2} \log^2 Q_t$ et (9) donne avec j=3, $q_1^- \gg Q_t^{2/3}$, d'où impossibilité pour Q_t assez grand. Lorsque s=2, (8) donne

$$q_1 \ll Q_t^{1/2} \log^2 Q_t .$$

Le lemme 11 nous assure que tous les nombres premiers p vérifiant $p \le$ $cQ_t^{1/2}\log^{-2}Q_t$ divisent n. Choisissons $p\sim\log^5Q_t$, et considérons

$$n_1 = \frac{q_1 q_2}{pQ_t} n < n$$
.

On a:

$$f(n_1) - f(n) = -1 + \psi(p) + S(q_1^-, q_2^+) - Q_{t-1}/Q_t$$

 $\geq \psi(p) - (q_2^+ - q_1^-)^2/2(q_1^-)^2$.

Le lemme 11 nous dit que $q_1q_2 \geq Q_t$, soit $q_1 \gg Q_t^{1/2}$ et par la conjecture de Cramer,

$$\frac{(q_2^+ - q_1^-)^2}{2(q_1^-)^2} \ll \frac{\log^4 Q_t}{Q_t}$$

et par ailleurs, $\psi(p) \geq 4/pp^+ \gg \log^{-10} Q_t$, donc $f(n_1) > f(n)$ ce qui contredit le fait que n est f-champion, et le cas s = 2 est impossible.

La seule possibilité est donc s=1, et dans ce cas, (8) nous donne :

$$q_1 \leq Q_t^{1/2 + \circ(1)}$$

On raisonne alors comme lorsque s=2 pour montrer que tous les nombres premiers $q< q_1$ divisent n. Notre nombre n est donc ainsi de la forme N_k/q_1 , avec $q_1\leq p_k^{1/2+\mathrm{o}(1)}$.

2e cas: $s \ge t$. Ce cas se traite de façon similaire : on considère $n' = \frac{q_1q_2\dots q_t}{Q_1Q_2\dots Q_t}n$, et au lieu de (8), on obtient

(11)
$$(q_1^-)^2 \ll \frac{t^2}{(t-1)} Q_t \log^4 Q_t .$$

(9) est toujours valide pour $2 \le j \le t$, ainsi que la majoration de t-1 donnée par (10). Lorsque $t \ge 5$, on conclut comme pour $s \ge 5$ dans le premier cas. Lorsque $2 \le t \le 4$, (11) montre que q_1, \ldots, q_t sont très petits devant Q_1, \ldots, Q_t , et que l'on a f(n') > f(n) ce qui est impossible.

Remarque. Les calculs effectués sur les nombres premiers montrent que jusqu'à $4 \cdot 10^{12}$ la conjecture de Cramer est "vérifiée" (cf. [Rie], p.85). Il est possible d'adapter la démonstration de la proposition 2 pour calculer une table assez longue des nombres f-champions. La seule table que nous avons construite va jusqu'à 450 000, et donne les nombres f-champions :

$$N_2, N_3, N_4/2, N_4, N_5, N_6/2, N_6, N_7/2$$
.

Si la conjecture de Cramer est vraie, la proposition précédente nous dit qu'il n'y a pas de nombres f-champions entre $N_{k+1}/2$ et N_{k+1} . Supposons que q < q' < q'' sont trois nombres premiers consécutifs inférieurs à p_k et qu'il existe $\delta > 0$ tel que $q' - q > p_k^{1/2+\delta}$ et $q'' - q > p_k^{1/2+\delta}$. On aura $f\left(\frac{p_{k+2}}{2q'}N_{k+1}\right) > f\left(N_{k+1}/2\right)$, et il y aura un nombre f-champion entre $N_{k+1}/2$ et N_{k+1} , si p_{k+2} est voisin de p_{k+1} .

4. Grandes valeurs de la fonction F

Lemme 12. On définit, pour $k \geq 2$,

$$A_k = \prod_{1 \le j \le k-1} ((k-1)/j)^j .$$

On a ainsi: $A_2 = 1$, $A_3 = 2$, $A_4 = 27/4$, $A_5 = 4^5 3^{-3} = 37.9...$, etc. (i) Il existe un nombre réel $\alpha = 0.249...$, tel que, pour $k \ge 2$, on ait:

$$\log A_k = rac{(k-1)^2}{4} - rac{1}{12} \log(k-1) - lpha - rac{ heta}{720(k-1)^2} \quad ext{avec } 0 < heta < 1 \;.$$

(ii) On a, pour $k \geq 2$:

$$\frac{(k-2)^2}{4} \le \log A_k \le \frac{(k-1)^2}{4}$$
.

(iii) On a, pour $k \geq 2$:

$$(A_{k+1}/A_k)^{-2/(k(k-1))} = 1 - 1/k$$
.

Démonstration. On applique d'abord la formule sommatoire d'Euler - Mac Laurin à la fonction $x \log x$. (cf. [Han], p.287):

$$\sum_{j=1}^k j \log j = \frac{6k^2 + 6k + 1}{12} \log k - \frac{k^2}{4} + \alpha - \frac{1}{4} \sum_{m=1}^{\infty} \frac{k^{-2m}}{m(m+1)(2m+1)} B_{2m+2}$$

où α est le logarithme de la constante de Glaisher,

$$\alpha = 0.2487544770...$$

Comme les dérivées successives de $x \log x$ sont de signe constant et alterné, le reste est de même signe et plus petit en valeur absolue que le premier terme négligé. On obtient :

$$\sum_{j=1}^k j \log j = \frac{6k^2 + 6k + 1}{12} \log k - \frac{k^2}{4} + \alpha - \frac{\theta}{720k^2} \quad \text{avec } 0 < \theta < 1 \ .$$

On achève la preuve de (i), en observant que :

$$\log A_k = rac{k(k-1)}{2} \log(k-1) - \sum_{j=1}^{k-1} j \log j \; .$$

La démonstration de (ii) découle de (i), et (iii) se montre par un calcul direct.

Lemme 13. Soit $k \geq 2$, A_k comme dans le lemme 12, A un nombre réel $\geq A_k$. On pose :

$$M(A,k) = k - 1 - \frac{k}{2} (A/A_k)^{-2/(k(k-1))}$$
.

(i) On $a: M(A,k) \leq \sqrt{\log A}$.

(ii) Lorsque $A \to +\infty$,

$$M(A,k) \leq \sqrt{\log A} - 1/2 + O((\log \log A)/\sqrt{\log A})$$
.

(iii) Si $A_k \leq A \leq A_{k+1}$, on a:

$$\sqrt{\log A} - 1/2 \le M(A, k).$$

(iv) Si l'on définit ρ par :

$$(A/A_k)^{-2/(k(k-1))} = 1 - \rho/k$$
,

on a $0 \le \rho < k$, et:

$$(1/2 + M(A,k))^2 \leq \log A + \frac{1}{12}\log(k-1) + \frac{1}{4} + \frac{\rho^2}{4k} - \frac{k-1}{6k^2}\rho^3$$
.

Démonstration. Avec la définition de ρ donnée dans (iv), on a :

$$M(A,k)+1/2=(k-1+\rho)/2$$
,

et:

$$\log A = \log A_k - ((k(k-1))/2)\log(1-\rho/k) .$$

On minore $\log A_k$ par (i) du lemme précédent ; il vient :

$$(1/2 + M(A,k))^2 - \log A \le rac{1}{12} \log (k-1) + lpha + rac{k(k-1)}{2} \log (1-
ho/k) + rac{
ho(k-1)}{2} + rac{
ho^2}{4} \; .$$

On majore α par 1/4, et $\log(1-x)$ par $-x-x^2/2-x^3/3$, et cela donne (iv).

Lorsque k=2, M(A,2)=1-1/A, et (i) et (ii) se vérifient aisément. On peut donc supposer $k\geq 3$. Dans l'intervalle [0,k], la fonction $\rho: \frac{k-1}{6k^2}\rho^3-\frac{\rho^2}{4k}$ a un minimum atteint en $\rho_0=\frac{k}{k-1}$, qui vaut $-\frac{1}{12}\frac{k}{(k-1)^2}\geq -\frac{1}{16}$ pour $k\geq 3$; (iv) donne alors:

$$(12) \qquad (1/2 + M(A,k))^2 \le \log A + (1/12)\log(k-1) + 5/16.$$

Or, on a:

$$(\sqrt{\log A} + 1/2)^2 = \log A + \sqrt{\log A} + 1/4$$

$$\ge \log A + \sqrt{\log A_k} + 1/4 \ge \log A + \frac{k-2}{2} + \frac{1}{4}$$

$$\ge \log A + (1/12)\log(k-1) + 5/16$$

pour $k \geq 3$. Cela démontre (i).

Le lemme 12, (ii) donne

$$k-1 = \mathrm{O}(\sqrt{\log A_k})$$

et l'inégalité (12) donne :

$$(1/2 + M(A,k))^2 \le \log A + O(\log \log A),$$

d'où l'on déduit (ii). On peut, en fait, obtenir un développement asymptotique plus précis.

Enfin, lorsque k est fixé, (iv) définit ρ comme une fonction $\rho(A)$. Lorsque A croît de A_k à $+\infty$, $\rho(A)$ croît de 0 à k. Le lemme 12 (iii) nous dit que, pour $A_k \leq A \leq A_{k+1}$, on a $0 \leq \rho \leq 1$. On procède alors comue ci-dessus :

$$\log A - (1/2 + M(A, k))^2 = \log A_k - \frac{k(k-1)}{2} \log(1 - \rho/k) - \left(\frac{k-1+\rho}{2}\right)^2.$$

On majore $\log A_k$ par $(k-1)^2/4$, on utilise:

$$egin{array}{lll} -\log(1-
ho/k) & \leq &
ho/k + rac{
ho^2}{2k^2} \left(1 + rac{
ho}{k} + rac{
ho^2}{k^2} + \cdots
ight) \ & \leq &
ho/k +
ho^2/(2k(k-
ho)) \leq
ho/k +
ho^2/(2k(k-1)) \end{array}$$

(puisque $\rho < 1$), et l'on obtient (iii).

Problème d'optimisation N° 1. Soit $k \geq 2$, et A réel, A > 0. La solution du problème

$$\mathcal{P}(A,k) \left\{ egin{array}{ll} \min \sum_{1 \leq j \leq k-1} \exp(x_j/j) \ \sum_{1 \leq j \leq k-1} x_j + \log A = 0 \;, \; x_j \in \mathbf{R} \;. \end{array}
ight.$$

est donnée par

$$\lambda = \frac{1}{k-1} \left(\frac{A}{A_k}\right)^{-2/(k(k-1))},$$

$$x_i^* = j \log(j\lambda)$$
, $1 \le j \le k-1$,

et la valeur du minimum est :

$$\mathcal{M}(A,k) = rac{k(k-1)}{2}\lambda = rac{k}{2}ig(rac{A}{A_k}ig)^{-2/(k(k-1))}$$

où Ak est défini dans le lemme 12.

Démonstration. La contrainte et la fonction à minimiser sont convexes, il y a donc un minimum que l'on peut obtenir par la méthode des multiplicateurs de Lagrange : on doit avoir

$$e^{x_1^*} = \cdots = \frac{1}{j} e^{x_j^*/j} = \cdots = \lambda$$
.

On en déduit la valeur des x_j^* en fonction de λ , et en reportant dans la contrainte, la valeur de λ .

Lemme 14. Soit A > 0 et A_k et M(A,k) définis comme dans le lemme 13. On a, pour tout $k \geq 2$:

$$\frac{k+1}{2}(A/A_{k+1})^{-2/(k(k+1))} \leq 1 + \frac{k}{2}(A/A_k)^{-2/(k(k-1))}.$$

Cette inégalité est stricte, sauf lorsque $A = A_{k+1}$. Pour A fixé, la suite M(A,k) est croissante.

Démonstration. Si l'on complète la solution optimale du problème $\mathcal{P}(A, k)$ en faisant $x_k = 0$, on obtient une solution possible du problème $\mathcal{P}(A, k+1)$, ce qui démontre l'inégalité. En calculant x_k^* dans $\mathcal{P}(A, k+1)$, on voit que l'inégalité est stricte sauf si $A = A_{k+1}$. Lorsque $A = A_{k+1}$, la relation (iii) du lemme 12 montre qu'il y a égalité.

Problème d'optimisation N° 2. Soit $k \geq 2$, $A \geq 1$,

$$\mathcal{P}^-(A,k) \left\{ egin{array}{ll} \min f_1(x) &= \sum_{1 \leq j \leq k-1} \exp(x_j/j) \ g_1(x) &= \sum_{1 \leq j \leq k-1} x_j = -\log A \ x_j \leq 0 \;\; ; \;\; 1 \leq j \leq k-1 \; . \end{array}
ight.$$

On définit $r \geq 2$ par $A_r \leq A < A_{r+1}$.

 $Si\ r \geq k$, la solution du problème 2 est celle du problème 1. La valeur du minimum est

$$\mathcal{M}^-(A,k) = \mathcal{M}(A,k) = \left(\frac{k}{2}\right)\left(\frac{A}{A_k}\right)^{-2/(k(k-1))}$$
.

Si r < k, la solution de $\mathcal{P}^-(A,k)$ est donnée par : x_1^*, \ldots, x_{r-1}^* sont solution de $\mathcal{P}^-(A,r)$ et $x_r^*, \ldots, x_{k-1}^* = 0$. On a ainsi

$$\mathcal{M}^{-}(A,k) = k - r + \frac{r}{2} \left(\frac{A}{A_r}\right)^{-2/(r(r-1))}$$
.

Démonstration. On applique la méthode des multiplicateurs de Kuhn et Tucker (cf. [Pch-Da], p.25). Il existe des multiplicateurs $\lambda \in \mathbf{R}$, $\mu_i \geq 0$ avec $\mu_i x_i^* = 0$ et tels que

$$f_1(x) - \lambda g_1(x) - \sum_{1 \leq i \leq k-1} \mu_i x_i$$

soit minimum en x^* .

On peut voir que les x_i^* nuls sont ceux d'indice i grand : si l'on avait $x_j^* = 0$, $x_i^* < 0$ avec i > j, en permutant les valeurs de x_j^* et x_i^* on diminuerait f, car :

$$e^{x_i^*/j} + 1 < 1 + e^{x_i^*/i}$$
.

La solution est donc du type :

$$x_1^*, \dots, x_{s-1}^* < 0$$
 et $x_s^* = \dots = x_{k-1}^* = 0$ avec $1 \le s \le k$.

Pour un s fixé, $2 \le s \le k$, on résoud comme dans le problème 1, et on trouve :

$$\lambda = rac{1}{s-1} ig(rac{A}{A_s}ig)^{-2/(s(s-1))} \ x_i^* = j \log(j\lambda) \; ; \quad 1 \leq j \leq s-1 \; .$$

La condition d'admissibilité est $x_j^* < 0$, pour $1 \le j \le s-1$, soit $(s-1)\lambda < 1$, soit $A_s < A$, c'est-à-dire $2 \le s \le r$. Pour chacune de ces valeurs de s, on calcule le minimum de $f_1(x)$ correspondant et on trouve :

$$\lambda = k - s + rac{s}{2} \Big(rac{A}{A_s}\Big)^{-2/(s(s-1))}$$
 .

Or, le lemme 14 montre que ceci est minimum lorsque s est le plus grand possible, c'est-à-dire s=r.

Proposition 3. Pour k fixé ≥ 2 , et A > 0, la solution $\mathcal{M}(A,k)$ du problème 1 est une fonction décroissante en A.

Pour k fixé ≥ 2 et $A \geq 1$, la solution $M^-(A,k)$ du problème 2 est une fonction décroissante en A.

Pour $A \ge 1$ fixé, on définit r par $A_r \le A < A_{r+1}$.

La suite $(u_k)_{k\geq 2}$ définie par $u_k=k-1-\mathcal{M}^-(A,k)$ est une suite croissante en k, constante pour $k\geq r$, et majorée par $\sqrt{\log A}$.

Démonstration. Soit A < A', et soit $x^* = (x_1^*, \ldots, x_{k-1}^*)$ la solution de $\mathcal{P}(A, k)$. Alors, si l'on pose $\tilde{x}_1 = x_1^* + \log A/A' < x_1^*$, $\tilde{x} = (\tilde{x}_1, x_2^*, \ldots, x_{k-1}^*)$ est une solution possible de $\mathcal{P}(A', k)$ et $f_1(\tilde{x}) < f_1(x^*)$.

La même preuve est valable pour $\mathcal{P}^-(A,k)$.

Supposons $2 \le k \le r$. Nous savons que

$$\mathcal{M}^-(A,k) = rac{k}{2} \Big(rac{A}{A_k}\Big)^{-2/(k(k-1))}$$

et il résulte du lemme 14 que

$$u_2 \leq u_3 \leq \ldots \leq u_r$$
.

Supposons maintenant que k>r. La solution du problème d'optimisation N° 2 nous indique que

$$u_k = r - 1 - \left(\frac{r}{2}\right) \left(\frac{A}{A_r}\right)^{-2/(r(r-1))} = M(A, r)$$

et l'on applique le lemme 13, (i).

Problème d'optimisation N° 3. Soit $k \geq 2$ et $B \geq 1$. La solution du problème :

$$\mathcal{P}_3(B,k) \left\{egin{array}{ll} \displaystyle\max \sum_{1 \leq i \leq k-1} (1-y_i/y_{i+1}) \ 1 \leq y_1 \leq y_2 \leq \ldots \leq y_k \ y_1 y_2 \ldots y_k = B \end{array}
ight.$$

est $k-1-\mathcal{M}^-(B,k) \leq \sqrt{\log B}$.

Démonstration. Si l'on fixe $y_1 \leq B^{1/k}$, par le changement de variable

$$x_i = i \log(y_{k-i}/y_{k-i+1})$$

on se ramène au problème $\mathcal{P}^-(B/y_1^k,k)$, et le maximum pour y_1 fixé est $k-1-\mathcal{M}^-(B/y_1^k,k)$. D'après la proposition précédente, ceci est maximum lorsque $y_1=1$, et $\leq \sqrt{\log B}$.

Remarque. Il résulte également de la proposition 3 que la solution du problème 3 reste la même si l'on remplace la dernière contrainte par : $y_1y_2 \dots y_k \leq B$.

Proposition 4. Soit $k \geq 2$ et des nombres réels > 0 vérifiant :

$$1 \leq t_1 \leq t_2 \leq \ldots \leq t_k .$$

On a l'inégalité

$$\sum_{1 \leq i \leq k-1} (1 - t_i/t_{i+1}) \leq \sqrt{\log \left(\prod_{1 \leq i \leq k} t_i\right)}.$$

Démonstration. On pose, dans le problème d'optimisation précédent $y_i = t_i$.

C. Pomerance nous a donné une démonstration directe de cette inégalité, par récurrence sur k, et utilisant le calcul de la différentielle de la fonction

$$\sqrt{\sum \log t_i} - \sum_{i=1}^{k-1} (1 - t_i/t_{i+1})$$
.

Problème d'optimisation N° 4. Soit $k \geq 2$, $B \geq 1$ et $z \geq 1$ vérifiant $z^k \leq B$. La solution du problème :

$$\mathcal{P}_4(B,k,z) \left\{egin{array}{ll} \max \sum\limits_{1 \leq i \leq k-1} (1-y_i/y_{i+1}) \ z \leq y_1 \leq y_2 \leq \ldots \leq y_k \ y_1 y_2 \ldots y_k = B \end{array}
ight.$$

vaut $\mathcal{M}_4(B,k,z) = k-1-\mathcal{M}^-(B/z^k,k)$.

Lorsque $B \to +\infty$, que $\log z = \mathrm{O}(\log B)^{1/10}$ et que $B/z^k \to +\infty$, on a :

(13)
$$M_4(B,k,z) \leq \sqrt{\log B} - \log z - 1/2 + o(1).$$

Démonstration. Ce problème se ramène à $\mathcal{P}_3(B/z^k, k)$ par le changement de variables $y_i' = y_i/z$.

Lorsque $B/z^k < A_k$, on définit r par $A_r \leq B/z^k < A_{r+1}$, et l'on a :

$$M_4(B,k,z) = M(B/z^k,r) \leq M(B/z^r,r)$$

puisque k > r. Lorsque $B/z^k \ge A_1$, on a:

$$\mathcal{M}_4(B,k,z) = M(B/z^k,k) .$$

Pour démontrer (13), on doit donc prouver :

(14)
$$M(B/z^{k}, k) \leq \sqrt{\log B} - \log z - 1/2 + o(1)$$

lorsque $B/z^k \to +\infty$, $\log z = \mathrm{o}(\log B)^{1/10}$ et $B/z^k \ge A_k$.

1er cas: $k \leq (1/2)\sqrt{\log B}$. La définition de M(A,k) donnée dans le lemme 13 indique $M(A,k) \leq k$ et (14) en découle.

2e cas: $k \ge 2\sqrt{\log B} - (\log B)^{7/20}$. Le lemme 13, (ii) donne :

$$M(B/z^{k}, k) \leq (\log B - k \log z)^{1/2} - 1/2 + o(1)$$

$$\leq \sqrt{\log B} \left(1 - \frac{k \log z}{2 \log B}\right) - 1/2 + o(1)$$

$$\leq \sqrt{\log B} - \log z - 1/2 + \frac{\log z}{2(\log B)^{3/20}} + o(1)$$

et comme $\log z = o(\log B)^{1/10}$, cela démontre (14).

3e cas: $(1/2)\sqrt{\log B} \le k \le 2\sqrt{\log B} - (\log B)^{7/20}$. On a donc: $k \ge \sqrt{\log B}$.

On pose $A = B/z^k$, et avec les notations du lemme 13, (iv),

$$-\log(1-\rho/k) = \frac{2}{k(k-1)}(\log A - \log A_k) \le \frac{2\log B}{k(k-1)} \le 8 + \mathrm{o}(1)$$

et il s'en suit que

$$-\log(1-\rho/k) \simeq \rho/k$$
.

On a alors, par le lemme 12, (i):

$$\log A - \log A_k = \log B - k \log z - \log A_k$$

$$= \log B - k^2/4 + O(\log B)^{6/10}$$

$$= (\sqrt{\log B} - k/2)(\sqrt{\log B} + k/2) + O(\log B)^{6/10}$$

et le terme en O est négligeable devant le premier terme. Il s'en suit que

$$\rho = \sqrt{\log B} - k/2 \gg (\log B)^{7/20} .$$

On applique alors le lemme 13, (iv):

$$(1/2 + M(A,k))^2 \le \log A - R$$

avec $R \gg \rho^3/k$. On en déduit :

$$\begin{aligned} 1/2 + M(A,k) &\leq \sqrt{\log B} \left(1 - \frac{k \log z}{\log B} - \frac{R}{\log B} \right)^{1/2} \\ &\leq \sqrt{\log B} \left(1 - \frac{k \log z}{2 \log B} - \frac{R}{2 \log B} \right) \\ &= \sqrt{\log B} - \log z + \frac{1}{\sqrt{\log B}} [\log z (\sqrt{\log B} - k/2) - R/2]. \end{aligned}$$

Dans le crochet, le premier terme est de l'ordre de $\rho \log z$ et $R \gg \rho^3/k$. On a $\rho^2/k \gg (\log B)^{4/20} \gg \log z$, ce crochet est donc négatif, et cela montre (14).

Démonstration du théorème 2, (i). On écrit

$$n = q_1^{\alpha_1} \dots q_k^{\alpha_k}; \qquad q_1 < q_2 < \dots < q_k.$$

On choisit z un nombre premier compris entre $(1/2)\log n$ et $\log n$. On détermine s tel que $q_{s-1} < z \le q_s$.

1er cas: z divise n. On a alors $z = q_s$. Il vient :

$$F(n) = \sum_{i=1}^{s-1} (1 - q_i/q_{i+1}) + \sum_{i=s}^{k-1} (1 - q_i/q_{i+1}) = S_1 + S_2.$$

Le lemme 6 donne :

$$S_1 = \log(q_s/q_1) - \sum_{i=1}^{s-1} L(q_i, q_{i+1}) \le \log z - C - \log 2 + o(1)$$
.

Quant à S_2 , elle est majorée par la solution du problème d'optimisation N° 4 :

$$S_2 \leq \mathcal{M}_4(n, k - s, z) \leq \sqrt{\log n} - \log z - 1/2 + o(1)$$
.

Au total,

$$F(n) = S_1 + S_2 \le \sqrt{\log n} - C' + o(1)$$

avec $C' = C + \log 2 + 1/2 = 1.70...$

2e cas: z ne divise pas n. On pose alors n' = nz. La démonstration du 1er cas montre :

$$F(n') \le \sqrt{\log n'} - C' + o(1) \le \sqrt{\log n} - C' + o(1)$$

et:

$$F(n') = F(n) + 1 - \left(\frac{z-q_{s-1}}{z}\right)\left(\frac{q_s-z}{q_s}\right) > F(n)$$
,

ce qui achève la démonstration.

Démonstration du théorème 2, (ii). Elle résulte de la proposition suivante:

Proposition 5. Soit N tendant vers l'infini. Il existe $n \leq N$ tel que $F(n) \geq \sqrt{\log N} - C' + o(1)$.

Démonstration. On définit d'abord k en fonction de N par : $A_k \leq N < A_{k+1}$, où A_k est défini dans le lemme 12. On définit ensuite ρ par :

$$(N/A_k)^{-2/(k(k-1))} = 1 - \rho/k$$
,

et l'on sait par le lemme 12 (iii) que $0 \le \rho \le 1$.

La solution du problème d'optimisation N° 1, $\mathcal{P}(N,k)$ est donnée par : $\lambda = (1/(k-1))(1-\rho/k)$ et $x_j^* = j\log(j\lambda)$ pour $1 \leq j \leq k-1$. La solution du problème d'optimisation N° 3 $\mathcal{P}_3(N,k)$ vaut M(N,k), et est définie par $y_1 = 1$, et $y_{j+1}/y_j = \exp(-x_{k-j}^*/(k-j)) = 1/((k-j)\lambda)$. On a donc, pour $2 \leq j \leq k$:

(15)
$$y_j = \left(\frac{k-1}{k-\rho}\right)^{j-1} \frac{k^{j-1}}{(k-1)\dots(k-j+1)},$$

pour $1 \le j \le k-1$:

(16)
$$\frac{k-1}{k-j} \le \frac{y_{j+1}}{y_j} = \frac{(k-1)k}{(k-j)(k-\rho)} \le \frac{k}{k-j},$$

et d'après le lemme 13,

(17)
$$M(N,k) = \sum_{j=1}^{k-1} 1 - y_j/y_{j+1} = \sqrt{\log N} - 1/2 + o(1).$$

Comme $0 \le \rho \le 1$, il résulte de (15) :

$$\frac{(k-2)^{j-2}}{(k-2)\dots(k-j+1)} \le y_j \le \frac{k^{j-1}}{(k-1)\dots(k-j+1)}$$

et, en utilisant (1), on a pour $j \leq k/2$:

(18)
$$\log y_j \leq -\sum_{i=1}^{j-1} \log(1-i/k) \leq \frac{j(j-1)}{2k} + \frac{j^3}{2k^2},$$

et

(19)
$$\log y_j \geq -\sum_{i=2}^{j-1} \log \left(1 - \frac{i-2}{k-2}\right) \geq \frac{(j-3)(j-2)}{2k}.$$

Nous allons construire une famille de nombres premiers, aussi proches que possible des nombres y_k , dont le produit sera l'entier n cherché.

On choisit $r = \lfloor \sqrt{3k \log k} \rfloor + 4$. On a, par (19)

(20)
$$\log y_r \ge \frac{(r-3)(r-2)}{2k} \ge \frac{3}{2} \log k .$$

Pour tout $j \geq r$, on a:

$$\begin{array}{rcl} y_{j+1} - y_j & = & y_j \Big(\frac{k-1}{k-j} \, \frac{k}{k-\rho} - 1 \Big) \geq y_j \Big(\frac{k-1}{k-j} - 1 \Big) = y_j \frac{j-1}{k} \\ & \geq & y_r^{1/3} \frac{r-1}{k} y_j^{2/3} \geq \sqrt{3 \log k} \, \, y_j^{2/3} \geq y_j^{2/3} \, \, . \end{array}$$

Pour $r \leq j \leq k$, on désigne par P_j le nombre premier qui précède immédiatement y_j . On a, d'après le lemme 2: $P_{j+1} > y_j$. Il vient ensuite:

$$\frac{P_j}{P_{j+1}} + \frac{y_j(1 + \mathrm{O}(y_j^{-1/3}))}{y_{j+1}(1 + \mathrm{O}(y_{j+1}^{-1/3}))} = \frac{y_j}{y_{j+1}}(1 + \mathrm{O}(y_j^{-1/3})) = \frac{y_j}{y_{j+1}} + \mathrm{O}(y_j^{-1/3}) \ .$$

On doit maintenant majorer:

$$\sum_{r \le j \le k-1} y_j^{-1/3} \le y_r^{-1/3} \sum_{j \ge 0} \left(\frac{k-r}{k-1} \right)^{j/3} = y_r^{-1/3} \frac{1}{1 - \left(1 - \frac{r-1}{k-1} \right)^{1/3}} .$$

En utilisant l'inégalité $(1-x)^{1/3} \le 1-x/3$, valable pour $0 \le x \le 1$, ceci est inférieur à : $y_r^{-1/3} \frac{3(k-1)}{r-1} = \mathrm{O}(1/\sqrt{\log k})$. On a donc :

(21)
$$\sum_{r \leq j \leq k-1} (1 - P_j/P_{j+1}) = \sum_{r \leq j \leq k-1} (1 - y_j/y_{j+1}) + O(1/\sqrt{\log k}).$$

On déduit ensuite de (18) :

$$\log y_r \leq \frac{(r-4)^2}{2k} + \mathrm{O}\Big(\frac{r}{k}\Big) + \mathrm{O}\Big(\frac{r^3}{k^2}\Big) \leq \frac{3}{2} \log k + \mathrm{O}\Big(\frac{(\log k)^{3/2}}{\sqrt{k}}\Big) \enspace.$$

Il s'ensuit que :

(22)
$$P_r \le y_r \le k^{3/2} + O(k(\log k)^{3/2}) = (1 + o(1))k^{3/2}.$$

On choisit ensuite comme facteurs premiers de n tous les nombres premiers $p_1=2$, $p_2,\ldots,p_s\leq k^{1/4}$. On a par le lemme 7

(23)
$$\sum_{1 \le i \le s} (1 - p_i/p_{i+1}) = \log p_{s+1} - \log 2 - C + O(s^{-1/6}).$$

Il reste à choisir les facteurs premiers de n entre p_s et P_r .

On choisit $q_0 = p_{s+1}$, puis, par récurrence, on détermine q_{i+1} dans l'intervalle $[q_i(1+1/\log^2 k), q_i(1+2/\log^2 k)]$. On détermine t tel que $q_t < P_r \le q_{t+1}$. On a :

$$P_r \geq q_t \geq q_0 (1 + 1/\log^2 k)^t$$
,

c'est-à-dire :

$$t\log(1+1/\log^2 k) \leq \log(P_r/q_0) = (5/4 + o(1))\log k,$$

et:

$$t = O(\log^3 k) .$$

L'inégalité (1) nous donne alors pour $1 \le i \le t-1$:

$$1 - q_i/q_{i+1} \le \log(q_{i+1}/q_i) \le 1 - q_i/q_{i+1} + \frac{1}{2} \left(\frac{q_{i+1} - q_i}{q_i}\right)^2$$

et comme
$$\sum_{i=1}^{t-1} \left(\frac{q_{i+1}-q_i}{q_i}\right)^2 = \mathrm{O}(t/\log^4 k) = \mathrm{O}(1/\log k)$$
, on a :

(24)
$$\sum_{i=0}^{t-1} (1 - q_i/q_{i+1}) = \log(q_t/q_0) + o(1) = \log(P_r/p_{s+1}) + o(1).$$

On a également :

(25)
$$\sum_{i=1}^{t} \log q_i \leq t \log P_r = O(\log^4 k) .$$

On pose:

$$n = (\prod_{i=1}^{s+1} p_i) (\prod_{i=1}^t q_i) (\prod_{i=s}^k P_i) .$$

Par (19), on a :

$$\sum_{i=1}^{r-1} \log y_i \ge \sum_{i=1}^{r-1} \frac{(i-3)(i-2)}{2k} = \frac{(r-2)(r-3)(r-4)}{6k} \gg \sqrt{k}.$$

Par le lemme 1, on a :

$$\sum_{i=1}^{s+1} \log p_i = O(k^{1/4}) ,$$

et avec (25), et le choix de $P_j \leq y_j$, on obtient

$$\log n \leq \sum_{i=1}^k \log y_i = \log N .$$

D'autre part, on a :

$$F(n) = \sum_{i=1}^{s} (1 - p_i/p_{i+1}) + \sum_{i=0}^{t-1} (1 - q_i/q_{i+1}) + (1 - q_t/P_r) + \sum_{i=r}^{k-1} (1 - P_i/P_{i+1}).$$

Comme $q_t \sim P_r$, on a par (23), (24) et (21):

$$F(n) = \log P_r - C - \log 2 + \sum_{i=r}^{k-1} (1 - y_i/y_{i+1}) + o(1) .$$

Or,

$$\sum_{i=1}^{r-1} (1 - y_i/y_{i+1}) = \sum_{i=1}^{r-1} 1 - \frac{(k-i)(k-\rho)}{k(k-1)}$$

$$= -\frac{1-\rho}{k-1}(r-1) + \frac{r(r-1)(k-\rho)}{2k(k-1)} = \frac{3}{2}\log k + o(1).$$

Il résulte de (20) et (22) que $\log P_r = \frac{3}{2} \log k + o(1)$, et l'on a :

$$F(n) = \sum_{i=1}^{k-1} (1 - y_i/y_{i+1}) - C - \log 2 + o(1)$$
,

ce qui, avec (17) démontre la proposition.

Il est certainement possible d'améliorer le terme o(1) en un reste plus explicite, qui permettrait d'améliorer la proposition 6 sur les nombres F-champions, mais les calculs sont techniques.

Proposition 6. Soit N un nombre F-champion, c'est-à-dire tel que $n < N \Rightarrow F(n) < F(N)$. Un tel nombre est sans facteur carré, et s'écrit $N = Q_1Q_2 \dots Q_k$, avec $Q_1 < Q_2 < \dots < Q_k$.

Lorsque $N \to +\infty$, on a:

- (i) $F(N) = \sqrt{\log N} C' + o(1)$.
- (ii) $k = \omega(N) = 2\sqrt{\log N}(1 + O(1/\log\log N))$.
- (iii) $Q_k = \exp((2 + o(1))\sqrt{\log N})$.
- (iv) $\lim_{N\to\infty} (Q_k/Q_{k-1}) = +\infty$.
- (v) Soit p premier fixé, il existe n_0 tel que p divise tout nombre N, F-champion, supérieur à n_0 .
- (vi) La quantité Q(X) de nombres F-champion $\leq X$ vérifiée : $Q(X) \geq \exp((9/10 + o(1))\sqrt{\log X})$.

Démonstration. (i) se déduit immédiatement du théorème 2 et de la proposition 5.

Supposons que $k_0 = 2\sqrt{\log n} - \varphi(n)(\log n)^{1/3}$, où $\lim_{n \to +\infty} \varphi(n) = +\infty$, et $\varphi(n) = o(\log n)^{1/6}$, et que $\omega(n) = k \le k_0$, alors $F(n) \le P_3(n,k)$, solution du problème d'optimisation N° 3, et donc $F(n) \le M(n,k) \le M(n,k_0)$ par la proposition 3. Pour étudier $M(n,k_0)$, on fait A = n et $k = k_0$ dans le lemme 13. On définit ρ par :

$$\log n - \log A_{k_0} = -\frac{k_0(k_0-1)}{2}\log(1-\rho/k_0),$$

et l'on déduit du lemme 12, (i) :

$$\rho/2 \sim \sqrt{\log n} - k_0/2 = \frac{1}{2} \varphi(n) (\log n)^{1/3}$$
.

Le lemme 13, (iii) nous donne :

$$(1/2 + M(n, k_0))^2 \le \log n - (1 + o(1))\varphi^3(n)\sqrt{\log n}/12$$
.

Il s'ensuit que

$$1/2 + M(n,k_0) \leq \sqrt{\log n} \Big(1 - \Big(\frac{1}{24} + \mathrm{o}(1)\Big) \varphi^3(n) / \sqrt{\log n}\Big) \ .$$

D'après (i), un tel n ne peut être F-champion, et l'on a donc $\omega(N) \geq k_0$. Pour majorer $\omega(N)$, considérons $n = q_1 q_2 \dots q_k$, et choisissons $z = \sqrt{\log n}$. On détermine t par $q_t \leq z < q_{t+1}$. On a d'après (1):

$$\sum_{i=1}^{t-1} (1 - q_i/q_{i+1}) \le \sum_{i=1}^{t-1} \log(q_{i+1}/q_i) \le \log z.$$

Par ailleurs, la proposition 4 appliquée aux nombres $q_{t+1}/z, \ldots, q_k/z$, donne :

$$\sum_{i=t+1}^{k-1} (1 - q_i/q_{i+1}) \le \sqrt{\log(n/z^{k-t})}.$$

On a: $t \le \pi(z)$ et donc $t \log z = O(z)$. Il vient ensuite :

$$F(n) \leq \log z + 2 + \sqrt{\log n - k \log z + O(z)}$$

$$\leq \sqrt{\log n} + \left(\frac{1}{2} - \frac{k}{4\sqrt{\log n}}\right) \log \log n + O(1).$$

On voit donc qu'il existe a tel que, si $k \geq 2\sqrt{\log n} \left(1 + \frac{a}{\log \log n}\right)$ alors $F(n) \leq \sqrt{\log n} - 2C'$, et donc n ne peut pas être F-champion. Cela achève la preuve de (ii).

De l'inégalité (1), on déduit $F(N) \leq \log Q_k$, et (i) donne $Q_k \gg \exp(\sqrt{\log N})$.

Soit Q un nombre premier vérifiant $Q_k \log N \le Q \le 2Q_k \log N$. On a, par (i), et (i) du théorème 2 :

$$\sqrt{\log N} + 1 - C' + o(1) \le F(NQ) \le \sqrt{\log NQ} - C' + o(1)$$
,

d'où l'on déduit $\log Q \geq (2 + o(1))\sqrt{\log N}$, et

(26)
$$\log Q_k \ge \log(Q/(2\log N)) \ge (2 + o(1))\sqrt{\log N}$$
.

On considère de même $F(N/Q_k) = F(N) - 1 + Q_{k-1}/Q_k$, et l'on a :

$$\sqrt{\log N} - 1 - C' + Q_{k-1}/Q_k + o(1) \le \sqrt{\log N/Q_k} - C' + o(1)$$
,

d'où l'on déduit :

$$\log Q_k \leq 2(1 - Q_{k-1}/Q_k + o(1))\sqrt{\log N}$$
,

ce qui, avec (26), démontre à la fois (iii) et (iv).

Soit p fixé, et n non multiple de p. Posons $a_p = (1 - p^-/p)(1 - p/p^+) > 0$. Il résulte de la démonstration du lemme 6, que, si $n = q_1q_2 \dots q_k$, on a:

$$\sum_{\substack{i \ q_i \leq x}} L(q_i, q_{i+1}) \geq C + a_p - \log q_1 + \log 2 + o(1) .$$

La démonstration du théorème 2, (i) montre que pour un tel n, on a: $F(n) \leq \sqrt{\log n} - C' - a_p + o(1)$, qui, compte tenu de (i), montre que n n'est pas un nombre F-champion, ce qui prouve (v).

Pour démontrer (vi), on observe d'abord que $F(NQ_k^+/Q_k) > F(N)$, ce qui entraı̂ne que, si l'on désigne par $(H_j)_{j\geq 1}$ la suite croissante des nombres F-champions, on a par le lemme 2 et (iii) :

$$H_{j+1} \le H_j (1 + \exp\left((-\frac{9}{10} + o(1))\sqrt{\log H_j})\right)$$

pour j suffisamment grand.

Soit X assez grand, et soit $N_{j_0} \leq X/2 < N_{j_0+1}$. On a :

$$H_{j_0+k} \le (X/2)(1 + \exp((-9/10 + o(1))\sqrt{\log X/2}))^k$$

et comme $(1+u)^{(\log 2)/u} \le 2$, on voit que pour $k \le k_0$, avec

$$k_0 = (\log 2) \exp((9/10 + o(1))\sqrt{\log X/2})$$

on aura $H_{j_0+k} \leq X$, ce qui achève la preuve de (vi).

Remarque. Il nous est possible de donner d'autres propriétés des nombres F-champions. Cependant, nous n'avons pas pu obtenir une majoration satisfaisante pour Q(X), et nous ne savons pas prouver pour le moment $Q(X) = \mathrm{o}(X^{\delta})$ avec $\delta < 1$. J.-P. Massias a construit une table des nombres F-champions jusqu'à un million.

Références

- [Cra] H. Cramer, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica 2 (1936), 23-46.
- [De K-I] J.M. De Koninck et A. Ivić, On the distance between consecutive divisors of an integer, Canad. Math. Bull. (2) 29 (1986), 208-217.
- [Erd 1] P. Erdös, Problems and results on the difference of consecutive primes, Publ. Math. Debrecen 1 (1949-50), 33-37.
- [Erd 2] P. Erdös, Some problems on number theory, Actes du colloque de théorie analytique et élémentaire des nombres, CIRM, 30 mai-3 juin 1983, Publications Mathématiques d'Orsay 86-01, 53-67.
- [Han] E.R. Hansen, A table of series and products, Prentice Hall, 1975.
- [H-B] D.R. Heath-Brown, The difference between consecutive primes III, J. London Math. Soc. (2) 20 (1979), 177-178.
- [H-B-Iwa] D.R. Heath-Brown and H. Iwaniec, On the difference between consecutive primes, Inv. Math. 55 (1979), 49-69.
- [Maier] H. Maier, Chains of large gaps between consecutive primes, Advances in Math. 39 (1981), 257-269.
- [Moz] C.J. Mozzochi, On the difference between consecutive primes, J. Number Theory 24 (1986), 181-187.
- [Pch-Da] B. Pchenitchny et Y. Daniline, Méthodes numériques dans les problèmes d'extremum, Editions MIR, Moscou 1977.
- [Rie] H. Riesel, Prime numbers and computer methods for factorization Progress in Mathematics, vol. 57, Birkhäuser 1985.
- [Ros-Sch 1] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. of Math. 6 (1962), 64-94.

- [Ros-Sch 2] J.B. Rosser and L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, Math. of Comp. 29 (1975), 243-269.
- [Sch] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$ II, Math. of Comp. 30 (1976), 337-360.
- [Ten] G. Tenenbaum, Sur un problème extrêmal en arithmétique, Ann. Inst. Fourier 37-2 (1987), 1-18.
- [Vose] M.D. Vose, Integers with consecutive divisors in small ratio, J. of Number Theory 19 (1984), 233-238.

Jean-Louis NICOLAS
Département de Mathématiques
Université de Limoges
123, avenue Albert Thomas
F-87060 LIMOGES Cedex
France

Paul ERDÖS A Magyar Akadémia Matematikai Kutató Intézete Reáltanoda u. 13-15 Pf. 127 H-1364 BUDAPEST Hongrie