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ABSTRACT

We prove the following conjecture of Erdés and Hajnal: For any fixed
positive integer t and for any 2-coloring of the edges of K,, there exists
X C MKy} such that |X| = t and X monochromatically dominates all but
at most n/2" vertices of K,. In fact, X can be constructed by a fast
greedy algorithm.

1. INTRODUCTION

A 2-colored graph G is a graph with edges colored red or blue. A set X C V(G)
r-dominates, (b-dominates) Y C V(G) if X N Y = & and for each y € Y there
exists x € X such that the edge (x,y) is red (blue). The set X C V(G) domi-
nates Y C V(G) if either X r-dominates Y or X b-dominates Y.

Note that in this definition of domination X does not dominate itself. In par-
ticular, a set A on ¢ vertices is said to dominate all but at most k vertices of G if
A dominates B and |V(G) — A — B| = k. The following conjecture is due to
Erdds and Hajnal ([2]). For given positive integers n, t, any 2-colored K, (com-
plete graph on n vertices) has a set X, of at most r vertices dominating all but at
most n/2’ vertices of K,. The conjecture is trivial for t = 1, and the case t = 2
has been proved by Erdés and Hajnal. In this paper the general conjecture is
proved. In fact, the proof method shows that one vertex of X, can be chosen ar-
bitrarily. The following “antisymmetric” or “off-diagonal” generalization of the
conjecture is also proved: for any g € (0,1), i.e., real 3, 0< B <1, a 2-
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colored K, either contains a set X, such that [X,| = r and X, r-dominates all but
at most B'n vertices of K,, or contains a set X, such that [X,| < ¢ and X,
b-dominates all but at most (1 — B)'n vertices of K,,.

The results mentioned so far are corollaries of the following theorem:

Theorem 1. Let G = [X, Y] be a 2-colored complete bipartite graph, ¢ be a
nonnegative integer, and 8 € (0, 1). Then at least one of the following two
statements is true:

1. Some subset of at most ¢ vertices of X r-dominates all but at most
B (X| + |Y]) vertices of Y.

2. Some subset of at most ¢ vertices of ¥ b-dominates all but at most
(1 — B)Y*(X| + |¥|) vertices of X.

Corollary 1. Let K, be 2-colored, p a vertex of K,,, and k a positive integer
and 8 € (0, 1). Then there exists a set A C V(X,) such that p € A, and
|A| = k and either A r-dominates all but at most (n — 1)8* vertices of K, or A
b-dominates all but at most (n — 1) (1 — B)" vertices of X,,.

Proof. Let X denote the set of red adjacencies of p in K, and let Y denote
the set of blue adjacencies of p in K,. Apply the theorem with ¢ = &k — 1.

Choosing 8 = 1/2 in Corollary 1 gives the following corollary:

Corollary 2. Let K, be 2-colored, p € V(K,) and k is a positive integer.
There exists a set A C V(K,) such that p € A, |A| = k and A dominates all but
at most (n — 1)/2* vertices of K,,.

If k = |log(n — 1)] + 1 (log is of base 2), then (n — 1)/2* < 1, so the next
corollary follows from Corollary 2.

Corollary 3. Let K, be 2-colored, p € V(K,). Then there exists a set A C
V(K,) such that |A| = [log(n — 1)] + 1, p € A, and A dominates all vertices
of K, — A.

The proof of Theorem 1 is given in the next section, The third section of the

paper is a summary of remarks and related results.

2. PROOF OF THEOREM 1
The following proposition will be used in the proof of Theorem 1:

Proposition. Let ¥ € [0, 1] and let ¢ be a nonnegative integer. If [A,B] is a
2-colored complete bipartite graph such that the red degree of each vertex in A
is at most y|B|, then there exists a subset of at most ¢ vertices of B that b-
dominates all but at most y/|A| vertices of A.
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Proof. The proposition is trivial for t = 0. Assume that 7 = 1 and let
¥y, € B be a vertex of maximum blue degree. Since [A, B] has at least
(1 — y)|A||B| blue edges, the blue degree of y, is at least (1 — y)|A|. There-
fore, y, b-dominates all but at most y|A| vertices of A. Let A, denote the set of
vertices in A not b-dominated by {y,}, and repeat the process with [A,,B].
Since the number of blue edges of [A,, B] is at least (1 — y)|4,||B|, there
exists y, € B with blue degree at least (1 — y)|A,| in [A,,B]. Therefore y, b-
dominates all but at most y|A,| vertices of A,, which implies that {y,, y,} b-
dominates all but at most y|4,| = y’|A| vertices of A. Note that y, = y, is
possible. The proposition follows by repeating this argument.

The following inequality of Minkowski is needed (see [1], p. 26):

Lemma. If g, b, are nonnegative real numbers fori = 1,2,...,n, then

n n 1in n lin
[[(a + b)" = (1'[ a.-) + (H br)
i=1 i=1 i=1

Proof of Theorem 1. The theorem is trivial for = 0. Assume that ¢ = 1
and let x, be a vertex of X with largest red degree in [X, Y]. Set ¥, = [ 4(x)),
where I’ 4(x) denotes the set of red adjacencies of x. Let x, be a vertex of X
with largest red degree in [X,Y — Y], set ¥, = ' y(x;) N (¥ — Y,). Continue
this process until x, is defined. In general, x; is a vertex of X with largest red
degree in the complete bipartite graph

o)

4

and
i-1
¥ = Pk (Y- U }j).
j=1
Note that the vertices x, x,, ..., x, are not necessarily distinct.
Fori=1,2,...,tset

%]

i1
Y- Uy,
i=1

i

With this notation

Utx)

r-dominates all but at mosta = (1 — a;)(1 — @,)...(1 — ) |Y| vertices of Y.
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Choose [ so that

o, = min{a;}.
1=)=

From the definition of x,, each vertex of X has red degree at most Y| in the
complete bipartite graph
=1
[X, Y- J 1;] .

j=1
Since

=1

r-Uy,

=1

|Y£| = a

one can apply the proposition with ¥ = o, to the complete bipartite graph
-1
[X, y=L1] Y,].
i=1
It follows from the proposition that some subset of at most ¢ vertices of
—1
r- Uz
j=1
b-dominates all but at most aj|X| vertices of X. The choice of ¢, implies that

alX| = eya, . .. ,|X|, so some subset of at most ¢ vertices of ¥ b-dominates
all but at most b = @, . .. o, |X| vertices of X.

The proof is completed by showing that either a = 87'([X| + [Y]) or b =
(1= (x| + |¥]. Seta, = (1 — @),b; = a,fori =1,2,...,¢ and
a,y, = [Y|/(X| + |Y]), b,., = [X|/(X] + [Y]). Apply the lemma with n = ¢ + 1

to obtain
( @ )l.f[ﬁl} ( b Dlx(;+1)
5= fme———e e
x| + (7] x| + |¥

Since 8 + (1 — B) = 1, either

a 14+ 1)
(|X| ¥ JYI) =F

b 14+ 1)
R o B = i
(|x| * |Y|) =By

or

and the proof of Theorem 1 is complete.
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3. REMARKS AND RELATED PROBLEMS

It is worth mentioning that the proof of Theorem 1 is constructive; in fact, it is
a greedy-type low-order polynomial algorithm to find the required (red or blue)
dominating set. The same remark is true for the corollaries of Theorem 1;
in particular, a dominating set of at most log n vertices can be found in a 2-
colored K, by a fast greedy algorithm. One might expect that the reason for this
algorithmically nice behavior is that the results are not sharp. However, this is
not the case; the random 2-coloring of K, shows that Corollaries 2 and 3 are
reasonably sharp.

Theorem 2. For fixed € > 0 and 7 there exists n, = ny(€, ) and a 2-coloring
of K, for n = n, such that each t-element subset fails to dominate at least
((1/2" — €)n vertices of K,.

Proof. Let ¢ be fixed, € fixed, and set p = ((1/2) — €)n. Assume that the
edges of K, are colored red or blue with probability 1/2. The probability that a
fixed t-element vertex set of K, r-dominates all but exactly k vertices is

64

Therefore, the probability that some r-element vertex set of K, dominates all
but at most p vertices is at most

N

If x < 1 then there exists a 2-coloring of K|, such that each subset of ¢ ver-
tices of K, fails to dominate at least p vertices as required.

The condition for nondecreasing terms in the summation of (1) is that
n=(+ 2 —1)/2'€. So in case

t+2 ~1
n= e’ 2

the summation has the trivial upper bound (p + 1) times the (p + 1)th
term. Thus p < n, (") < () < n"/(pP(n — p)"™), () < n'/t!, and ¢, =
2(1 — (1/2)7"/1! gives

+1 n" g l 2 1 2
x<cn p—*’(n — (l 2,) (__2; = 1) 3

Setg = p/n = 1/2' — €, so that (3) can be written as

q — ny =gy n
x < C,HIH((Z_}Q) (llf(];z)) ) = C,ﬂHlAn (4)
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The following inequality is needed. For positive a, b, @, 8 suchthata + 8 = 1,
a®b®? = aa + Bb with equality if and only if @ = b ([1], p. 15). With a = g,
B=1—-gqg,a=1/29,b =10 —(1/29)/(1 — g) this inequality gives that
A = 1 with equality if and only if ¢ = 1/2". Since g = 1/2' — €, equality can-
not hold. Therefore A < 1. Since A depends only on € and ¢, the right-hand
side of (4) clearly tends to zero if €, ¢ are fixed and » tends to infinity. There-
fore x < 1 holds for n = n, = ny(t, €).

Theorem 3. For given € > 0, there exists n, = ny(€) and a 2-coloring of X,
such that for n = n, each set of at most (1 — €) log n vertices falls to dominate
some vertices of K.

Proof. The proof (and the theorem) is almost the same as the proof a result
of Erdos about the S(k) property of tournaments ([3] or [4], p. 40). If

2(%) (1 - %)k <1,

then there exists a 2-coloring of K, where each set of k vertices fails to domi-
nate some vertices of K,. It is easy to check that this inequality is true if
k= (1 — €) log n and n is large.

It is natural to ask analogous questions when the edges of X, are colored with
more than two colors.

If the edges of K, are colored with r colors then for each ¢ there exist some
subset of at most 7 vertices of K, that (monochromatically) dominates all but at
most ((r — 1)/r)'n vertices of K,,.

One can check that the statement is essentially true for ¢+ = 2 (the required
color can be the one used most frequently on K,) and it is also true if the majority
color class induces a regular subgraph of K,. However, as H. A. Kierstead
observed ([5]), if t = 3 and r = 3, the statement is false. The simple example
is a K, whose vertices are partitioned into three sets, A, A, A;. If 1 =i =
j=3andx € A,y € A,, then the edge xy 1s colored with color i. Clearly, any
3 vertices fail to domlnate at least n/3(> n(3 ) vertices showing that the state-
ment is false.

References

[1] E. F. Beckenbach and R. Bellman, An Introduction to Inequalities. Mathe-
matical Association of America, Washington, DC (1961).

[2] P. Erdés and A. Hajnal, Ramsey type theorems Preprint (1987).

[3] P. Erdds, On a problem in graph theory. Math. Gazette 47, (1963) 220-223,

[4] P. Erdés and J. Spencer, Probabilistic Methods in Combinatorics. Aca-
demic Press, London (1974).

{5] H. A. Kierstead, private communication.




