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The bandwidth (bandsize) of a graph G is the minimum, over all 
bijections p : V(G) ---) {1,2,. . ., IV(G)l), of the greatest difference 
(respectively the number of distinct differences) I~(v)-~(w)~ for ‘VW E 

E(G) - 
We show that a graph on n vertices with bandsize k has bandwidth 

between k and cnl- f;, and that this is best possible. In the process we 
obtain best possible asymptotic bounds on the bandwidth of circulant 
graphs. 

The bandwidth and bandsize of random graphs are also compared, 
the former turning out to be n - cl logn and the latter at least n - 
cz(logn)“. 

1 Iutroduction 

The problem of bandwidth minimization was motivated by the needs of 
matrix manipulations in structural engineering [l, 10, 191: there it is de- 
sirable to store the matrices in such a way that their non-zero entries are 
all as close to the main diagonal as possible. Simultaneous row/column 
permutations are applied to transform a given (large, sparse, symmetric) 
matrix to a form in which all non-zeros are in a narrow band of sub- and 
super-diagonals surrounding the main diagonal. Given a symmetric matrix 
M = (mi,j) (i,j = 1,. . . , n), one may consider the graph G on n vertices in 
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which i is adjacent to j just if m;,j # 0. We now give the precise statement 
of the bandwidth minimization problem in terms of graphs; its correspon- 
dence to the above problem for symmetric matrices is self-evident (via the 
translation just given). 

Let G be a graph with n vertices. A numbering of G is a bijection 
p : V(G) + (1,. ‘. , n}; the numbers ],v( u) - P(V) ( for uz, E E(G) are called 
the edge-difierences of the numbering p. The width of a numbering p is its 
largest edge-difference. The baaduridth of a graph G, bw(G), is the smallest 
width of any numbering of G. 

A matrix in which all non-zeros are in a narrow band is convenient for 
storage and computation. For some applications it may be enough to have 
aI.l the non-zero entries concentrated in a small number of sub- and super- 
diagonals. (Such matrices also seem to arise in certain applications, e.g., in 
queueing network analysis of job line production models, cf. [8] Figures 1 
and 2.) The corresponding graph-theoretic analogue is the following: The 
size of a numbering p is the number of distinct edge-differences of IL; the 
bandsize of a graph G, bs(G), is the smallest size of any numbering of G. 
Of course, it follows from the definitions that 

bs(G) 5 bw(G). 

The actual motivation for the study of bandsize (as opposed to the 
possible application described above) originated from an investigation of 
spanning subtrees of the k-dimensional hypercube Qk. J. Malkevitch stud- 
ied spanning subtrees of Qk, and derived a number of their propert.&; M. 
Rosenfeld observed that such trees must admit a numbering with k edge- 
differences (in fact, with edge-differences 1,2,4,. . . ,2’-l), and was led to 
ask if there was a bound to the number of edge-differences required by num- 
berings of trees of maximum degree k. The notion of bandsize is formally 
introduced in [12], where it is shown that the bandsize of the complete 
binary tree of height n, Tn, is between F and F + 2. Since the maximum 
degree in T, is three, this answers Rosenfeld’s question in the negative. 

Throughout the paper, we reserve the symbol “lg” for logarithms base 
2, and “ln” for logarithms base e. 

The tree Tn has v = 2n+1 - 1 vertices; thus its bandsize is roughly c lg II 
{for + < c < g). On the other hand, it can be shown that the bandwidth of 
T, is as high as &, (cf. [4] f or a tree similar to T,). When the bandsize 
is so much smaller than the bandwidth, storing the matrix in the form we 
suggest, with few non-zero diagonals, would seem particularly attractive. 

In this paper we take up the comparison between bandwidth and band- 
size. The largest bandwidth among all graphs of fixed bandsize is asymptot- 
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ically determined in the next section: a graph with n vertices and bandsize 
k can have bandwidth as large as Q(nr-r), but no more. Our method also 
yields best asymptotic bounds for the bandwidth of circulant graphs. In 
the last section we cornpark the bandwidth and bandsize of random graphs: 
it turns out that their values are quite close, n - cl logn for bandwidth, 
and at least n - cz(log n)” for bandsize. 

The bandwidth problem, i.e., the problem of deciding for a given graph 
G and integer k, whether there exists a numbering of G of width at most 
k, is well known to be IVP-complete, even in the case of trees, [16, 91. On 
the other hand, if k is fixed, the problem of deciding if bw(G) L: k can 
be solved in polynomial time, [17, 111. I n contrast to this, the problem of 
deciding if bs(G) 5 k is NP-complete for every fixed k 2 2, [18]. 

A variety of other numbering problems have been studied recently, [6]. 
For instance the minsum (or optimal linear arrangement) problem [6] may 
be stated as follows: The sum. of a numbering ~1 is the sum of all its edge- 
differences; the minsum of a graph G is the smallest sum of any numbering 
of G. The reader may find it amusing to note that the largest size of a 
numbering of G bears an obvious relation to graceful graphs; this notion, 
in some sense dual to the notion of bandsize of a graph, may be called the 
gracesize of G, gs(G). B ecause of the famous graceful graph conjecture, it 
could be interesting to prove non-trivial lower bounds on the gracesize of 
trees. (In this terminology, the graceful graph conjecture asserts that the 
gracesize of any tree is equal to its number of edges.) 

2 The extrernal case 

2.1 General remarks 

In this section, and the next, we prove the following theorem: 

Theorem 1. Let k be fixed. A graph G with n vertices and bandsire k has 
bandwidth only O(n’-t ). Moreover, this bound is best possible, 

Let I = {ii,iz, . . . ,il} be a set of integers, 0 < ii < i2 < . . . < i, < 
n. The linear graph L,,(I) (or L,(il, i2, . . . , ;l)) has the vertex set 2, = 

m 1 , . . . , n - 1) and the edge-set {UU : ]u - ~1 E I}. The circulant graph 
G.(I) (or C,(h,i2 , . . . ,ir)) also has th e vertex-set 2, and its edge-set is 

I uv : (u - VI z i (mod n) f or some i E I}. A graph is linear if it is 
isomorphic to some linear graph, and is a circulant if it is isomorphic to 
some circulant graph. Note that each L,(I) is a spanning subgraph of 
G(I). 
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Let G be a graph with n vertices. It follows from the definitions that 
the bandwidth of G is the smallest integer I such that G is isomorphic 
to a spanning subgraph of L,(l, 2,. . . , E) (the isomophism taking a vertex 
numbered x to the vertex z - 1 of &(l, 2,. . . , I)), and the bandsize of G is 
the smallest integer 2 such that G is isomophic to a spanning subgraph of 
some L,(ir , iz, . . . , ii). 

Our proof of Theorem 1 (or rather of Theorem 2, below) depends heavily 
on the use of the natural “circular” extension of these notions: The circuhr 
bandwidth of the graph G (still with n vertices), cbw(G), is the smallest 
Z such that G is isomorphic to a spanning subgraph of Cn( 1,2,. . . ,I); the 
circular bandsize of G, cbs(G), is the smallest I such that G is isomorphic to 
a spanning subgraph of some C,(ir, i2 , . . . ,il). (Circular bandwidth shall 
play a central role in our proof; circular bandsize is introduced only for 
symmetry,) We shall also need the notion of “circular length”; formally the 
(circular) n-norm of a positive integer i, ~~i~~pz, is the unique lb\, -t 5 b 5 F, 
such that i = an + b. (Thus for e’ in Z,, the n-norm of i is the distance 
from 0 to i in the graph C,(l).) If we call the norm of a numbering 
the largest norm of its edge-differences, then the circular bandwidth of a 
graph is the smallest norm of its numberings. (If we call the norm&e of 
a numbering the number of distinct norms of its edge-differences, then the 
circular bandsize of a graphis the smallest normsize of its numberings.) 

The usefulness of circular bandwidth is due to the fact that 

cbw(G) 5 bw(G) < 2cbw(G). (1) 

The first inequality follows directly from the definitions. To prove the 
second inequality it is enough to show that 

bw(C,(l, 2,. . . , I)) 5 21 : 

Number all vertices 2 = O,l, . . . , [?l - 1 by 2~ + 1, and all vertices y = 

T~L,n - 1 by 2(n - y). It is straightforward to verify that this is a 
numbering of Cn(l, 2,. . . , Z) and that the edge-difference of any edge uv 
with v 5 u + 1 (mod n) is either 1 or 2; hence any edge-difference is at 
most 21. 

In the next subsection we shall prove the following result: 

Theorem 2. bw(C,(ir,iz,. . . ,ik)) < 4n1-%. 

Proof of Theorem 1 (from Theorem 2). A graph G with n vertices 
and bandsize k is (up to isomorphism) a spanning subgraph of L,(I) for 
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som I with Ic elements; hence a spanning subgraph of C,(1). By Theorem 

2, its bandwidth is only O(ni-i). 
This bound is best possible, as for n = mk, the graph G = 

Ln(l,m,m2,...,m ‘-l) has bandwidth at least 

2 - I &--I- 1 = $-qn14) 
k+l 

(for k fixed and m + oo). 
To see this, note that any two vertices of G can be joined by a path 

of at most y * m edges (at most m steps of type mkW1, at most y steps 
of each of the types mkW2 , . . . , m, 1). Thus, whatever the numbering of G, 
the shortest path joining the vertices numbered 1 and n must have some 
edge-difference at least 

n- 1 > 2 k-l 
yrn -k+lmm 

- 1. 

q 

Note that e is maximized for k = Inn; hence 

Corollary 1. The ratio of bandwidth to bandsize for a graph on n vertices 
cunnot ezceed (&) - 4n1-A. 

2.2 The bandwidth of circulants 

Here we prove Theorem 2; we restrict our attention to connected circulants 
(as the bandwidth of a graph is the maximum bandwidth of its compo- 
nen ts) . 

In fact we shall show that (for any fixed k) 

.max bw(Cn(ir, i2,. . . ,ik)) = O(n’-i). 
II ,...,ik 

The lower bound, 

(2) 

,max bw(C,(ir, iz,. . . , ik)) = fi(~‘-i), 
11 ,...,ik 

follows the same way it did for linear graphs. The remainder of this sub- 
section contains the proof of 

cbw(C,(i1,i2,. . . ,ik)) < 2n’+, (3) 

which implies (2) and Theorem 2 because of (1). In other words, we seek 
an isomorphism of any C,(ir , i2 
with I 2 27~‘~f;. 

, . . . ,ik) onto a subgraph of C,(l, 2,. . . , Z) 
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Lemma 1. Let n, k, and il, iz, . . . , ik be given positive integers. Then 
there exists an integer m with 0 < m < n such that Ilrn - ijll, 2 n’-i for 
all j= 1,2,..,,k. 

Proof. Note that the n-norm satisfies the triangle inequality. Let S(n, k) 
denote the torus [O,n)k with entries taken modulo n. Let 

A = {(mail,m-iz,... ,m,ik) E S(n,k) : 0 5 m < n}, 

and for each m let 

& = {(Yl,Y2,*.. ,Yk) E S(n, k) : llyj - m - ijlln < i. nl-2 for all j}. 

The {k-dimensional Euclidean) volume of each B, is 

(2. i. nl-i)k = nkel. 

Since the combined volume of the B,‘s is nk (the volume of S(n, k)), and 
since they are all closed sets, there is a point z = (21, x2,. . . , zk) in some 
B,I f~ B,u, m’ # m”. We then take m = Im’- m”l so that 0 < m < n and 
we have 

Ilm - ill, = Ilm’ - i - m” - ill, _< llm’ - i - XC;II~ + 112; - m” m ill, < nl-2 

for all i = ij, j = 1,2,. . . , k, as required. q 

We are grateful to Miklos Simonovits for pointing out that Lemma 1 
may also be derived from Dirichlet’s theorem on simultaneous diophantine 
approximation, [2, p.1591. B ecause of its relation to [14], this may allow us 
to find the “multiplier” m figuring in Lemma 1 efficiently (cf. [14. p.524- 
5251). 

Also note that Lemma 1 is sufficient to imply that 

cbw(C,(ir, iz,. , . ,ik)) 5 n’-+ 

when n is prime. In fact, a long as the m from Lemma 1 is relatively 
prime to n, the mapping taking z to m . z mod n is a bijection 2, + 2, 
and hence an isomorpism of C,(ir, ia,. . . ,ik) onto a spanning subgraph of 
Cn(m. il,m - iz,.. . ,m . ik); and therefore onto a spanning subgraph of 
C,(l, 2,. . . , I) with 
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If m and n are not relatively prime, then the above mapping is not a 
bijection. Nevertheless there always exists a bijection accomplishing our 
aims. This is not hard to see by arguing that the above mapping 2 + m ‘ 2 
takes exactly g points of 2, onto each of the points g, 29,. . . , ng = 0; thus 
it can be made bijective by local perturbations. To define such a bijection 
explicitely we can use the following facts: 

Lemma 2. Let g = gcd(m,n) and d = f. 

(a) Each x E 2, can be uniquely written as x = dq + T with 0 5 q < g 
and 0 < T < d. 

(b) Each x E 2, can be uniquely written as x = mu + v with 0 5 u < d 
and 0 5 v < g. 

Proof. Each z can be written as x = dq + T with 0 5 T < d; since z E 2, 
and dg = 0 in Z,, q may be assumed to satisfy 0 2 q < g. The uniqueness 
in (a) follows from the fact that gd = n = I.&l. Each x can also be written 
as z = mu + v with 0 < v < m; evidently u < d because md = s . n > n. 
Since a: mm q g (mod n) for some a, v may be assumed to satisfy 0 < v < g. 
The uniqueness in (b) follows by the same argument as in (a). cl 

Let F : 2, + 2, be defined as follows : if x = dq + T with 0 5 q < g 
and 0 5 T < d, then F(z) = mr + q. According to Lemma 2, F is well . 
defined and a bijection. It remains to verify that F takes C,(ir, iz, . . , , ik) 

onto a spanning subgraph of C,(1,2,. . . ,I) with I < 2n1-%. 

Lemma 3. If 11x - ~‘11, = i, then l/F(x) - F(x’)lln 5 Ilrn e ill, + Ilglln. 

Proof. Let x = dq + T, 0 5 q < g, 0 < T < d, and x’ = dq + r + i = 
d(q + f) + T’ where 0 < T’ < d. 

Case 1: 0 5 q + f < g. 
Then F(x) = mr + q and F(x’) = mr’$ q + f. Hence 

/IF(x) - F(x’)IIn = I/m. (T - ~‘1 - flln = lb. (df - i> - flln 
= llm . i + flln 2 Ilm * ill, + llsllnb 

(Note that f < g because dg G 0 (mod n),) 

Case 2: 0 < q + f - g < g. 
Then x’ = d(q -I- f - g) + T’ and F(s’) = m . r’ + q + f - g. Hence 

IIFW - W>lln = I/m * (r - T’) - f t glln = Ilm - (d a f - i> - f + g/In 
= I/m - i + f - glln i Ilm nilIn t I1911n. 

cl 
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Lemma 4. If gcd(n, ir, iz, . . . , ik) = 1, and ifm < n has eech llrn * i&, < 

d-f; (j= 1,2,... ,k), then g = gcd(m,n) 5 nr-:. 

Proof. If all I] m . ij]] n = 0 then each m . ij is a common multiple of m and 
n, hence also a multiple of y. Therefore f is a divisor of all ij as well 
as of n; according to our assumption 5 = 1, contrary to g 5 m < n. On 
the other hand, note that g divides m . ij - a * n for each j = 1,2,. . . , k, 
and every integer a. Assume that ]Jm . ii/In # 0; since J/m - ij]ln is either 
m*ij- aan or a.n-m*ij for some integer a, g divides ]lm*ij]ln and hence 

g 5 ]]m - ij]ln < n’-k as claimed. 0 

Proof of (3) (and th us of (2) and Theorems 2 and 1). Lemmas 
1, 3 and 4 imply that the mapping F given above is an isomorphism of 
G(k i2, . . . , ik) onto a spanning subgraph of C,(l, 2,. . . , S), where I 5 
2n1-k, provided gcd(n, ir, iz, . . . , ik) = 1. Since this condition is always 
satisfied for connected circulants C,(ir,iz, . . . ,ik), (3) has been proved, 0 

Remark. Let d,(G) d enote the number of vertices of G of distance s from 
a fixed vertex. We have studied, jointly with Martin Farber, the behaviour 
of&(G&1,~2, . . . , ik)) and d,(L,(ir, i2, . *. , ik)) for fixed k and believe that 
there exists a constant c depending only on k such that 

qL$1, i2, . . . ,ik)) 2 0l-i (4 

for all n, s, and ir, is,. . . , ik. This would then offer another proof of Theo 
rem 1: indeed any breadth first numbering (or so-called “level algorithm” 
in the terminology of [20]) of L,(ir, iz, . . . , ik) would have width at most 
2c.n1-k. When k = l(4) is obvious {the constant c is 1 or 2 depending on 
the choice of the starting vertex); we were also able to prove (4) for k = 2 
and k = 3. It turns out that to complete the proof of Theorem 1 this way, 
it would suffice to show that, for fixed k, 

bw(G(G, i2, . . . ,ik)) = U(bw(&(ir, i2,. . . ,ik))). 

3 The random case 

Our object in this section is to compare the bandwidth and bandsize of 
random graphs. For 0 < p < 1 and n a positive integer, let G,,, be a 
graph with vertex set V, = {1,2,. . . , n} and edges defined randomly as 
follows: for each pair {i, j) of vertices with i # j the edge ij is included 
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with probability p and excluded with probability 4 = l- p; the (t) choices 
are made independently. This construction has been studied extensively, 
especially by Erdijs and Renyi [7]; see also Bollobas [3]. We wish to compute 
bounds on bw(Gn,p) and bs(Gn,p) for almost all Gn,p when R. is large. 

For simplicity we concentrate below on the case p = $; the results 
are easily generalized. Note that when p = i the graph Gn,p, which we 
denote below simply by G,, has the special property that every graph on 
the labelled set V, is equally likely to occur. 

The following theorem is proved in [13]. 

Theorem 3. With probability approaching 1 as n + 00, 

n - (2 + d? -I- o( 1)) . lg n < bw(G,) < 72 - (2 + fi - o( 1)) . lg n. 

As we found, a number of recent papers studied the bandwidth of ran- 
dom graphs, [5, 13, 15, 20, 211. Theorem 3 is stronger than similar results 
in [20, 211, and weaker than the most general version of [13]. We have 
stated it in this way for simplicity, and also because this was the form of 
the result we had before discovering [13]; we had the constant 2 + fi in 
the lower bound, but not in the upper bound. (In [15] the authors study 
the average bandwidth of trees, which turns out to be between cl,/% and 
czfilogn.) 

Theorem 4. With probability approaching 1 as n --f CO, 

bs(G,) 2 n - (&+0(l)) .(lnn)“. 

Proof. Fix c > & and t = [c(lnn)2]; we show that 

Pr(G, has a numbering of size less than n - t) --f 0. 

It suffices to show that 

c Pr(G, has a numbering omitting lengths n - dl, . . . ,n - dt) 
o<dl<...<dt<n 

tends to 0. 
For values of dr , d2, . . . , dt which are large relative to n, the constraints 

are severe and the probability that a given numbering satisfies them will be 
much less that n!. When the di’s are small, however, it becomes necessary 
to count only partial numberings, namely bijections from subgraphs of G, 
to the union of an initial and final segment of 1,2,. . . ,n. To determine the 
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optimum size of these segments we compare the d;‘s to a certain exponential 
sequence. 

Let 0 < dr < d2 < . . . < dt < n be a sequence of integers; set T = 
1 + &i where c > b > &. Note that for large n 

Inn 

log’ n = In (1 + &) 

I 
Inn 

Fik- 3kk)2 
2b2(ln 7~)~ 

= 2blnn- 1 
< c(lnn)2- 1 5 t-l, 

hence dt < n < rt-l. It follows that there is a least integer j such that 
dj < ~j-l; then d; 2 T’-’ for i < j and hence 

i=o 
= (blnn) . (7+r - 1). 

Note that dj > j and that j -+ co as n + co. 
We now consider partial numberings of G, into the set {1,2,. . . ,dj} U 

{n-dj+l,n-dj+2,. . . , n) where edge-differences n - dl, n - da, . . . , n - dj 
are avoided; since each difference n - dd forbids exactly di edges within the 
domain of the partial numbering, altogether there are dl + dz + . . . + dj 
forbidden pairs. For a given value of j there are fewer than nJ choices 
for dl,dz,... ,dj and fewer than n2s partial numberings, where s = rj-r. 
Hence for fixed j the probability that G, has a partial numbering avoiding 
forbidden pairs which determine j is less than 

nj . n2s . 2-(blnn).(s--1) < n3s . 2-(bIgn)*(ln2).(s-l) 

= n(-tb- &)s+b) ln2 

< n-l (say), 

since s = rjV1 is forced like j to increase without bound as n + oo. 
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However, there are fewer than c(lnn)2 choices for j so 

Pr(bs(G,) < n - c(lnn)2) < c(lnn)2 . n-l + 0, 

and Theorem 4 is proved. 

Corollary 2. With probability approaching 1 as n + 00, 

n - ~~(logn)~ 5 bs(Gn) < bw(Gn) I n - cl logn. 

We have determined that the ‘Lcorrect” value of bandwidth of G, is 
n - clogn; in fact even the constant c is determined by the result of Kuang 
and McDiarmid, as stated in Theorem 3. We do not know at present 
whether the correct value of the bandsize is more like n - clog n or n - 

c(log n)“. 
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