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In additive number theory, the set A of nonnegative integers is an
asymptotic basis of order 2 if every sufficiently large integer can be written as
the sum of two elements of A . Let rA (n) denote the number of representa-
tions of n in the form n = a+a', where a, a' eA and a < a' . An asymptotic
basis A of order 2 is minimal if no proper subset of A is an asymptotic basis
of order 2 . Erdös and Nathanson [2] proved that if A is an asymptotic basis
of order 2 such that rA (n) > c -log n for some constant c > 1/log (4/3) and
every sufficiently large integer n, then some subset of A is a minimal
asymptotic basis of order 2.

It is an open problem to determine whether the set A must contain a
minimal asymptotic basis of order 2 if r, (n) merely tends to infinity as n
tends to infinity . This paper contains several results connected with this
question . Let ISI denote the cardinality of the set S . For any set A of
nonnegative integers, let

SA (n) = ; aeAj n-aEA

be the solution set of n in A . Erdös and Nathanson [3] proved that there
exists a probability measure on the space of all sets of positive integers such
that, with probability 1, a random set A has the properties that r(n) -x
and I SA (m) n SA (n)Í is bounded for all m :A n . We shall show that the
following weaker condition suffices to prove the existence of a minimal
asymptotic basis : If rA (n) - x and if Í S A (m) n SA (n)j < (1/2-ó) IS, (n)Í for
some O > 0 and all sufficiently large integers in and n with m :A n, then A
contains a minimal asymptotic basis . On the other hand, we shall prove that
for any integer t there exists an. asymptotic basis A of order 2 such that every
sufficiently large integer has at least t distinct representations as a sum of
two elements of A, but A contains no minimal asymptotic basis of order 2 .
The proof will use a refinement of a method applied previously by the
authors to construct an asymptotic basis A of order 2 with the property that
A \ S is an asymptotic basis of order 2 if and only if the set A n S is finite [1 ] .
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Erdős and Nathanson [4] have recently written a survey of results and
open problems concerning minimal asymptotic bases .

Notation . Let A and B be sets of integers . Denote by A+B the set of all
integers n of the form n = a+b, with a EA and b EB . Let 2A = A+A . Let
SA (n) _ ;a EAI n-a EA ;-, and let SA (n) _ ;a ESA (n)I a >,n/2, . Then rA (n)
= ISÁ (n)I = NSA (n)1 + 1)/2] . Let S be any subset of A . We write that "S
destroys n" if, whenever n = a+á with a, a' EA, then either a ES or a' ES .
For any real numbers a and b, let [a, b] denote the set of integers n such
than a<n<b .

LEMMA L Let A be a set of nonnegative integers . If

I SA (n) n SA (u)I < ( 1/2) I SA (n)j,

then ne2(A\SA (u)) .

P r o o f. If n ~ 2 (A \ SA (u)), then SA (u) destroys n, and so SA (u) contains at
least one element of each pair {a, á ; of elements of A such that a+a' = n . It
follows that

ISA(n) nSA(u)I > rA(n) _ [(ISA(n)I+1)/2] > IS, (n)1/2,

which contradicts the hypothesis of the lemma .

THEOREM l . Let A be an asymptotic basis of order 2 such, that
(i) rA (n) - oo as n - co , and
(ü) there exists 6 > 0 and N o such that for all m, n > N o , m n,

ISA(n)()SA(m)1 <(1/2-6)ISA(n)I •

Then A contains a minimal asymptotic basis of order 2 .

Proof. Choose N 1 > No, such that n E2A for all n > N1 . Choose a l EA
with a l > N 1 . Choose ai EA with at > a l , and let u l = a l +a, . Then
u l >2N, and a 'jES'A (u i ) . We define the set A, by

A 1 = A\SA(ui))u ,a„

Then A, -A o = A, and ul = a l +a, is the unique representation of u i as
the sum of two elements of A, . Since a > u l/2 > Ni for all a c-A \A,, it
follows that for n < N, we have n E2Á 1 if and only if n E2A . Let n > N 1 ,
n

	

u l . Since

ISA(n) nSA(ul)I < (1/2-6)ISA(n)1 < ISA(n)1/2,

it follows from Lemma 1 that n E 2 (A \ S A (u l )) -2A1.
Let k > 1 . Suppose that we have constructed a decreasing finite sequence

of subsets A = A o ? A, A z . . . - A k such that 2A = 2Ak . Suppose
also that for i = 1, . . ., k we have constructed integers a„ ai EA k such that, if
we define ui = a i +at, then u, < . . . < uk and ui = a,+ai is the unique repre-
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sentation of ui as the sum of two elements of A, Finally, we assume that

Ai -1 \ Ai -- SA (ui)

for i=1, . . .,k .
Choose T such that 0 < r < 26 . Since rA (n) a , there exists M > uk

k
such that rA (n) > (1/T)

	

rA (ui ) for all n > M . Choose ak+ 1 E Ak such that

ak+i < uk . We shall shortly impose an additional condition on the choice of

ak+ 1 . Choose ak+ 1 EA k such that ak + 1 > 2M, and define uk+ 1 = ak+ 1 +a,+ 1 •

Then uk+1 >2M > 2uk and ak+i ESA(uk+i) r k . Define the set Ak+1

	

Ak
by

Ak+1 = (Ak\SA(nk+1))U lak+lj •

Then uk+i = ak+1 +ak+i is the unique representation of u k+i as the sum of
two elements of Ak+i •

We shall show that 2Ak+1 = 2A . Since 2A = 2Ak , it suffices to show
that 2Ak+i = 2Ak . Note that uk+i/2 > M, hence

( 1 )

	

Ak\Ak+1 CSA(uk+1)

	

1M+ 1 , 1Ák+11,

and so, if n < M, then n c 2Ak+ 1 if and only if n E 2Ak . Let n > M, n uk+ i .
Then n E2Ak . Let R (n) (resp . R' (n)) denote the number of representations of n
as a sum of two elements of A k (resp. Ak+ 1 ) . We must show that R' (n) > 0 .
Since

it follows that

A \ Ak

	

U SA (ui)
i=1

rA (n) < R (n) +

	

IS' (uJI = R (n) +

	

rA (ui) < R (n) +TrA (n),
i=1

	

i=i

and so R (n) > ( 1-i) rA (n) for n > M . By (1), the number of representations
of n as a sum of two elements of Ak that are not representations of n as a
sum of two elements of Ak+ 1 is at most

ISA (n) n (Ak \A k+ 1)I '<-ISA (11) n SA (uk+ 1)I -<-ISA (n) n SA (uk+ 1)I

< (1/2-ó) ISA (n)I

(1/2-b)2rA (n) _ (1-26)rA(n) .

This implies that

R'(n) > R(n)-(1-2(5)rÁ (n)

> (1-T) rA (11) -(1- 26) r A (n) _ (26 -T) rA (n) > 0

and so n E2Ak+ , for all n > M . This completes the induction .
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Let A* _ n A, Then 2A* = 2A and so A* is an asymptotic basis of
k=0

order 2. Moreover, uk = ak +ak is the unique representation of u k as the sum
of two elements of the set A* .

In order for A* to be a minimal asymptotic basis of order 2, we impose
the following additionall condition on the choice of the integers ak . If a EA*,
then a =ak for infinitely many k . This means that for any acA* there will be
infinitely many integers u k such that uk á12(A* \ ;a ;) . Thus, A* is minimal .
This completes the proof.

LEMMA 2. Let I = [a, b] and J = [c, d], where b < c . Let k > 1 . If m e[a
+ c + k - l, b + d - k + 1], then m has at least k representations in the form m
=x+y, where xc1, yEJ, and x < y . If nC[2a+2k-2, 2b-2k+2], then 11

has at least k representations in the form n = x+y, where x, y EI, and x < y .

Proof. Since [a+c+k-1, b+d-k+1] _ [a+k-1, b]+[c, d-k+1],
it follows that m=x+y, where xc[a+k-1, b] and ye[c, d-k4-1 ], hence
x <y . Then m = (x-i)+(y+i), where x-i EI =[a, b], y+i EJ = [c, d], and
x-i < y+i for i=0, 1, . . ., k- l .

Since [2a+2k-2,2b-2k+2]=[a+k-l,b-k+1]+[a+k-Lb-k+1],
it follows that n = x+y, where x, y E[a+k-1, b-k+l ] and x < r, hence n
=(x-i)+(y+i), where x-i, y+i eI and x-i < y+i for i = 0, 1, . . ., k-1 .
This completes the proof .

LEMMA 3. Let no < ni < nz < . . . be a sequence of positive integers such
that nk i > 3k2 + 6k + 1 and n k > 8 n k _ , ,for k > 1 . Let Nk = 2nk + L For each
k > l, define the following sets of' integers :

Pk - [Nk-1+ 1 , nk Nk-11

Qk = ink-nk-1-3ku+11 u = 1, 2, . . ., k+1 ;,

Rk = [nk -+- 1, nk+Nk 1]\ i nk +nk- 1 +3kul u = 1, 2, . . ., k+ I ; .
x

Let Bk = Pk U Qk v Rk and B = U Bk . Then
k=1

(1) Nk 4 2B for k > 0, and
(ü) If k > 3 and nc[Nk- 1 +1, Nk -1], then n has at least k representa-

tions in the form n = u+v, where u, v eB k v Bk _ 1 v Bk - z .

Proof. (i) Since the smallest element of B is N o + 1, it is clear that
No (f 2B . Let k > 1 . Note that

and
Bn[Nk-1+ 1 ,nk] = PkUQk

B n [nk + 1, Nk] = B n [ii, + 1, nk +Nk _ 1 ] = Rk .



If N k = 2n,+1 = c+d, where 0-<- c < d, then c,< nk and d,> nk + 1 . If
ccB and cE Qk, then ('< nk -N,-, and so Nk > d = Nk -c > nk +Nk _ 1 +1 .
Since B n [nk+Nk -, + l, N k ] _ 5, it follows that d ~B . If c EQk , then c
= '7k-"k_ I -3ku+ 1 for some u E[1, k+ 1], hence d = N k --c = nk +nk - I
+ 3ku E Ink + 1, Nk ] . Since d ~ Rk , it follows that d 4B and so N k ~ 2B .

(ii) Let k > 3 . We apply Lemma 2 to the set P k . If

(2)

	

ne[2Nk -,+2k, Nk -2Nk - I -2k+1],

then n has at least k distinct representations as the sum of two elements
of Pk .

Define the sets Sk and 7k by

S k = [nk +1, n k +N- I +k+ 1],

	

Tk= IN +nk -, +3k (k+ 1)+1, nk+Nk - I ] .

Then S k U 7k - R k . Since

Nk-,+nk+nk-1+3k(k+l)+k+1 < Nk -2Nk - 1 -2k+2,

it follows from Lemma 2, applied to the sets Pk and 7k, that if

(3)

	

n E[Nk-2Nk-1 - dk+2, Nk - k]

then n has at least k distinct representations in the form n = x+y, where
x E Pk and y E TI, - Rk . Similarly, Lemma 2, applied to the set Sk _ , , implies
that if

(4)

	

ne[Nk-1+2k -1 , Nk-1+Nk-2]

then n has at least k distinct representations as the sum of two elements of
S k-1 . Finally, Lemma 2, applied to the sets P k and Pk - 2 , shows that if

(5)

	

nc[Nk - 1 +N k- 2 +1, 2N k _ 1 +2k-1]

[Nk- , +Nk-3+k+1, nk Nk-1+llk-2 Nk-3 k+1]
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then n has at least k distinct representations in the form n = x+Y, where
xCPk, yEPk - 2 . From (2)-(5), we conclude that if n e [Nk - 1 + 2k - 1, N k -k],
then n has at least k distinct representations as a sum of two elements of
Bk u Bk - 1 U Bk - 2

Let ne[Nk -k+1, Nk -1] . Then rl = Nk-w for some wc[l, k-1] and

17 -(Ilk Ilk-1 3ku+1)+ (ilk +nk-I+3ku w)EQk+Rk r- 2Bk

for u = 1, 2, . . ., k . Let nc[Nk - l +l, Nk- 1 +2k-2] . Then n = N k-,+w for
some w E[l, 2k-2] and

n = (nk-1 -nk-2-3 (k- 1) u+ 1)+(Ilk _ I +11k- 2 +3 (k- 1) u+w)

E Qk - l + Rk-1 C 2Bk - 1

for u = 1, 2, . . ., k . Thus, if nc[Nk - 1 +1, Nk -1], then n has at least k

7 - Aeta Arithnicticu LII, z. 4
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representations as a sum of two elements of Bk v Bk-1 u Bk - z . This com-
pletes the proof of Lemma 3 .

LEMMA 4 . Let B be the set of integers defined in Lemma 3 . Let rB (n)
denote the number of representations of n in the form n = b+b', where b, b' GB
and b 5 b' . Then r, (Nk ) = 0 for all k, and r B (n) - oo as n - oo, n Nk .

Proof. This follows immediately from Lemma 3, since r, (n) > t for
n>N, 1 ,n Nk .

THEOREM 2. For any integer t, there exists a set A of nonnegative integers
such that r A (n) > t, for all sufficiently large n, and, for any subset S of A, the
set A \S is an asymptotic basis of order 2 if and only if S is finite . In particular,
A does not contain a minimal asymptotic basis of order 2 .

Proof. Let ;nk ; be a sequence of integers that satisfies the conditions of
Lemma 3. Let B be the corresponding set of integers constructed in Lemma
3 from this sequence ;nk ; . Then nk > 8nk _ I implies that

B n [Nk Nk - i , Nk] -- B n [n k + Nk - i + 1 , Nk] _ 0

for all k>, 1 . Choose j so large that JB n [1, Nj_ 1 ]j > t . Let Fj be a subset of
B n [1, NJ _,] such that jFjj =t . Let Gj = ;Nj - fj f c-F j ;, and define Aj
= B v Gj . Then Gj = Aj n [Nj -Nj _ 1 , NJ . It follows that Nt E2A j and
rAj (N;) = t .

Suppose that for i = j, j + 1, . . ., k we have determined finite sets F i and
Gi and infinite sets B = Aj-, -_ A ; -- A ; + ,	k such that

Fi--Ai-ln[1 ,Ni-1],

	

Gi =,Ni -f] fEF,i,

	

Ai = Ai-luGi

and IF,l _ IG i l = t . Then rAi (Ni) = t . Choose Fk+l C_ Ak n [1, Nk] such that
JFk+11 = t . An additional condition on the choice of the subset Fk+1 will be
imposed shortly. Let Gk+1 = iNk+1 - f I f EFk+l i • Let Ak+1 = Ak U Gk+1
Then JGk+11 = t and Gk+1 c [Nk+1 - Nk, Nk+1] • Since

and

Ak \B=Gj uGj+1 u . . .VGk c[1, Nk]

B n [Nk+ 1 - Nk, Nk+ 1] = Ak n [Nk+ 1 - Nk, Nk+ 1] = w,

it follows that rAk+1(Nk+1) = t . By induction, we obtain sets Fk, Gk , and Ak
for all k > j . Define the set A by

A= U Ak=Bu(U Gk)
k=j

	

k=j

Then A is an asymptotic basis of order 2 such that rA (Nk) = t for all k
and rA (n) - oo as n - oo , n Nk .
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We now impose the following additional condition on the choice of the
sets Fk : We must choose every t-element subset F of A exactly once . Thus, if
F A and ~F1 = t, then F = F k for some unique integer k > j .

Let S be a subset of A . Suppose that S is finite . Since rA (n) x as
n oo, n N k , it follows that n eA \S for all n sufficiently large, n N k .
Since S contains only finitely many subsets F with ~F1 = t, and since each
such F destroys exactly one N k with k > j, it follows that A \S is an
asymptotic basis of order 2. If S is infinite, however, then S contains infinitely
many subsets F with ~F1 = t, and so S destroys infinitely many integers N k ,
hence A \S is not an asymptotic basis of order 2 .

Since the infinite set A contains no maximal finite subset S, it follows
that A does not contain a minimal asymptotic basis of order 2 . This
completes the proof of Theorem 2 .

DEFINITION . Let t > 1 . An asymptotic basis A of order 2 is 1-minimal if
A \ S is an asymptotic basis of order 2 if and only if JA n S1 < t .

THEOREM 3 . For any integer t, there exists a set A of nonnegative integers
such that rA (n) > t for all sufficiently large n, and A is t-minimal .

Proof. The construction of A is exactly the same as in Theorem l, but
with a different condition on the choice of the finite sets F k : We must now
choose every t-element subset S of A infinitely often . This means that if
S < A and ~S1 = t, then S = F k for infinitely many k, and so S destroys
infinitely many integers N k . Since rA (n) > t for all sufficiently large n, it
follows that if ISI < t, then S destroys at most finitely many n, and so A \ S is
an asymptotic basis or order 2. This completes the proof .

The following simple observation is interesting as a contrast to The-
orem 2 .

THEOREm 4 . Let A be an asymptotic basis of order 2 such that rA (n) - cc .
Then there exists an infinite subset I of A such that A \I is an asymptotic basis
of order 2, and rAV (n) --+ oo .

P r o o f. If F is any finite subset of A, then rAvF (n) > rA (n) - I F1, and so
rAvr(n) ~~

We shall construct an infinite subset I = ,a l , a z , . . . ; of A and an
increasing sequence of positive integers N I , N2i . . . such that N, < a l < N Z
< a z < N3 < . . ., and such that, if we define Ak = A\ ;a i , a z , . . ., ak ;, then
rAk (n) > k for all n > Nk .

Choose N I such that rA (n) > 2 for all n > N I . Let a l EA with aI > Ni .
Define A I = A \ jai:. Then rAI (n) > rA (n)- 1 > 1 for all n > N1 . Suppose
that for some k > 1 we have determined integers a,, . . ., a k c -A and integers
N I , . . .,Nk such that 0<NI <a I < . . .<N k <ak and, forj=1, . . .,k,ifA j
= A\,a l , a z , . . ., a;}, then rAj (n) > j for all n > N; . Since rAk (n) > rA (n)-k,
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it follows that rAk (n) - oo, and so there exists Nk+ I > ak such that rAk (n)
> k+2 for all n > Nk+t . Choose ak+i > Nk+1 and let Ak+1 = Ak\ iak+I
Then rAk+I (n) > k + t for all n > Nk+1 . This completes the induction .

Let I = (a,, az , a 3 , . . .} and define A* = A \ I . Since A* n [0, Nk11 ]
= A k n [0, Nk+1], it follows that if Nk < n < Nk+i , then r A „(n) = rAk (n) > k,
and so '- A '(n)

	

ce . This completes the proof.
Erdős and Nathanson [ .5] proved that if A is an asymptotic basis of .

order 2 such that rA (n) > c - log n for some c > l/ log (4/3) and n > no , then A
can be partitioned into two disjoint sets, each of which is an asymptotic basis
of order 2 . The following result is a simple corollary of Theorem 2 .

THEOREM 5 . For any integer t, there exists an asymptotic basis A of order
2 such that r (n) > t for all n > n o , but A is not the union of two disjoint sets,
each of which is an asymptotic basis of order 2 .

Proof. Let A be a minimal asymptotic basis of order 2 such that
r(n) > t for all n > n o . Since no subset of A is an asymptotic basis, it is clear
that A cannot be partitioned into aa disjoint union of two asymptotic bases of
order 2 .
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