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Paur Erpts (Budapest) and Meivyn B, Natuasson (Bronx, NY.)

In additive number theory, the set A4 of nonnegative integers 1S an
gsymptatic basis of order 2 if every sulliciently large integer ¢an be written as
the sum of two elements of A. Let r,(n) denote the number of representa-
tions of n in the form n=a+a", where a, @' €4 and a < o', An asymplotic
basis A of order 2 is minimal if no proper subset of A is an asymplolic basis
of order 2. Erdds and Nathanson [2] proved that if 4 is dn asymplotic basis
of order 2 such that r, () =c logn for some constant ¢ > 1/log(4/3) and
every sufliciently large integer i then some subset of 4 is a minimal
asymptotic basis of order 2.

It is an open problem (o determine whether the set 4 must contain a
minimal asymptotic basis of order 2 if #, (1) merely tends to inlinity as n
tends to imfimty. This paper contains several results connected with this
guestion. Let |5| denote the cardinality of the set §. For any set 4 of
nonnegative integers, let

Syl =lacd| n—acA|

be the solution ser of nin A. Erdés and Nathanson [3] proved that there
exists 4 probability measure on the space of all sets of positive integers such
that, with probability 1, a random set 4 has the properties that r(n) ==
and |8,(m) S, (n)| s bounded for all ms=n. We shall show that the
following weaker condition suffices to prove the existence of a minimal
asymptotic ‘basis: H rodn) =0 and i [Solm) oS im) <(1/2=)15, (a)| for
some d = (0 and all sulficiently large integers m and n with m#n; then 4
contains a muumal asymptotic basis. On the other hand. we shall prove that
[or any integer ¢ there exists dn asymplote basis 4 of order 2 such that every
sufficiently large integer has at least + distinct representations as a sum of
two elements of 4, but 4 contains no minimal asymplotic basis of order 2,
The proof will use a refinement of a method applied previously by the
authors to construct an asymptotic basis 4 ol order 2 with the property that
A\S is an asymptotic basis of order 2 if and only if the set A ~ 8 i5 finite [1],
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Erdiis and Nathanson [4] have récently written a survey of results and
open problems concerning minimal asymptotic bases.

Notation. Let 4 and B be sets of integers. Denote by 4+ B the set of all
integers n of the form n =a+bh, with ac4 and beB. Let 24 = A+ A. Let
Si(n)=jacd| n—aed], and let 8, in) = laeS,nl a =zn2!. Then r,(n)
=[S, = [(Sq(ml+1)/2]. Let § be any subset of 4. We write that “§
destroys #™ if, whenever n = a-+a" with a, a'£4, then either a8 or o' e85.
For any real numbers a and b, let [a, p] denote the set of integers » such
than asnsb.

Lemma 1. Let A be a set of nomnegative integers. If
1S 0mp 08, ()] < (1/2)]8 4 (),
then ne2(A\S,(u).

Prool. If ng2(A4 48, (u)). then S, (u) destroys n, and so 5, (u) contains at
least one element of each pair (a, a') of elements of 4 such that a+a' =n. It
follows that

IS, (m) Sl = rg(m) = [(1S, 00+ 1)/2] = 18,4 (m)l/2.
which contradicts the hypothesis of the lemma.
Tueorem 1. Let A be an asymprotic basis of order 2 such that

(i) roln) = oo as n—x, and
{ii) there exists & =0 and Ny such that for all m, n 2 Ny, m #n,

IS4 (1) S im)| =(1/2=8) |84 (n)].
Then A contains a minimal asymptotic basis of order 2.

Proof Choose N, = Ny such that ne24 for all n = N,. Choose a, 4
with a; > N,. Choose ajeA with & >a,, and let u, =a,+a;. Then
ty = 2N, and ay £8,(u,}. We define the set 4; by

Ay ={A\S () (@] ].

Then A, = Ay = A, and u, = a,+a) is the unique representation of u, as
the sum of two elements of A,. Since a2 u /2> N, for all a4’ 4, it
follows that for n < Ny we have ne24, il and only if ne24. Let n> N,
n s y. Since

ISatmp St < (1/2=a) |84 (n)] < |54 (02,

it follows from Lemma 1 that ne2(A\8,(u,)) = 24,.

Let & = 1. Suppose that we have constructed a decreasing finile sequence
of suobsets 4=4,24,234;2... 24, such that 24 =24,. Suappase
also that for i = 1, ..., k we have constructed integers &, a4, such that, if
we define w, = a;+aj, then vy < ... < and u;, = a,+a; is the unique repre-
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sentation of u; as the sum of two elements of A,. Finally, we assume that
Ao WA € 8 u)

for i=1, oyl

Choose 7 such that O <t < 25, Since ry(n) — oo, there exists M >u,
k

such that ry(n) = (1/z) ¥ r,(w) for all n= M. Choose a,., £4, such that
F=1
ay .y = uy,. We shall shortly impose an additionil condition on the choice of
a4 . Choose g, , €4, such that a,,, > 2M, and define w,., = a. (+a,. .
Then wy,; = 2M = 2w, and af, , €544 1) A, Define the set A, , =4,
by
Ay = A\ Saltn 1))@ iah ey ]
Then wy ., =y, +tyy 18 the unique representation of u, ., as the sum of
two elements of A, ;.
We shall show that 24,., = 24. Since 24 = 24,, it suffices to show
that 2}4&_41 = 2.:4._. MNote that L “": == ."‘ff.. hence
(1) AN Ay ES ) E[MAT, 1.4,

and so, if n< M, then ne24,., ifand only if n€24,. Let n> M, n # 144,
Then ne24,. Let R(n) (resp, R'(n) denote the number of representations of n
as a sum of two elements of A, (resp. A,,,). We must show that R'(n) > 0.
Sinece

k
ANAy = U Sy,

1= 1
it follows that

[ k
refm) < Rim+ 3 |85(w) = Rin)+ N rolu) < Rin)+1r,(n),

i=1 i=1

and so Rin) = (1 —1jr(n) for n = M. By (1), the number of representations
of n as a sum of two elements of 4, that are not representations of n as a
sum of two elements of 4,., is at most

1860 N A\ Ags )| S 1S 0) 0 S (1)) S IS0 () 7S, (g )|
< (1/2=8) |8, (n)]
S (1/2=8) 2r (n) = (1 = 20) r4(n).
This implies that
Ri'(n) = Rin)—(1=2a)r,(n)
S l—1)ryim—(1=28)r, (0) =(2d—1)r () >0

and so ne2d, ., for all n = M. This completes the induction.
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£
Let A* = ] Ay. Then 24% = 24 and so A* 5 an asymptotic basis of
k={}

order 2. Moreover, u, = a;+ o, i1s the unique representation of w as the sum
of two elements of the set 4%,

In order for 4* to be a minimal asymptotic basis of order 2, we impose
the following additional condition on the choice of the integers a,: If 4 = 4%,
then a = a, for infinitely many k. This means that for any ac 4* there will be
infinitely many integers u, such that ¢ 2(4A*" la!). Thus, A* is minimal,
This completes the prool

Lemmia 2 Let | =[a, b) and J =[c, d], where b< . Let k= 1. If mefa
+e+k—1, b+d—k+17], then m has ar least k representations in the form m
= x+y, where xel, yed, amd x<y. If ne[2a+2%—2, 2b=2k+2), then n
has at least k representations in the form n = x4y, where x, yel, and x < .

Proof Since [a+c+k—1, b+d—k+1]=[a+k—1, bl +[c. d—k+1].
it follows that m = x+y, where xe[a+k—1, #] and yefc. d—k+ 1], hence
x =y, Then m = {x—§) +(y+1), where x—i el =[a, b], y+ied =[¢, d], and
x—imy+ifor i=M 1, 1. k=1,

Since [2a0+2k=22b—-2%k+ 2] =[a+ k- Lb—=k+1]+[a+k—1.b—=k+1],
it follows that n = x+y, where x, yela+k—1, h—Kk+ 1] and x < v, hence o
=(X—f+i{y+i), where x—i, v4+fefand x—i<y+ifori=0,1.....k—1.
This completes the proof.

Lesmma 3, Let g <=0y < ns < ., he g sequence of pasitive integers such
that wy_y = 3k*+6k+1 and ny = 8nm_, for k= 1. Let N, = 2n,+ 1. For each
k= 1, define the following sets of iniegers:

Py =[Ni- 1, m— Ny,
0= m—m_ =3u+llu=1,2,..., k+1,

Ri=[m+ 1, m+ Ny oI\ i+ g +3kul u=1,2. ..., k+1].

- 8
Let B,=P, L@y R, and B= || B;. Thén
=1
() Ny #2B for k=0, and
(i) If k=3 and ne[N,_+1, N.—1], then n has at least k representa-
tions in the form n=u+uv, where W, veB, UB,_, B, _,,

Proofl (i) Since the smillest element of B is Ny+ 1. it i5s clear that
Nog2B. Let k =1, Note that
BI“‘I[N&-:'!‘!..H*] =Pk'-F"QL

and
Br‘“‘-[n,,+1. Nﬁ.] =Brl[n;+l.ffk+NE, |] =Rl-
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I N, = 2t = ek, where D e< d, then c<m and d=n+ 1 If
ceB and cE @, thml;‘ﬁ&ﬂk"—rﬂfq_l and 5o Ny =d=Ny—c=m+ N+ 1.
Since Bn[m—?-N,-pi-Iu ;‘Eﬂ Q. it follows that dn,i_ﬂ If ceQy, then ¢
=y — . —Skul 'fgi:* %ﬂ-mt Well. k+1], hence d = Ny—¢ =n+n,_

+ 3k e[m + 1, Nelo Sir ;@'gﬂ,. it follows that d¢B and so N,é2B,

(i) Let k=3, %iayply Lemma 2 10 the set P If

(2) nefim, N2k Ny — 20, —2k+17],

then o has at least & distinet representations as the sum of two elements
of P,
Define the sets 8, and 1, by
S*_ = [”‘+].ﬂt+ﬂj_1+k+ l] TI= [Hk-l-ilk -1 +_-'“L”I:+ 1]’+ |, ny 4 J"\"J\_ |].
Then S, U T, = R,. Since
Ni—p bt g+ 3Kk 1 4+44+1 < N —2N,; —2k+2,

it follows from Lemma 2, applied to the sets P, and T,, that if
{3" _nE[Nk_sz_g "'jk""j* NE—.IC]

then n has at least k distinet representations in the form n = x+ v, where
xeF, and ye¥, = R, Similarly. Lemma 2, applied to the set S, ,, implies
that if

4) ne[Ny—y +2k—=1, Ny_y+Ny—3]

then » has at least k distinet fepresentations as the sum of two elements of
8.—i. Finally, Lemma 2, applied to the sets P, and P, 5, shows that if

{5] J!E[.'\Illl_1+.h'-*_:'+']:~ :.Nrk_l'i'.l.k_ll
= {Nh_|+|&ﬂll_\1+k+1. ﬂ;:_lnﬁllk.i'i‘”k..g_-'\li- 3_k+l]

then n has at least k distinct representations in the form n = x+y. where
xeP,, veP,_s. From (245, we conclude that il ne[N,_,+2k—1. Ny—k].
then n has at least &k distinct representations as a sum of two elements of
B, B, ,uB, 1.

Let ne[Ny—=k+1, Ny—17. Then n = N,—w for some we[l, k—1] and
n={n—ny. —3ku+ 1+ +m - +3ku—=w)eQ,+ R, =28

foru=1,2, ..,k Let ne[Ny—+1, No—;+2k=2]. Then n= N;_; +w for
some well, 2k—27 and

= =t a—3k=Tyu+1)+{m -+ 3k—1u+w)
EQy. + R, =28,
for w=1,2 ...k Thus, if we[N,_;+1. N;—1]. then » has at least &

At Avithmiteey LIL 2 4
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representations as a sum of two elements of Byw By_; wB;_,. This com-
pletes the proof of Lemma 3,

Lemma 4. Let B be the ser of integers defined in Lemma 3. Let rg(n)
denote the monber af represemtations of n in the form n = b+ b, where b, b' =B
and b< b'. Then rg(N) =0 for all k, and ry(n) 0 as n ==, n# N,.

Proof. This follows immediately from Lemma 3, since rgin) =1 for
N e N

Tueorem 2. For any integer t, there exists a set A of nonnegative integers
such that ry(n) =t for all sufficiently large n, and, for any subset § of A, the
st ANS is an asymptotic basis of order 2 if and only i § is finite. In particular,
A does not eomtain g minimal asymprotic hasis of order 2.

Proof. Let |n,| be a sequence of integers that satishies the conditions of
Lemma 3. Let B be the corresponding set of integers constructed in Lemma
3 from this sequence |m|. Then m = 8n,_, implies that

B[N, —N . N]EBaln+N,_+1.N]=0

for all k = 1. Choose j 50 large that [B~[1, N;_,]| = 1. Let F, be a subset of
Br[l, Nyy] such that |[F| =t Let G;= |N,—f| feF;l, and define A4,
=BGy Then G;=A;0[N;—N;_y, Nj]. It follows that N, 24, and
N =t.

Suppose that for i =, j+1, ..., k we have determined finite sets F, and

G; and infinite sets B=A4,., € 4; = 4,4, =... = A; such that

Fl'::;AJ_|lﬁ'-[|_hr|-_|_]. Gi=‘|1~||"r-—_|r|JrEFr:. Aizﬂr—lUGJ

and |Fjl = |G| =1. Then rg (N) =1. Choose Fy,; € A, n[1, Ni] such that
[Fys+ ¢l =t. An additional condition on the choice of the subset F,., will be
imposed shortly. Let Gyioy = INywy—f| feF 0! Let Apey = A, uGyiy.
Then |Gyiyl =1 and Gy, = [Nysy— Ny, Nisq]. Since

AkII'.B =Gj'~=-'GJ'+| U.--UG& E[l. .EV._]
and
B Nyar—Nis Nes 1 I = A [Nk 1 — Niy Nesa1 =0,

it follows that r,, (Nyy ) =1r. By induction, we obtain sets £y, G, and A,
for all k = j. Define the set 4 by

= w0
A=) A,=Bull) Gy
k= k=]
Then 4 is an asymptotic basis of order 2 such that r (V) =1 for all k = j,
and rg(m) —oc as n—oo0, n# N
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We nﬂwwm ﬁl]owing additional condition on the choice of the
sets Fy: Wem‘{ﬁf‘? 1005€ every f-clement subset F of A exactly once. Thus, if
F =4 and }ﬂ—ﬂ;%ﬁ F, for some unique integer k = j,

Let § b&ﬂ 3 .of A. Suppose that S is finite. Since r,(n) — = as
" =0, nq&NI. i-[ ‘that neA\S Tor all n sufficiently large, n# N,.
Since § wmah&.‘;qgl} fﬁ;cly many subsets F with |[F| =, and since each
such F dﬂ‘sl:rog,rsg tmg‘l ‘one N, with k=, it follows that A\S is an
asymptotic bmfsﬁfq:#ﬂrz, IS is infinite, however, then S contains mi'lmu.h
many subsets F with |F| =, and so § destroys infinitely many integers N,,
hence 4\S is not an asymptotic basis of order 2.

Since the infinite set A contains no maximal finite subset S, it I"ultum
that 4 does not contain a minimal asymptotic basis of order 2. This
completes the pmn{ of Theorem 2.

DErinrmion. Ltl; t = 1. An asymptotic basis A of order 2 is t-minimal if
A\S isan u}mﬂﬂ&ﬂ bams of order 2 il and only if |4~ 5] <1,

......

such that rA[MJBI far Q‘H suﬂul'e'm.f} mryﬂ 1, and A iy t-minimal

Proof. The construction of 4 is exactly the same as in Theorem 1, but
with a different condition on the choice of the finite sets F,: We must now
choose every r<element subset § of A4 inbnitely often, This means that if
S=A and [S] =1, then S = F, for infinitely many k, and so S destroys
infinitely many integers N,. Since r,(n) =t for all sufficiently large n, it
follows that if |8] < ¢, then § destroys at most finitely many »n and so 4§ is
an asymptotic basis or order 2. This completes the proof.

The following simple observation is interesting as a contrast to The-
orem 2,

TrheoreM 4. Let A be an asympiotic basis of order 2 such thatr ry(n) — w0,
Then there exists an infinite subset I of A such that A\ is an asymptotic basis
of arder 2, and ryy(n) = 0.

Proof. If F is any finite subset of A. then r,(n) =r,(n)—|F|. and so
Fapln) — o0

We shall construct an infinite subset /= |a,, a;,...; of 4 and an
increasing sequence of positive integers Ny, Ny, ... such that N, <a, < N;
<@y <Ny <..., and such that, if we define 4, = 4\ \a,, ai, ..., 6,}, then
radm) =k for all n = N,.

Choose N, such that ry{m =2 forall n= N,. Let a, =4 with a, > N,.
Define 4; = A" la;!. Then ry(n) =ry(n—121 for all n = N,. Suppose
that for some k = 1 we have determined integers a,, ..., a, €4 and integers
Nivieoo Npsuch that 0 =Ny <y <... < Np <. and, forj=1, ..., k. il A:
= A {dy. fgyaes @yl -then ra fn) = = ﬂ::r all n= N, Since ry (n) = Foln—k,
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it follows that ry (n) =, and so there exists Ny, >a; such that r, (n)
=k+2 Morall nz Ny, Choose gy = Njop and et Ay, =4\ layay ).
Then ry, ()= k+1 for all p= N, . This completes the induction.

Let 1= la,,as. @&, -] and define A* = 4\ ], Since: A¥ m[0, Ny o4l
= A, [0, Ny ], it follows that if Ny o < Ny, then vy (n)=r, () Z k,
and so rye(n) —o0.-This completes the proof,

Erdiis and Nathanson [5] proved that if 4 is an asymptotic basis of
order 2 such that r (n) = ¢ logn for some ¢ = 1/ log(4/3) and n = n,, then A
can be partitioned into two digjoint sets, each of which is an asymptotic basis
of order 2. The following result is a simple corollary of Theorem 2.

TueorEM 5. For any integer 1, there exists an asymprotic basis A of order
2 such that v(n) =t for all n = ny, but A is nor the union of two disjoint sets,
each of which is an asymprotic basis of order 2.

Proofl. Let 4 be a minimal asympiotic basis of order 2 such that
rim) =1t for all n = ny. Since no subset of A is an asymptotic basis, it is clear
that 4 cannot be partitioned into & disjoint union of two asymptotic bases of
order 2.
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