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For each positive integer o= 1, let 2% be the dircet product of w copies of Z3, ic,

£l Wy, tyy cca Na=00r 1 forall i=1,2,__ n} and let [ B%}, ., be a random
walk on Z§ such that P{Wi=d}=2"" for all L9 in Z7 and P{HY =
(30 @3y e tlgy QU WD = (@, 07,00 dp)} = P{WY, | = (a3, #y, 08, 1) W) =

@y dgy gt} =4 forall j=0,1,2, ., and all {a. @5 0,05 in Z5. For each
positive integer a2 1, et ', denpte the covering time taken by the random walk
W on £ Lo cover 23, e, Lo visil every element of Z3. In this paper, we prove that,
among other results. Plexcept imitely many », 272" < C, <4227 =14l
el O 198 Acdemse Press, Tne

For each positive integer n = 1, let Z7 be the direct product of n copies of
Zi, L&, Z3={(day, a3, ua,})|t;=0 or | for all i=1,2 ..n} and let
{ W7 be a Tandom walk on Z2 such that P{Wi=A)=2"" for all 4's
in 25 and P{W?,  =(a; a5, .,a,,0)|Wi=la;, a5,.., a,)|=P{W" =
(@, 83, a,, 1) Wi=(a,,a; .. a,)0}=1 for all j=0,1,2, .. and all
{dys tyy et J's in 25, For each positive integer n= 1, let €, denote the
covering time taken by the random walk W% on 27 to cover 24, ie., to visit
every element of Z%. In this paper, we prove that, among other results,
P iexcept finitely many n, ¢2"In(2")<C, <d2" In(2")} =1 ife<1l<d

In [2], Matthews studied a different random walk on Z%. His random
walk can be described as follows: Let u, be a probability measure on 23,
for each positive integer n= 1, that puts mass p, on {0, 0, .., 0] and mass
(1—p,/n on each of (1,0,..0) (0, 1,0,.,0).., (0,0,.., O 1,0), and
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112 ERDOS AND CHEN

(0,0,...0,1). For each step the random walk on Z9 corresponding to p,
does not move with probability p,, otherwise it changes exactly one coor-
dinate, with each coordinate equally likely to be changed. He proved that
P{C,—2"m(2"* ")) 2-"< x} —=exp(—e*) for all x if sup, p,<l. Our
result is similar to his. However, his technigue does not seem applicable to
the random walk w? in this paper. A completely different method is used to
obtain our resulls.

For ease of presentation, we introduce the following fair coin tossing
process (X, .., as follows: {X, |, ., is a sequence of independent and
identically  distributed random variables such that PX,=0)=
P(X,=1)=4 For each positive integer n= 1, let T, denote the first
occurrence time such that (X, X, .., X', ) contains all 4's in Z%,ie, T,=
inf{k|each 4 in Z7 appears in (X, X,, .. X, at least once}, == if no
such & exists. Tt is easy to see that C,= T, —n for all n= 1. Now we start
with the following notation and definitions,

For each element 4 ={a;, ¢4, ...;at,) In 25, the positive inteper |
(l=isn)is called a period of A il (ay, @z @, ) =804 15 Gipay e )
Let 1, denote the minimal period of 4 which is defined by ©,=
minii|lsi=nmand /5 a perod of 4],

Lemsia L. For any two elements A and B in 2% and any positive integer
m, P{(X,, X; .. X,) containg A)<P{(X,, X5, X)) contains B} if

0
Proaf. Sece page 186 of [1].

LEMMA 2. For any element A in Z5 and 1,2k, then {1 —n2 *}{n+1)
27" PUHAX,, Xy, X contains 4 = (n41)277,

Frogf. For each integer i=1,2, .0+ 1 let E={{X,.X | .
Xiinot)=A4L Then PUX,, X3 - X3,) containg A}=PMY E 1. By
Lemma |, we only have to consider the case when t,=Fk Now if
t,=k, then it is easy to see that E, and E, are disjoint if |i—/f| <k
Hence E0t! PE) = P JIZE) 2 B0 PUE)—F1cicjcust PIE mE)
Therefore, {1 —n2 *}{n+1)27" < P{Yr} E} < (n+1)27", since
P(E\)=2""and P(E,nE)<2 " *forall k+1sj<nm+1.

Lemma 3. For any element A in Z8, ((n+1)/2) 27" P{(X,, X2, o
Xap) contains A} <(n+1)27"

Proaf. Let A;=(0,0,..,0) be the unit element of Z3. Then, by
Lﬂmmﬂ E. P“.-Y“ Xl. ¥ .T;_,,] i:»nntains A}%P‘: '.X].ct‘-]‘---, Jl:']n} L:Gﬂ[,allnﬁ
Ayt MNow it is easy to see that P{(X,, X, .. X, ) contains 4,}=
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({n+1)/2) 27" Therefore, ((n+1)2)2-"< P{(X,, X, .., X,,) contains 4}
< (n+1)27" for any element 4 in Z3.

LEMMA 4. For any poesitive integer m and any element 4 in Z5 such
that v, =k Then P{(Xy, X3, o Xy 10n) containg A} zmin+1)2"{1—
2t —(m+ 122 dmin+1)27"%

Proof. For each positive integer i = 1, 2, ..., m, let B, be the event that B,
oceurs i (X jynsis Xjio1yngaswe Xy, contains 4. It is easy to sec
that P{(X\, X, o Xininin) containg A}=Pll)n ., Bl=5"  P(B)—
Ticicjum PIBiOB) = mP(B))—(m—1) P(B,nB}—4{m—1){m—2)x
P3(B,). since B,, B, .., B, are exchangeable and B,, B, are mutually
independent if |{— /| > 1. Now by the lemma of [5, p. 278] and Lemma 2,
we have Lemma 4,

Lemma 5. For any positive integer m and any element A in Z%. Then
PUX Xy oy Xing130) contains A} Zdmin+1) 271 =2((n+1)2-")'?
—min+1)2°"1

Progf.  Similar to the proof of Lemma 4; use Lemma 3 in the final sub-
stitution.

For each positive integer k=1, 2,.n let ay=card|{ 4|4 Z% and
t,=k}. It is easy to see that m, <2* forall k=1,2, ., n

Lemma 6. 3=, P{T,>d2"In[2")} <o if d> 1.

Frnfgf. zd' P{T:,,} dz” |H{2"H£Ef_.,§_“,ﬂ=| F“X1.X1. i Xulg”]m]"p'

does not contain

Alr.l:k]'ﬂ'- E zk{l—%lﬂ+1}2'"fl—3{fn+I}Z""}”!

(27t 2 i+ 1]
—imin+1)2° "}

+3 2 {l—mtn+112'"(l —n2*—((n+1)27")"

n=]|

1 (2% Ini2m + 1))
—Em{”-i-”z_“)} :
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It is casy to see that if k=<2 In(n), then

a6

) 2“‘{I —%n{n+i}E"’{I—E{{n+152'"I":’

|

—min+13p27")

T2 Ini 2 i 0me 4+ 17
} S

il md=m+1; it is possible since > 1. Now since #2 * =0 as n— = if
k=2lIn(n), there exists an m, such that if nzn, and m<a,
mF+(a+ 1) 2 "V dmin41)2 " <g, where (1 —&)d> 1. Hence

E 2"{1—m(n+l}2"'(l—u2 E—(in+1)2-")'=
=1

I [d2" Ind 2 (m = 00]
—E{n+ll2 ")}

<2 4 N 22U — (1 —g) mn2 ) 2N 1]

B

R,zﬂlll |-+ z Eﬂe—lrﬂl-4’-|-'NN1I1|2],|1|1'1+II'|{9:‘|
LR ]

if dil—eym=m+1;
it is possible since d(1 —z)> 1. The proof of Lemma 6 now is complete.

Now we are in a position to state and prove our upper bound for the
covering time C,,.

Tueorem 1. P{C,>d2"In(2") only finitely often} =1 for any constant
i1,

Proof. Since C,=T,—nforalln=1,2,., %% , P{C,>d2"In(2")} <
net P1T,>d2"In(2")} <@ if d> 1. By the Borel-Cantelli lemma, we
have P{C,=>d2"In(2") only finitely often} = 1 for any constant > 1.
With respect to the fair coin tossing process {X,, ), = . we define a new
sequence | ¥}, ., of random variables as follows: For each positive
integer mz1, ¥,=0 or | according to (X, X5, .. X,,., 1) contains
(X, X+ 1, ... X, ., ,)or not. For each positive integer n= 1, let S..=
;-1 Y, Itis easy to see that Sym=card { W2, W7, .., W% || is the number
of distinct states which the random walk W7 visited before the 2"th step.

LEmMma 7. lim,  _ E(Sn)2 "=(e—1)e
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Proof. To show that lim,, ., E(S:n) 27" = (e— 1 )e, it suffices to show
that lim,, _, . E{S:n) 2 "= (e—1)e—¢ lorany e=0.

Let m be a fixed positive integer and ¢= [2"/(mn)] be the largest integer
=2"(mn). Since O<E(Y,)=1 and is non-increasing in [ wm 3,
EAY o i VEEEnYEmn 35 g (Y ). Since mn {35 _o (Y, . 1)—
3 B Y1)} = mmE(Y) = mn, lim, o 27" T E(Y i) =
lim, ... 2 "E(S:#)=lm,_ 2 "mn Z}'_ﬂ E{ ¥y 1) Henee it is sufficient
to show that lim, . 2" "mn T _, E\¥,,. . )= (e—1)/e—& for any £>0.

By the definition of Y/s, it is easy to see that E(Y,,.,,)=
'P'. }."mm CS e 1 ! =z.41’.-2'|' P{{Xl ' ‘r'n"' Lt | ‘r_fm-l! 1 |} dm not Cﬂnlﬂjn A and
:X'.-'um + 1w 'r.lllli.l L Rl XJI-'ll.ll + u.} =A } = Z.-I i Z:'P: ‘Xl L ‘¥3+ i ijr.l' d-U'ES not
contain A and (Xpua i 1o X s 2500 Xpmnpn) =A] =02 "2 00 27" %
PUNV_  TOX G i 10 X diiin s 25 X imn) do€S not contain 47} —n2 =
(1—mn2 ") — 2" for all j=0,1,2,.,¢ Hence 3! ;E(Y.. }2
ol —mm2 "y — 27"} = 2%mn) ' {1 — (1 — mm2 ")} —
n2~"e(e+1)/2). Therefore, lim, . 27" "mn 35 o E(Y 1) = lim, .. {{1-
(1=mn2 ") = (2)27"(2%mn+ 1)} = te — 1 }/e— 1/2m. Since m can be
as large as possible, lim, 2 "mn 37_, E(Y,,. . ) =(e—1)e—¢ lor any
&= 0 and it completes the prool of Lemma 7.

Lemma 8 lim, ., E(S.n) 2 "< (e—1)e.

Proof. By a similar argument used in the proof of Lemma7, it is
sufficient to show that lim, .. 2 "mm ¥ _  E(Y,.  )=(e—1)e+e for
any s=0. Now E(¥. )=PlY.=1l=s E_,EZ;P{[.\.’,. Ko Xgar)
does not contain A and (X, i1n Xiwiison Xpmen)=A}=
B0 2P Y T et i Ky i 3 e X ) dOES MOt contain
Alty=k=31_ 27" P{(Xi; X35 ;X ,,) does not contain A}}.
MNow for sufficiently large n and & = 2In(n), P{(X,. X,.... X,,,) does not
contain At =k} <{l—mn2="(1—%)) Since n,<2, ¥, n27"=0
as n—o il k<2Iln(n) Hence, for sufficiently large n,
ElY )1 —nmm2 (1 —g)) +& Therefore, 2 "mn 25 _o E(Y )=
2 S (V—mm2 (=) e =1—(1—mn2 "(1—g))"" ' e 1—
e V4 ag p— oo and it completes the proof of Lemma 8.

For each positive integer k=1,2, ., let o = {W}|(k—1)2"<¢t<k2"},
Be=)' Ay, D= 25— By, and Ey=of, — By .

TueoreMm 2. Forall k=1,2,..,
(i) lim,_, 2 "Elcard(of)}=1—¢"",
(i) lim,_ .2 "Efcard(#)}=1—¢"%
(iii) lim,_ 2 "E{card(@;)}=¢""%
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Proof. By the [act that card(.= ) has the same distribution as of S.n for
all k=1, 2, ... Now, by Lemmas 7 and 8, we have (i},

By the fact that W7 and W are independent if |t —1¢"| =2 and (i), we
have (ii).

By the fact that %, 3, =&, Z%=%, w3, and (ii), we have (iii).

In order to obtain the lower bound for the covering time ', we have to
estimate the asymptotic upper bound for the variance of card(4,) for all
k=1,2,... We start with the following lemmas.

For each pair (i /) of positive integers, let ;=0 or 1 according to
(s K i X g 9 A s X o Y or W Wi )
(XX, 1w Xy, 1) For each positivé integer Nzn, let Sin N)=
¥iei;enty and for each positive integer n, let f,=sup{N|Nz=n and
E{n, N)=01}. It is easy to see that £(m N) is the number of recurrences in
N+wn—1 trials and ¢, is the number of trials before the first recurrence.
The next lemma is a special case of Theorems | and 2 of [3].

Lemma 9. I N — oo and i varies so thar (1) (¥)2 " "= 150 and (ii)
A'N2 " =0 for all t < oo, Then

(1) E[Z""Y) exp{AZ—1)/(1 —12)],

(2) Plt, =32 e
FProof. See pages 172-179 of [3],

For each positive integer k=1, 2, ..., we define a finite sequence |1f|1<
i<card(%, )} (probably empty) of hitting times of % as follows; 4=
min{t| Wie %, 2"<r<(k+ 1) 2"}, =0 il no such ¢ exists, and for each
J=23 . card(%), ti=min{t|W'e %, 1} ,<t<{k+1)2"} = if no
such  exists. Let Vy=1{zf|i=1.2, ... and tf <], It is easy to see that
E o1 ={Whitter,})

If B, , , # & we define a finite sequence {ZV |l gi<card(E, , )} of ran-
dom variables as follows; Z* = | and foreach /=2, 3, ... card(E, , ). Z5=0
or | according as Whe | WLl <j<if or W':f ¢ W':I.l l=f<i)]. Il is casy
to check that S{E; )= Ef“_h,“f*-”zf =3 k42 ¥, is the number of new
states which the random walk W7 visited between the (k2")th step and the
((k+1)2"—1)th step.

Levsia 10, Var(S(E,, )V =ane ' card(E, , | ) for some constant a >0,
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Proaf.

cardd £} ;1)
Var{S{E,,+.J}=‘v’ar( % Zj‘)

d
card{y 11
= ¥ Var(Z) 4+ } CoviZf, Z¥)
f=1 i
card| Ej ¢ |}
= Y {P@=1)-pPzi=1)

=1
+ ¥ (PUZ =) (ZE= 1)} —P{2¢ =1} P{Z5=1}}.

i
Since Z%, Z%, .., are 01 random variables, Var(Z¥)<}. Since the dis-
tribution H".'. 15 independent of H”"a if [i—j|lzn, P{Zi=1|Z}=1]<
P‘Z*—IIZ“ 0} +n2-" (by Lemmag} as n—oo and j=i+n
Hetce L,,.,Cm{z:f.z:f}zzl,_”,_.J, Cov(Zt, Z¥)+ Ty i 2a CovViZE, ZF)
< (n/d) card(E, . ) + (n/n2 ") card®(E, . ). Since card(E, . ,) < 2"

Var{S(E, . ))=ancard(E, , ). for some constant ¢ =0 and il completes
the prool of Lemma 10,

LEmMa 11, lim
a0,

woew M2 Varleard(#, )| ae™" for some constant

Proaf. We will prove Lemma |l by induction on k. By Lemma 10,
Lemma 11 holds when & =1. Now we assume that Lemma 11 holds for all
k=1,2, ... M, and we will show that lim, _ . 2 '2 "Var{card{4,,,,)| =
ap M Since By, =Wy, =B ,VEy, and By E, =1,

Var(card(#,, . )} = E{(card(#,, , |) — E(card(#,, . ,1))*}
=E|[card(#y . ) — E{card(#,, , ) card(#,,)} 1"}
+ E{[E{card(#,, ) card(@) ] — E{card(#,,, )} 1"}
e Var(#, )+ E{2"—card(#,,) | -ane ™"
o

e Pane M 4 e Manp— = gu2te M 4oL

Since Y= e '=¢fle—1), by induction, we have lim, . »n~'2 "Var
lcard(4#,)) =< ae * for some constant ¢ >0 and for all k= 1.

Lemma 12, ¥  PT,<e2"In(2")} <ot forany c< 1.

Proof. P{T,<c2"In(2")} = P{¥@my =21 = Plcard(d, um)
=2" = P{card{:ﬂt mizm) — E{card(®, i) 2 2" = 2%(1 = 27™)} =
Var|{card(®, i i50) )22 74 & a_n2"!'z“”""e"‘“"’"’ = an2 "'~ *). Hence

®  PIT, =e2"In(2")} = 2= an2 " "< o since c< 1.
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Now we are in the position to state and prove our lower bound for the
covering time C,,.

Tueorem 3. P{C,=¢2"In(2") except finitely mamy n} =1, if e < 1.

Proof, By Lemma 12 and the fact that €, =T,—n for all nz=1,
e PIC,<e2In(2")} <=. By the Borel-Cantelli lemma, P{C,<
¢2"In{2") infinitely often}=0. Hence P{C,>e2"In(2") except finitely
many n}=1.

Combining Theorem | and Theorem 3, we have the following theorems,
Taeorem 4. Pilim, . . C /(2" In(2"))=1}=1.
Terorem 5. lm, . E(C (2" In(2")1=1.

THeOREM 6. P{3 ™ 21 -2"""=xl=1.
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