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Abstract.

Admissible constellations of primes are patterns which, like the twin primes, no simple divisibility rela-
tion would prevent from being repeated indefinitely in the series of primes . All admissible constellations,
formed of consecutive primes, beginning with a prime < 1000, are established, and some properties of such
constellations in general are conjectured .
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1. The twin prime hypothesis .

The so-called twin prime hypothesis deals with the number of occurrences of pairs
(p,p+2), with both integers primes . The hypothesis has been generalized by Hardy and
Littlewood [1) to arbitrary constellations of integers (x + al, x + a2, . . . , x + al).

2 . Admissible constellations .

Let us start with a formal definition : al, 122, . . ., ak is an admissible sequence of inte-
gers if the ai's do notform a complete set of residues mod p for any prime p.-Clearly
only the primes p 5 k have to be considered . A sequence which is not admissible is
called inadmissible .

Beginning with the admissible sequence (ai) we now search for constellations of in-
tegers (x+ai), with all its members prime . We shall call such a sequence an admissible
constellation .-According to our definition, the sequence (0, 2,4) leading to the con-
stellation (x, x+2, x+4) and being represented by the primes 3, 5, 7, is inadmissible, since
precisely one of three consecutive even or odd integers is divisible by 3 . This implies
that 3, 5, 7 and -7, -5, -3 are the only instances for which all members of the constel-
lation are primes. On the other hand, the sequence (0, 2, 6, 8), leading to the quadruplet
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(x, x + 2, x + 6, x + 8), which is represented by the primes 11, 13, 17, 19 or by 101, 103,
107, 109, is admissible, since there is no prime p, for which all residue classes mod p
can be filled by the members of the constellation . The generalized Hardy-Littlewood
conjecture gives an asymptotic formula (see [4]) for the number of occurrences of any
particular admissible constellation with all its members primes and 5 N, asN In
particular, the hypothesis implies that their number tends to infinity, as N -> - .

3. Admissible constellations of consecutive primes .

In a search for repetitions of the pattern of small primes, the second author was led to
consider admissible constellations of consecutive primes [5] . This study has now been
carried a lot further, and some problems, which pose themselves, have been illuminated
by computer runs.

A pattern of consecutive primes starting from the very beginning of the prime se-
ries, can never repeat, because (2, 3) or (3, 5, 7) never repeats . If, however, we start by
some prime p,„, say, there always exists an admissible constellation (pm,pm+t, • • •, pn)
of maximal length . The first maximal admissible constellations are

(2),

	

(3, 5),

	

(5, 7,11,13,17),

	

(7,11,13,17, 19, 23).

If we continue, the constellations grow in length quite fast, so we have to introduce a
shorter notation. Letpin(u)p„ denote (p,n ,p in+1 i . . .,p„), where u = n-m+1 is the number
of primes in the constellation . With this notation, the sequence of maximal admissible
constellations continues as follows :

Here we make an interesting observation! Some of the constellations (viz . 17(20)101,
37(73)433 and 43(77)463) are shorter than their immediate predecessors . In order to
explain why, let us see what limits the length of an admissible constellation of consecu-
tive primes. Why cannot the constellation 31(74)433 be extended further? Because the
residues of the 75 primes of the constellation 31(75)437 would fill all residue classes
modulo some prime, which in this case turns out to be p = 37 . This fact makes the
extended constellation inadmissible . We shall say that the prime p = 37 kills the con-
stellation. Usually, at least for small values of p., it is the prime p,„ which ultimately
kills the constellation, and sincep, n is absent from the constellation beginning withpm+l,
it no longer interferes, and thus does not prevent the next constellation from growing
longer.-But in some cases, where a maximal admissible constellation is shorter than
its predecessor, the killing is due to some prime p.,,, with s > 0, rather than p,„, and so
there is a good chance that the prime pin+, will kill also the next constellation, beginning
with p,,,, . (This is, however, not certain! It could happen that it will not, viz . if the
residue class p. mod p., is represented only once in the constellation (pin	p„) . In
such a case, it is the presence of p,,, which is due to the killing by p,„+, of the constel-
lation beginning with pin, and thus, in this peculiar case, it is unlikely that p., would
kill the next constellation, lacking p,,,, too! We shall give some explicit examples of

11(15)67, 13(21)101, 17(20)101, 19(35)181, 23(42)229, 29(56)313,
31(74)433, 37(73)433, 41(78)463, 43(77)463, 47(105)653, . . .
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this case below .)--As a result, a maximal constellation like 37(73)433 is a subset of the
preceding one, and can be extended on the low side to give 31(74)433 . We shall call
an admissible constellation, which cannot be extended on either side, a truly maximal
admissible constellation (of consecutive primes) .

4. Truly maximal admissible constellations below 1000 .

A computer run has exposed 46 truly maximal admissible constellations pin (u)p„ of
consecutive primes with pin < 1000. We give these in Table 1 . For each prime p in , the
killing prime p,,,,,, as well as the value of s = 0, 1, 2, . . ., is also given .

The constellation 13(21)101 is unique, within the range of the table, by the property
that its possible extension is killed simultaneously by the two primes 13 and 17 .

Also, two maximal admissible constellations were found, which could serve as ex-
amples of the peculiar case, discussed in the preceding subsection . The maximal
admissible constellation 193(550)4339 cannot be extended, because an extension to
193(551)4349 would be killed by p in+ 2 = 199. If the first prime 193, however, is re-
moved, then the remaining constellation can be extended to 197(600)4789, whose ex-
tension is killed by p = 223 .-This situation occurs once more within the range of
the table, viz . for 367(1283)11177, killed by pin+3 = 383, while the next maximal ad-
missible constellation is 373(1380)12143, which is killed by pin+i = 379. Usually, a
truly maximal admissible constellation starts with the prime immediately following the
killing prime of the preceding one . See Table 1 for the verification of this statement! In
the peculiar cases, however, the next truly maximal admissible constellation starts at an
earlier prime, as can be seen from the two examples just given .

5. Maximal constellations immediately after 1000k .

In Table 2 we give the maximal admissible constellations pin (u)p„ for the first prime
p in , larger then I000k, for k = 1, 2, . . . ,10. These values are of interest in connexion
with the problems and conjectures discussed in the following subsection .

6. Some problems and conjectures .

We now mention some problems and conjectures in connexion with the tables we
have computed:

1 . Are there infinitely many maximal admissible constellations, for which s > 0?

2. Are there infinitely many maximal admissible constellations, for which s = 0?
(This seems unlikely .)

3. If s is given, how often is pin+,t the killing prime?

4. How fast does p„ grow with p in, i.e. how long should we expect a maximal
admissible constellation, beginning with pin , to be? Is the length of the constel-
lation, measured in its number of terms, asymptotically C pin logp,„? Is C = ??



394

	

PAUL ERDŐS AND HANS RIESEL

Carl Pomerance has shown [3] that for every m

(1)

	

Pn > Pm109P-1092Pm1094Pm 1
( 1o93Pm) 2

where loge n stands for log, p,,, and logePM stands for log e logepn , etc .-It
would be nice to have an upper bound for p,,, . A result of Linnik [2] gives
pn < pm for some absolute constant c . Surely p,, < pm+ for every > 0 and most
likely Pn < p,n(log m)` for some c > i . Both these conjectures, especially the
second, seem quite hopeless to prove at present .

5. Let 1 = al < a2 < . . . < ak be admissible. What can be said aboutf (k) = min ak?
It is well known that

(2)

	

(1+0(1»l
ogf(k)

< k < (2+0(1))1	gf(k)'

The lower bound follows from the prime number theorem and the upper bound
is a result proved by Selberg and, later, also by Montgomery and Vaughan .-
From (2) one can get

(3)

	

1klogk(1 -0(1)) < f(k) < klogk(1 +0(1)),

and even the stronger

(4)

	

k logk<f(k) < k logk 1+0
loglog k2

	

(log k)Z

6. A more fundamental problem, related to the others is : How long does a
given prime modulus p "last," before all its residue classes are used up by
(P., P.+,, . . . 1P .)?
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Table 1 . The 46 truly maximal admissible constellations below 1000 .

Table 2. 10 maximal admissible constellations between 1000 and 10007 .

P.(u)P . Pm+s s P.(u)P. Pm+s s

2(1)2 2 0 197(600)4783 223 3
3(2)5 3 0 227(714)5807 241 4

5(5)17 5 0 251(763)6271 257 1

7(6)23 7 0 263(901)7541 271 2
11(15)67 11 0 277(948)7963 277 0
13(21)101 13,17 0,1 281(970)8209 281 0

19(35)l81 19 0 283(1034)8779 293 1

23(42)229 23 0 307(1217)l0457 331 4
29(56)313 29 0 337(1288)11177 383 8
31(74)433 37 1 373(1380)l2143 379 1
41(78)463 43 1 383(1388)l2241 419 5
47(105)653 53 1 421(1472)l3037 487 11

59(110)701 59 0 491(2048)l8757 509 3
61(152)l009 67 1 521(2193)20261 599 11
71(195)1307 79 2 601(2261)21067 619 4
83(216)l493 97 2 631(2381)22277 659 5
101(272)l951 103 1 661(2544)23957 719 7
107(300)2179 113 2 727(2658)25247 797 10
127(411)3083 131 1 809(3194)30911 857 8
137(449)3433 149 2 859(3323)32359 887 5
151(459)3533 157 1 907(3429)33469 929 3
163(506)3919 167 1 937(3798)37361 953 3
173(554)4339 199 6 967(4260)42299 1051 14

P-(u)Pn Pm+s s P.(u)P" Pm+s s

1009(4254)42299 1051 8 6007(32645)394393 6007 0
2003(9060)97369 2053 6 7001(38879)476981 7237 24

3001(14619)164377 3011 1 8009(47459)591649 8123 14
4001(20589)238943 4019 4 9001(51662)649427 9161 18
5003(26467)314219 5119 15 10007(57411)728017 10321 36
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