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Let i = 2. The set A of integers is an asymptotic basis af order h il every
sufficiently large integer can be represenied as the sum of h elements of A. 1f
A is an asymptotic basis of order & such that no proper subset of 4 is an
asymptotic basis of order &, then the asymptotic basis A 15 minimal. It Follows
that if A is minimal, then for every element @ € A there must be infinitely
many positive integers n, each of whose representations as a sum of h
elemenis of A4 includes the number ¢ as a summand. Si6hr [6] introduced the
concept of minimal asymptotic basis, and Hirtter [2] proved that minimal
asymptotic bases of order A exist for all & = 2. Erdds and Nathanson [1] have
reviewed recent progress in the study of minimal asymptotic bases.

For any set 4 of integers, the counting function of A, denoted A(x), is
defined by A(x) =card({a € 4|1 = a =< x}). Il 4 is an asymptotic basis of
order h, then A(x) > ¢;x"" for some constant ¢; > 0 and all x sufficiently
large. For every i = 2, Nathanson [3], [4] has constructed minimal asympiotic
bases that are “thin” in the sense that 4(x) < ¢;x"/" for some ¢; > 0 and all
x sufficiently large.

Let A be a set of integers. The lower asymptotic density of A, denoted
d;(A), is defined by d,(A4}= liminf, , _d(x)/x If a=lim_ _ _A{x)/x
exists, then « is called the asymprotic densine of A, and denoted d(A).
Nathanson and Sarkézy [5] proved that if A s a minimal asymptotic basis of
order h, then d,(4) = 1./h. In this paper we construct for each h = 2 a class
of minimal asymptotic bases 4 of order h with d{A4) = 1/h. This result is
best possible in the sense that it gives the “fattest™ examples of minimal
asyvmptotic bases. We also prove that for every e £ (0, 1,/{2h — 2)) there exists
a minimal asymptotic basis A4 of order b with d{4) = a
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DepnITIONS.  Let N denote the set of nonnegative integers. Let 4 be a
subset of N. The h-fold sumser h4 is the set of all integers of the form
ay +ay + <+« +a,, where @, € A fori=1,2,...,h Let

p= gy o by megl e g

be two representations of n as a sum of & elements of A. These representa-

tions are disjoint if a,+ aj forall f, j=1,..., h.

The set B of nonnegative integers is a Bi-seguence il it satisfies the
following property: 1If w,v, € 8 for i=1,..  k with ; = --+ =y, and
oy < -+ v, and if Wy + o fu, =0 + - +o,, then u,=p, for i =

1,....k If Bisa B -sequence, then B is also a B,-sequence for every f < k.
Let |§| = card(S) denote the cardinality of the set S. Let {x} denote the
fractional part of the real number x,

LemMa. Let k= 2, and let B= {b )%, satisfy b, =0 and b, = k - b,
for all i = 1. Then:

(0.1} B isa B-sequence.

(0.2) Bix) = O(log x).

(03) If8e(0,1) and k™' < 8, then B(x) < B(8x) + t for all x = 0. In
particular, B(x) = B{x/k) + 1.

Proof, Let uyp,eBfori=1,..., f whete <k g < -++' < u;, and

vy £ --+ = v, Suppose that
Wy Foene ey e o
Let o, = max{u, v ). If u; <y, then
Uy tors by S S K up=0, S0+ o0 iy,
which is absurd. Therefore, U=, and so
DR S R S

It follows that 4, = v, for i =1,..., j. In particular, B isa B -sequence, This
proves (0.1).

Note that b, >k b,_, > k* b _,> -+ > k/™1 by = ¢ - k7, where ¢ =

by/k. Let x > ¢ k. Choose f such that ¢ - k/ < x < ¢+ k', Then
B(x) =j < log(x/c)/logk < ¢'log x

for some ¢" > 0 and x sufficiently large. Thus, B{x) = O(log x). This proves
(0.2,
Hx/k<bythenx<k-by <byand Bix)=1=8(x/)+1LIHx/k=
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by, choose i = 2such that b, | = x/k<b.Then x <k -b < b, and so
B(x) <i=B(x/k)+1.

Let 1/%" = 8. Then
Blx)<B(x/k)+1<B(x/k*)+2= --- =B(x/k')+1=B(8x)+1
This proves {0.3).

Tueorem 1. Let h = 2. Let A be an asymprotic basis of erder h of the form
A=8UC, where B and C are disjoimt sets of nonnegative integers. Let rin)

denote the cardinality of the largest set of pairwise disjoint represéntations of n in
the form

moem bl b+ +b 4o, (1)
where c € C, bj,.... b € B, and bl < bj = -+ = b} ;. Let W be the set
of all integers w € hd such that if w=ua  + --- +a, with a €A far i =
T h, then a, = ¢ € C for at most one j. Let

Qn)={ceCln—ce(h-1)B}.

Suppose that for some § € (0,1) the following conditions are satisfied:

(11) B = {b )=, where b, > (2h — Db, fori= 1.

(1.2) rin) = oo asn— co.

(1.3) For every ¢ € C there exist infinitely many choices of bi,.... b} | € B
such that w=b + b3+ -+ +b;_y+c€ W\ B and ¢/ > 8w for all ¢’
Q(w)\ (e}-

(1.4) Forevery bj € B, at least one of the following holds; (1.4a) there exist
infinitely many choices of b, ..., bi € B and ¢ € C such that w = b} + b}
doeve kbl ke € WNhBandc' > 8w forall ¢ € Q(w)\ {¢); (L4b) there
exist infinitely many choices of bS, ..., b € B such that w = bj + by + --- + b}
€ Wandc" = éw forall ¢’ € QB(w).

Then there exists C' © C such that A" = B U C' is a minimal asymprotic basis
of order h and (C\ C'{(x) = 2B{x)""! for x = wy. In particular, d(C " C")
=0 and d;{A") = d (A).

Proof. We shall construct the minimal asymptotic basis A’ by induction.
Choose t such that (24 = 2)~' < 8. Choose N, such that

(B(n) + )" " < (3/2)B(n)""" (2)

and r{n) =2 forall n =z M. Let 4, =4 and C, = C. Choose ¢ € ;. Let
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2, = ¢, By condition (1.3), we can choose bi,..., b;_, = B such that
wy=Dbj +bi+ - +b_, +cE W\hB, {3)

and w, =2 N, and ¢ = 8wy for all ¢" € Q(w ) [¢). Let F, = Q(w))" [},
Let ;= C\ F, and let 4, = B U C,. Then

C.\ cl — Fl E{awll “’|]+ {4}
If ¢’ € F,, then there exist integers v/ € B for i=1,.... 4 — 1 such that
wy =pl + .- +pp 4+ ¢l Since v < wy, it follows that there are at most

B{w;) cheices for each v/, and so

(ENC)ix) = |Fl = B(w)" (s)

for x = wy. Since wy € W hB, it follows that, except for permutations of the
summands, (3) is the unique representation of w; as a sum of h elements
Gf '441.

Let n = N and n # wy. Since r(n) = 2 for n = N, it follows that n has at
least two disjoint representations of the form (1) of fd. That is. there exist

integers u and u' € Bfori=1,...,h— 1, and ¢/, ¢"" € C such that
n=u+ oo Uy g et (&)
and
R=u"+ - +ut | +e", (7}

where ¢’ # ¢” and uf # u} forall i, j=1,....h— 1.

Either ¢' € C, or ¢" € C,. If not, then
' € R(w)\ (e} and "€ Q(w)\{e),
and so there exist integers v/ and »/' € B for i = 1...., h — 1 such that
Wy =)+ cee 4ok 4o (8)
and
wy=p e dull o+t (2)

Subtracting (8) from (6) and (%) from (T), we get two representations of
n — wy, and these yield the relation

TS R o T A o T ST, R T SRR TS e e o e
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By Lemma 1, the growth condition (1.1) on the elements of B implies that &
is a B,, j-sequence; hence

(W eeer ot B Oy} = (8 Uy ey D).

Since the representations (6) and (7) are disjoint, it follows that u] # ' for
all i, j=1,..., h — 1, and 50

AN R = N
Since uf < --- < uj_y, it follows that
B e

Equations (6) and (8) imply that » = w,, which is false. It follows that either
o' & F, = 8(w)\ {c)ore” & F, = &(w)\ {c}, and so

neh(BUC)=h4, forallnz N,

Let & = 2. Suppose that for each j < k we have constructed

(1.5) an integer w; € W with w,_; < dw, for2 5 f < &,

(1.6) aﬁmles:tf‘ C C N (8w, w,] with |F| < B(w,)"",

(L7) a set (= C\{FU“ LJF} andanmtegnraEAJnBu{Z}
such that w, has a unique mprcsmtalinn as a sum of h elements of 4, and a,
is a summand that is used in this representation, and n € k4, for all n = N,.

To perform the induction, we choose N, so large that

(1.8) N> W,y
(1.9) B(N)" !> 4B(w,_,)", and
(110) r(n) =2+ ZAZHE| =2 + 1A\ Ayl for n = N,

Let a, € 4, _, = B\ C;_4. There are two cases

Case 1. Suppose a, = ¢ € C,_,. By condition (1.3) of the theorem, there
exist integers b € Bfor i =1,2,..., i — 1 such that

Bl 4 b+ «v 4B}y + ¢ =w, € W\hB,
where 8w, > N, and ¢’ > 8w, forall ¢’ € F, = Q(w; )\ {c}. Let
Ck=C;_._1\F* al‘ld Ak-Buc‘k.

Then the element w, has a unique representation (up to permutations of the
summands) as a sum of h elements of A,, and the integer a, = ¢ is one of the
summands in this representation.
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Case 2. Suppose a, = b{ € B. If condition (1.4a) is satistied, there exist
integers b/ € Bfori=23.....h—1and ¢ € C such that

Bi+bi+ - +b}_, +c=w,c W\hB,

where dw, = N, and ¢ = 8w, for all ¢’ & F, = U(w. )" {c}. If condition
(1.4b) is satisfied, there exist integers b € B for i = 2.3,..., & such that

B +bi+--+b,=w W,

where §w, > N, and ¢ > 8w, for all ¢’ € F, = Q(w,). With either condition
{1.4a) or (14b), let C, = C, ;\F, and 4, = B U C;. Then the element w,
has a unigue representation {up to permutations of the summands) as a sum of
h elements of 4, and this representation includes the integer a, = bj.

In both cases, F, C C,_, N ($wy, we| and |F| < B(w,)" L. Let n = N,
We shall show that n € hd,. Since n € hd,_, and ¢’ > éw, > N, = w, | for
all ¢’ e F,=4, \A,, it follows that n € kd, for N, = n =< dw,. Let
n> 8w, and n # wy. Since r(n) =2+ [dN\ A, | for n = N, by condition
(1.10), it follows that n has at least two disjoint representations of the form (1)
in kA4, ,. That is, there exist integers ) and /'€ B for i=1,....h -1,
and ¢', ¢” € C,_, such that

=l F s hun (10)
and
poemult e plt ) 4ot {11)

where ¢’ # ¢"and uf # u foralli, j=1,....h = 1.1f ' € F, and " € F,

then there exist integers ¢! and ¢/ € B for i =1,..., h — 1 such that
W=l 4 e gl ot (12}
and
Wy = 0 el e, (13)

Subtracting (12) from (10) and (13) from (11}, we get two representations of
n — wy, and these yield the relation

TSR T o T R e e ol R ol T B TR SRR SR
Since B is a By, s-sequence, the argument used at the beginning of this proof

shows that n € h(B U C,) = hd,. Thus, n € hd, for all n = N,. This com-
pletes the induction.
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We now define

og o
C'= NC=C\ UFE and 4'=BucC.

k=1 k=1

Let n = N,. Choose w, > n. Then n € hd,. Since

a’>w,>n foralla’ e A\A"= |) F,
f=ke+1

it follows that n € hd'. Thus, A" is an asymptotic basis of order h.

Here is the critical idea in the proof; At the k-th step of the induction, we
could choose any element a, € 4, = B U €. We must make these choices in
such a way that if a’ € A', then a’ = a, for infinitely many k. This implies
that for every a' € A’ there are infinitely many integers wy such that w, € id’,
but w, & h(4" {a'}), and so A’ is a minimal asymptotic basis of order h.

Finally, we must prove that for x = w;,

(eNe)(x) =2B(x)" . (14)

By (5), (C\ C)w,) = B{w;)"~L. Suppose that (14) holds for w; < x = w,_,.
Since (C\ C") N (wy_q, dwy] = @, then (14) holds for x < §w,. Let 8w, < x
= w,. Then by (1.6), (0.3), (1.9), and (2) we have
(CNCMx) = (€NCHw) = (ENCHw_y) +IF

< 2B(w, )" '+ B(w,)"!

< 2B(w,_ )"+ (B(Bw,) + )"

< 48(8wy)" " + 18(8w)"

= 2B(8w,)" !

< 2B(x)"

Thus, (14) holds for all x = w,. Since the set B is a B, ,-sequence, it
follows from the lemma that B{x) = O(log x), and so 4(C% C") =0 and
d (A" = d (A4). This completes the proof.

We shall now use Theorem 1 to construct examples of minimal asymptotic
bases of order h with prescribed positive densities.
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TueoreM 2. Let h = 2. Let B = {b, )2, be a set of positive integers such
that

(21) by > Qh—1b, foriz1,

(2.2) By = (b, € Blb =0 (mod h)} is infinite,

(2.3) B, = [b, € Blb =1 (mod h)) is infinite,

(24) B=B,UB,
Let €= [c = 0¢ = 0 (mod h)) ™ By Then there exists a set C' © C such that
A= B U C' is a minimal asymptotic basis of order h, and d{ A") = 1/h,

Proof. Theset 4 = B U C 15 an asymptotic basis of order &, and d{4) =
1/h. We shall show that conditions (1.1)—(1.4) of Theorem 1 are satisfied with
8 = 1/(h + 1). Note that condition (1.1} in Theorem 1 follows immediately
from condition (2.1) in Theorem 2. The lemma implies that B(x) = O(log x ).

To show condition (1.2}, choose a large integer m. Let

e {010 =1}
By (2.2) and (2.3), we can choose m + 1 pairwise disjoint sets
1B gy ey Y EB
such that b, | < --+ <b,,  and b,y <by, for f=1,..., m and

at ety =e (modh)

for j=1,...,m+ 1. Thene, < +-- <e_, . Choose
by max(e...vfuiv)s

Let n=¢ (mod h)and n = b, . Then n —¢, >0 and n — ¢, = 0 (mod h)
for j=1,...,m+ L. Suppose that n — ¢, = b, € Band n — ¢, = b, € B for
some i < j. Then b, > b, and

b=n—e b b >ly>e e —e.~b —b>§
which is absurd. Therefore, n — e, € C for at least m different ¢, and so
r{n) = m for all sufficiently large n = ¢ (mod h). It follows that r(n) — oo as
n — so, and condition (1.2) is satisfied.

Mext we show that (1.3) holds. Since ¢ = {§ (mod #) for all ¢ = C, it follows
that if n=h — 1 (mod k), then n € W. Fix ¢ € C. Choose b, = B with
by=cand b =1 (mod k). Let w=(h — 1)b, +¢. Then w=h — 1 (moed h)
and w £ W,
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We shall prove that w & W hB. Suppose that there exist bf,..., bl e B
such that w = & + - -- + b/, Since

(h=1)b,=w=<hb = (2h - 2)b,< b4,

it follows that &/ < b, forall i = 1,..., h, but b < b, for some i = 1,..., h.
If b/ + b, for exactly one j € {1,..., k), then

bl=ce B0 C= 8,
which is absurd. If b! # b, and b; # b, then
w=>bl+ - +bf < (h—2)b+2b_,<(h—1)b<w,
which is also absurd. Therefare, w & k8.

Let ¢ € Q(w)" {¢}. Then there exist b € B for i =1,..., h — 1 such
that w = b{ + --- +b; | + ¢ and b/ # b, for some j. Then b/ < b,_,. Since
(h—1)b=(h=1)h+c=w={h=-2)b+b_,+¢

it follows that
¢ = b —b,_, > ((2h—2)/(2h — 1))b, > ((2k — 2)/k(2k = 1)) w = 8w
Thus, condition (1.3) of Theorem 1 holds.

Finally, we consider condition (1.4). Let b, € B= B, U B If b, € B, we
shall show that (1.4b) holds. Choose b, € B, with b, > b, Let

w=h + (h—1)b,.

Then w < hh, < b, . Since w = h = 1 (mod k), it follows that w e W. Let
¢" € Q(w). There exist b € B such that w=»5] + --- +5h; | + ¢, where
bi = b for all i and b/ < b,_; for some j. The same argument as above
implies that

¢'> ((2h = 2)/h(2h — 1))w = Bw.

If b, = B, we shall show that (1.4a) holds. Choose b, € B, with b, > b,
The interval (25, — b,, 38, — b,} contains b,k + O(1) multiples of #, and so
b,/h + O(log b,) elements of C. There are at most B(3h,)° = O(log? b,) in-
tegers of the form b, + b, — b, in this interval. It follows that for b, sufficiently
large there exists an integer ¢ € C such that

b, <b,+¢<3b, and b, + ¢ & 28
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Let w=(h-2)b+b, +¢ Then w=h—1 (mod h), hence we W. If
w € hB, there exist b{,..., b, € B such that & + --- + 5, = w, but this i3
impossible, since

hby=w<(h+1)b = (2h—1)b<h,,.

Therefore, w € W hB.
Let ¢! € 8(w) X {c}. There exist b{,..., bj_, such that

webl e £hl g '
Then b} = b fori=1,...,h—1and so
c'zw=(h=1)b=b>w/lh+1)=28w
This completes the proof of Theorem 2.

COROLLARY. For every h = 2 there exisis a mintmal asymyptotic basis A" of
order i with asymptotic density d(A") = 1/h.

THEOREM 3. Leth = 2, Foreveny a € (0,1,/(2h — 2)) there exists a minimal
asymptotic basis A of arder h with asymprotic densiry d{ A) = a.

Proof. Let & €(0,1/(2h — 2)). Let © > 0 be irrational. Let B = {5,172,
be a set of positive integers so that { 5,8 } is dense in the interval (0, 1,/(k — 1))
and b, ; = (2h — 2)b, forall i = 1. Let

C={cz=0/{c@) =a}\B.

let A =BU C, Then d(B) =0 and d(4) = d(C)= a. We shall prove that
A is an asymptotic basis of order & and satisfies conditions {1.1)-(1.4) of
Theorem 1 with § = (24 — 3)/h(2h — 2) < 1/4.

Clearly, B satisfies (1.1}, To show that condition (1.2) holds, we first fix an

integer N > 2 /a. Choose m large. Fori = 1,...,h — Liand j=1,..., m+ 1,
and k=1,..., N, we choose pairwise distinct integers &(/, j, k) = B such
that

(31) b(L, jok) < b2 j k) < -+ <b(h—1, j. k)forall j k.
(32) b(h— 1, j. k) <b(l,j+1,k)for j=1,2,..., m and all k,
(3.3) (b, . k)B) € [(k = 1)/((h = )N, k/((h — 1)N)).

Let

h—1
s{j k)= 3 bli. j. k)= (h—1)B.

f=]
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Conditions (3.1) and (3.2) imply that (1, k) = s(2. k) < --» <s(m+ 1, k)
Also, condition (3.3) implies that

{s(j,k)O} e [(k—1)/N.k/N) forj=1,....m+1.
Let
n>2-max[s(LEk)Nj=1,....m+1L k=1_... N}

If {n®} e[1/N,1), then {n®} = [k/N,(k + 1)/N) for some k=1,...,
N-=1, and

((n=3(j,k))®) & [0.2/N) < [0, )
for j=1,....m+ LIf {[n8} € [0,1/N), then
{(n—s(j,N)O]} e [0.2/N) c [0, «).

In all cases, n = 5(j,N)=¢c, EBUC for j=1,..., m+ land ¢, = ¢y >
© > €. Since $(f, k) E(h— 1)B and since B is a B, -sequence, it
follows that ¢; € B for at most one j, and so # has at least m pairwise disjoint
representations of the form (1). Thus, A is an asymptotic basis of order A, and
r(n) — o0 as n — oo, Condition (1.2) is satisfied.
Let W be the set of all integers w € hd such that if w = a; + -+~ +a, with
a, €4 fori=1... h then a, € C for at most one j. Let

B={(h-=2)/(h-1)+ 2e.

Since 0 < a < 1/(2h — 2), it follows that 0 <= & < B < 1. Let n be a positive
integer such that {n®} = 8. We shall show that n» = W. If not, then there
exists a representation

B I Y (o G el o

where b/ € B, ¢;€ C, and 0 =k < h — 2. Since {b/0} <1/(h—1) and
{8} < a it follows that
(n@®) <k/(h—1)+(h—k)a
= ha+ k(1/(h=1) = a)
<ha+ (h—2)(1/(h—1)—a)
=(h=2/(h—1)+ 2a
=Jﬂ1

which contradicts {nB} = B. Therefore, k=hor k=h —1,and son € W.
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We now prove that condition (1.3) holds. Let ¢ € C. Then {¢®} <= a < fi.
The set {{b8B)|b, € B} is dense in (0, 1/(h — 1)), and so there exist infinitely
many b, € B such that b, > ¢ and

(B—{®})/{h=1)< (b8} < (1~ {cB})/(h—1).
Let w = (h — 1)b, + c. Then
B<{wB)=(h-1){b0) + (B) <1

and so we= W. Since (h = 1)b <sw < hb < b, 1t follows that w'& hB,
hence w = W hB. Let ¢' € (w) ) {¢). Then there exist b’ € B such that

TR B L R X L i
where b/ < b, forall i and b/ < b, , for at least one j. Then
(h—1)b<ws(h—2)b+b_,+c,
and so
e 3. S - S
> ((2h — 3)/(2h — 2))b,

> ((2h — 3)/h(Zh = 2))w
= dw,

Thus, A satisfies condition (1.3).
We show next that (1.4b) holds. Let b, € B. Suppose that {8} < f. Note
that this is always true for & = 3, since

(bO) < 1/(h—1) < (h=2)/(h—1)+ 2a = B.
Then there exist infinitely many b, € B such that b, = b, and
(B (b8))/(h—1) < [88) < (1 - [58))/(h ~1).
Let w=(h—1)b + b,. It follows as in the case above that w € W and
¢ = 8w for all ¢" = Q(w).
Finally, we consider the case # = 2 and
0<2a=f< (6@} <1
There exist infinitely many b, € B such that b, > b, and

0<{pB}) <1-(h8]}.
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Let w=05b 4+ b,.Then b <w <2b < b,,,, and
B={b8]) <{wB)={b0}+ {0} <1,

hence w € W. Let ¢’ € Q(w). Then there exists b] € B such that w = b} + ¢,
where b{ < b,_,. Then

b<w=h_,+d,
and so
¢ =b—-b_>b/2>w/d=148w.

Thus, condition (1.4) is satisfied. This completes the proof of the theorem,

Cororiary. [If A is a minimal asymptotic basis of order 2, then d;(A) =
1/2. For every a € (L1/2], there exists a minimal asymptotic basis 4 with
d(A)=1/2.

Proof.  This follows immediately from Theorems 2 and 3 and the result of
MNathanson and Sarkézy [5].

Open problems. 1t should be possible to generalize the corollary to Theo-
rem 3 to bases of order i = 3. If a = (0,1/h), prove that there exists a
minimal asymptotic basis 4 of order # with asymptotic density o.

The minimal asymptotic basis 4 = [a,}72, of order 2 and density 1,2
constructed in Theorem 2 has the property that a,., — a, < 4 for all i and
4,y — a; = 4 for infinitely many i. It is easy to show that there does not exist
a minimal asymptaotic basis A of order 2 with limsup(a,,, — a,) = 2. Does

there exist a minimal asymptotic basis 4 of order 2 with limsup(a,  , — a,)
= 37
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