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Let G be a graph with vertex set V(G) and edge set E(G), respectively.

The set of vertices adjacent to an x e V(G) is denoted by F(x), and the

degree of x is d(x) = I F(x)l . For any subset V 'g V(G), let G[ V] denote
the subgraph of G induced by the vertices of V' . Further, let K n stand for

the complete graph on n vertices.
It is easily seen (e.g ., Erdös [7]) that every graph G with n vertices and

in edges contains a bipartite subgraph H such that iE(H)l >IE(G)1/2

= m/2, i .e., every graph can be made bipartite by the omission of at most
half of its edges . Erdös and Lovász proved that if G has no triangle, then it

can be made bipartite by the omission of m/2 _ M 2/3 (log m)` edges . On the
other hand, Erdös [9] showed by the probability method that for every r,

there is a graph G with no cycle of length less than r which cannot be made
bipartite by the omission of fewer than in edges. The best
exponent in m' is not known even for r=3, but s . approaches 0 as r
becomes large .

However, the graphs constructed in [9] are "sparse" (i.e ., in = 0(n')),

and the aim of this paper is to show that much stronger results can be
obtained if we assume that our graph G is not sparse.

We will restrict our attention to families of graphs not containing some

so-called,lbrbidden subgraph E (Such graphs are also said to be F-free .) In
particular, for triangle-free graphs, i .e ., when F= K3 , we will prove the

following .
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1 . 1 INTRODUCTION



THEOREM 1 . Every triangle free graph G with n vertices and m edges can
be made bipartite by the omission of at most
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edges .

THEOREM 2 . There is a (calculatable) constant ,>O such that every
triangle free graph G with it vertices can be made bipartite by the omission of
at most (1/18-r.+o(1)) n 3 edges.

According to a long-standing conjecture of Erdüs (see [3, 4, 8]), in the
last assertion, (1 ;18 - e) n` can be replaced by n 2/25 . This bound, if valid,
would be best possible. (It is also conjectured that a K,,-free graph with n
vertices can be made bipartite by the omission of (y+o(1)) •n t edges . The
complete tripartite graph with n ;3 vertices in each class shows that this
conjecture, if true, is also the best possible .

In the general case, when F can be an arbitrary graph, we have the
following result .

THEOREM 3 . For every forbidden graph F and .for every c > 0 there is a
constant e(F, c) > 0 such that any F-free graph G with it vertices and m > en 2
edges can be made bipartite by the omission of at most (m;2)-e(F, c) n'-
edges .

The proof of the above results is largely based on the fact that triangle-
free graphs contain relatively large induced bipartite subgraphs . More
specifically, we will establish the following .

THEOREM 4 . Let f=f(n, m) denote the maximum integer satisfying the
condition that every triangle free graph with n vertices and at least rn edges
contains an induced bipartite subgraph with at least f edges . Then
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In the next section we prove Theorems 1 and 3 and some basic
properties of triangle-free graphs . Sections 3 and 4 contain the proofs of
Theorems 4 and 2, respectively. In the last section we consider some related
questions, generalizations, and unsolved problems .
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2 . SOME BASIC PROPERTIES OF TRIANGLE-FREE GRAPHS

For any xcV(G) let F(x) = V(G) - ({x) u F(x)), i .e., the set of those
vertices distinct from x which are not connected to x by an edge of G.

LEMMA 2 .1 . Every triangle free graph G has a vertex x such that

E(G[F(x)])I S1E(G)1-
4 E(G)1

I V(G) I

Proof: By a simple averaging argument we obtain

I IE(G[F(x)])1= 11 (n - d(a) - d(b))
z e V(G)

	

ab e E(G)

4

	

2

=n I E(G)1 - I d 2 (a) _< n I E(G)1 -
E~G)I

	

'

A triangle-free graph is called saturated if the addition of any edge results
in a graph with a K3 . That is, a triangle-free graph is saturated if and only
if its diameter is 2.

COROLLARY 2 .2. Every triangle-free graph G with n vertices has a vertex
x such that IE(G[F(x)]115n 2 116. Furthermore, for every large n one can
,find saturated triangle free graphs G„ with n vertices such that min,,, ( ,,,

I E(G„ [F(x)1)I =n'/16+0(n) .

Proof. The first assertion follows immediately from Lemma 2 .1 .
To prove the second one, assume that n=4k and let H be a k14 regular

graph on the vertex set { 1, 2, k} . Define now a graph G„ as follows . Let

V(G„) _ {x„ y„ u„ v, : 1 _< i _< k}

E(G„) _ { , ;, u,v, : l < i ,< k} v I'x,u,, y,v1 : ij e E(H)}

v {x ;vj , y i u; : ijOE(H)} .

It can readily be checked that G„ will meet both requirements. I

LEMMA 2 .3 . Let G he a triangle free graph with m edges and with
chromatic number x(G) . Then X(G) _< 2m' , ' + 1 .

Proof: By double induction on n (the number of vertices of G) and m. If
m-0 then the assertion is trivial .

If G has a vertex of degree at most 2m' 3 , then, applying the induction
hypothesis to G-x, we obtain that G-x can be coloured by at most
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2m" 3 + L colours, and this colouration can be extended to x without using
any new colour .

Assume next that d(y) > 21n"i3 for every v e V(G). Then m = E d(y)/2 >
nm". By Lemma 2 . 1, there is a vertex x in G such that

1E(G[r(x)])1 <m-
4m2

<m-4m<

	

n

By the induction hypthesis, G[T(x)] can be coloured with at most
2(m-4rn a ' 3 ) 1i3 +1 colours, and using two further colours (one for x and
one for F(x)), we get a proper colouration of G . This completes the proof,
since

2(m-4m 2i3 ) 1 3 +3 _< 2m 1 j 3 + 1 . 1
Remark . Although an improvement of Lemma 2.3 is not needed now, it

is an interesting problem to try to estimate as exactly as possible the
maximum of the chromatic number f3(m) of a triangle-free graph with m
edges. The results in [1 ] give that for some l -<- x 2 <- x, S 2,

c, m''3 ;( log tn)"- <f3(m) < C,M I, 3; (log

The exact determination of f3(m) is probably hopeless, and even an
asymptotic formula for f3(m) seems out of reach .

As usual, a cycle of length 4 is denoted by C, and is called a
quadrilateral .

LEMMA 2 .4. Let G be a graph with n vertices and m edges . Then

(i) G has an edge which is contained in at least 8m'/n' -bm/n
quadrilatrals .

(ü) ff, in addition, G is triangle-free theta it has an edge contained in at
least 4m('2m a -n 3 ),tn`(n 2 -2m) quadrilaterals .

Proof For any unordered pair { x, y} of distinct vertices, let t( {x, y } )
denote the number of vertices in G joined to both x and y. Then

d(x)

	

l~~m n) .t(1-v, YÍ) = y_

	

2

	

>n1 2

This is a consequence of the well-known inequality (see, e .g ., [3]) that
d, + dz + - - - + d_ = 2na and 2m > n, then

/ 2,1 +1 2I
+ . . . +(d)>nl2'i;nl

if
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On the other hand, the total number of quadrilterals in G is

1 Ct({-v,
y

	

/ 1(nv Et({x' y}); (2)

//

	

2

2m/n i n
l n n

	

2 i 2

	

2m4 3m2
2 (2)

	

2

	

n°

	

2n

The last inequality follows from direct calculations and the fact that
m 5 n 2/2. Since there exists an edge contained in at least 4/m times this
many quadrilaterals, we obtain (i) .

The proof of part (ü) is entirely similar . The only difference is that in this
case the second sum should be taken over all non-adjacent pairs {x,y} .
Thus, (,) is to be replaced by (,)-m in the previous inequalities. The details
are left to the reader . I

We shall need the following easy observation .

PROPOSITION 2.5 . Let G be a graph and W s V(G) be a set of vertices
such that the subgraph G[W] induced by them can be made bipartite by the
omission ofS edges. Then G can be made bipartite by the omission of at most
E(G)1 112 - I E(G [ W] )I /2 + b edges.

Proof. For any X s V(G), put e(X) _ I E(G[X])I . Let W= W, v W2 be
a partition of W satisfying e(W,)+e(W2) _< S, and let U= V(G) - W. Since
G[U], just like any other graph, can be made bipartite by the deletion of
at most half of its edges, there exists a partition U= U l v U2 such that
e(U,)+e(U2)<e(U)/2 . Taking into account that

Y, e(Ui v WI ) = e(V(G))+2e(U,)+2e(Ú2)-e(U)

+ 2e(W,) + 2e(W,) - e( W)

e(V(G)) + 2ó - e(W),

we obtain that either e(U, v W,)+e(U 2 v W2 ) or e(U, v W2)+
e(U 2 v W,) is at most e(V(G))/2+S-e(W)/2 . I

Now we are in a position to prove Theorems 1 and 3 .

Proof of Theorem l . Let G be a triangle-free graph with n vertices and
m edges. By Lemma 2 .4, there exists an xreE(G) which is contained in at
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least (8m'-4mn')/(n 4 -2mn 2 ) quadrilaterals . That is, the set W=F(x)v

F(y) induces a bipartite subgraph of G such that JE(G[W])I >
(8m'-4mn')/(n4-2mn~) . Applying Proposition 2 .5 with ó=0, we get the
first inequality of the theorem .

The second inequality follows directly from Lemma 2 .1 . We have to note
only that the omission of all edges in G[F(x)] leaves G bipartite. I

The following statement, slightly weaker than our Theorem 2, follows
immediately from Theorem 1 by considering two cases : m > n 2/6 and
m < n'-l6, where m is the number of edges of G.

COROLLARY 2.6 . Every triangle-free graph G with n vertices can be made
bipartite by the omission of at most n` A 8 + n/2 edges.

Proof of Theorem 3 . It is obviously enough to prove the theorem in the
case when F= K r (r> 3). We are going to show by induction on r that the
assertion is true for F= K, and e(K„ c)=c 4" . If r•= 3 then the result follows
by Theorem 1 .

Assume now that r > 3, and let G be a K,-free graph with n vertices and
m > crt' edges . If n is sufficiently large then, by Lemma 2 .4, we can find an
edge x, x z c E(G) such that there are at least 8c 3r1 2 -6en ~ 4c3n 2 edges
running between F(x,) and F(x,) . Put e,= I E(G[F(x,)])I, i= 1, 2 .

If e, + e, < 2c'n 2 then, by Proposition 2 .5, G can be made bipartite by
the omission of at most

rn 1 E(G[F(x,) u[-
(x a )])

	

m

~-	~	+e,+e,<~-c•a n 2

edges, and the result follows .
Suppose now that, say, e, _> c3n' . In view of the fact that G[F(x,)] does

not contain a K" „ we can apply the induction hypothesis to obtain that
G[F(x,)] can be made bipartite by the omission of at most

ó=7-(c 3 ) a .IF(-v1)I 2 < 2 _ c 4" .n 2

edges. Thus, using Proposition 2 .5 with W = F(x, ), we conclude that G can
be made bipartite by the deletion of at most

edges, as desired . I

?
-e+ ó < 2 - cd"n 2
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3 . THE SIZE OF THE LARGEST INDUCED BIPARTITE SUBGRAPH

The aim of this section is to prove Theorem 4. We need some
preparation .

Let G,,, P denote a random graph of n vertices in which the edges are
chosen independently and with probability p . A triangle-free subgraphH of
a graph G is called maximal if the addition of any edge in G-H results in
a graph with a triangle. A quarter of a century ago Erdös [5, 6] found the
following result, which provides fairly good lower bounds for some Ramsey
numbers .

THEOREM 3 .1 . If p=2nthen, with probability tending to 1, no
maximal triangle free subgraph of G,,, . contains an independent set of more

than 3n' ,"' log n vertices .

We shall make use of the following

LEMMA 3 .2. If p=1n - '''` then, with probability tending to 1, every

maximal triangle free subgraph H S Gam, p has the following two properties .

(i) S n" < I E(H)I < Sn 3,z

(ü) H does not contain an induced bipartite subgraph with more than

30n 1 / 2 log e n edges.

Proof. The expected number of edges and triangles in G„, p is equal to
P(,,,)_'-4n and p3 (3)~_ 48 n 3 ~, respectively. Observe that if H is a maximal
triangle-free subgraph of G,,, p then

I E(G,,, p )I - # (triangles in G„_ p ) S I E(H)I

	

E(G,, . p)I ,

whence (i) follows by a routine application of the Chernoff Inequality for
the tail of the binomial distribution (ef. [2, 12]) .

In view of Theorem 3 .1, to prove (ü) it is sufficient to show that the
probability that there are two disjoint subsets A, B s V(G,,, p ) such that
I A I = I B I = 3n 1 ' 2 log n =A and there are at least 30n'í 2 log 3 n edges running
between them tends to 0. But this probability is clearly at most

(n)/
Prob{S, , , > 30n'í2 log2n}

< exp(6n''' log' n) exp(-7mí 2 log e n) - 0,

where S;2 _ p denotes the number of edges connecting two fixed disjoint
subsets A and B of size ti, which is a random variable of a binomial
distribution with parameters i 2 and p . /

The following assertion is trivial .
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PROPOSITION 3 .3 . Given a triangle-free graph H which does not contain
an induced bipartite subgraph with more than t edges, let H(k) denote the
graph obtained from H replacing each vertex .x e V(H) with an independent
set V, of size k and joining two vertices x' e V„ and y' e V,, by an edge if and
only if xy e E(H) . Then

(i) H(k) is triangle-free ;

(ü) H(k) does not contain an induced bipartite subgraph of more than
tk' edges .

Proof of Theorem 4. First we establish the upper bounds.
For any natural number n, set p= 2n' - ", and let H;, denote a maximal

triangle-free subgraph of G„,,, having the two properties in Lemma 3 .2 .
Assume first that m < <n'', and let r denote the smallest integer such that

IE(Hj>nn . Let G be a graph of n vertices obtained from H, by the
addition of n-r isolated vertices . Then sr'' 2 --m< E(H,) I <2 r 3,,2, and G
does not contain an induced bipartite subgraph with more than

30r''' 2 log 2r < c'm' ' log'nr

edges .
If rn > sn 3,2 then let k > 1 be the smallest integer for which H. ; x (k), (i.e .,

the graph obtained from H,,,, by replacing each vertex with an independent
set of size k) has at least nt edges . Obviously,

sn 3,z (k- t)' ,- <,n < sn'''`k' '

and, by Lemma 3 .2, H,,,,-(k) does not contain an induced bipartite sub-
graph with more than

z
k230

/n\
log'

rn\
< 2 10°

m4
logz \n /I

\k/
I

	

I
\\\k/

I

	

n

	

rn

edges . This completes the proof of the upper bounds .
Every graph G with m edges and chromatic number y(G) splits up

into ((,") induced bipartite subgraphs . Therefore, if G is triangle-free,
then by Lemma 2 .3 it contains an induced bipartite subgraph of at least
m. ('-"'' +' ) > m'' '/2 - 1 edges, which proves the lower bound in (i) .
The lower bound in (ü) follows immediately from Lemma 2 .4(ü).

4. PROOF OF THEOREM 2

Assume, in order to obtain a contradiction, that there is a triangle-free
graph G which requires the removal of at least n'/18+o(n') edges to be
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made bipartite . By Theorem 1, G must have m=n'/6+o(n2 ) edges . From
the proof of Lemma 2.4, £(~'z')=n(7z')+o(n') so that d(x)=n/3+o(n) for
all but o(n) vertices, which we shall ignore . Fix a vertex x, and let S= F(x),
T = FW( _) {x} so that I S I = n/3 + o(n), I T j = 2n/3 + o(n) . As S is indepen-
dent, S x T, the bipartite subgraph of G induced by the sets S and T, has
n2

'
i9 + O(n'` ) edges . Suppose d(y, T) > n/6 + e, n for e, n vertices y e T. (Here

d(y, T) is the number of edges between y and vertices of T.) Move these
vertices from T to S, forming S*, T* . Each vertex moving to S gives
at least 2e,n extra crossing edges, minus the at most e2n` edges {y, y'},
where y, y' are both moved . Then S* x T* would have at least
n 2/q + e, r z n 2 - ei n 2 + o(n 2 ) edges . Replacing 62 by min [E. 2 , e i/2], S* x T*
would have n z/9+cn 2 edges and G could be made bipartite by the deletion
of only n2/ 18 - cn 2 edges, a contradiction . Hence d(y, T) < n/6 + o(n) for all
but o(n) vertices ye T. As Sx T has n'/9+o(n 2 ) edges, d(y, T)=n/6+o(n)
for all but o(n) vertices y e T. Again we ignore these o(n) vertices .

Fix an edge { y. z } E E(G) with y, z e T. Set S, =1'(y) n S, S z = I (z) n S.
Then S,nS z = 0 as G is triangle-free and IS,I=n/6+o(n)=IS z 1 . Let
Y=F(z)nT. Z=F(y)nTso that I YJ=n/6+o(n)=IZI and YnZ=0 .
For each y'cY, (F(y')nS)nS2=0 and IFly')nSl=n/6+o(n) so
I (I'() ,') n S) AS, I =o(n) . Similarly, I (T(z') n S) dSz 1 = o(n) for each 7' e Z.
Hence S, u Z has o(n 2 ) edges, as does S2 'j Y.

Suppose Yx Z had en' edges. Then S, v SZ v Yu Z would have
n' [1/18+e+0(l)1 edges, all but o(n`) of which were in (S, u Z) x
(S2 v Y) . We extend to a partition of V(G) so that at most half of the
remaining edges are not crossing ; i.e ., at most n 2 [(I -e)/2+o(1)] edges, a
contradiction if e is bounded from below. Hence Yx Z has o(n2 ) edges .

Pick v' e Y with d(y', Z) = o(n) and set Z'= L(y')- (S, a S, u Yu Z) so
that I Z' j = n/6 + o(n). Then, as before, I (T(z') n S) dS z 1 = o(n) for each

e Z' . Then S, x Z' has n2
'
136 + o(n 2 ) edges . Let Y' be the remaining

points of T. Then I YJ = n/6 + o(n) and so Y' x S has n,%36 + o(n 2 ) edges .
But Sz x Y' has only o(n 2 ) edges so S, x Y' has n2/36+o(n 2 ) edges .

Now G is nearly bipartite . All but o(n) vertices may be partitioned
into S, u Z v Z' and S, u Y u Y, both of which have o(n 2 ) edges . This
contradiction implies the claim .

5 . GENERALIZATIONS AND OPEN PROBLEMS

Let p >_ 2 be a natural number . Then every graph G may be made
p-partite with the removal of at most I E(G)1!p edges . We also have the
following straightforward generalization of Proposition 2.5 .

PROPOSITION 5 .1. Let G he a graph and Ws :-: V(G) he a set of vertices
such that the subgraph G[ W] induced by them may he made p-partite with
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the omission ofő edges. Then G can be made p-partite with the omission of at
most IE(G)jp-IE(G[W])j,lp+S edges .

Theorem 3 can now be generalized in the following way .

THEOREM 3' . Let p > 2, r > 3 he natural numbers, 0 < c < z . Then there
exists a constant c(p, r, c) > 0 such that any K,.free graph with n vertices and
in > cn 2 edges may be made p-partite with the omission of at most
m/p-e(p, r, c) n 2 edges.

Proof: We only outline the proof, which is entirely similar to that of
Theorem 3 . Let p > 2 be fixed . We will show by induction on r that the
assertion is true with e(p, r, c) = c" p. If r = 3 then the result follows
from Lemma 2.4 and Proposition 5 .1 . Assume now that r>3 and let
G, x ;, e, denote the same as in the proof of Theorem 3 . G[T(x;)] can be
made Lp/2L-partite with the removal of e olp/2] edges, hence, by
Proposition 5 .1, G may be made p-partite with the omission of at most

m 4c 3n 2 + e,+e 2 e,+e z m c 3n 2
p

	

p

	

Lp/2] P

	

p

edges, provided that e, +e, <2c'n 2 . If, say, e, > c 3n 2 then using the
induction hypothesis we obtain that G[T(x,)] may be made p-partite with
the removal of b=e,/p-e(p, r- I, C3 )I F(x,)I 2 edges, and we are done by
Proposition 5 .1 .

In Section 3 we have proved that triangle-free graphs contain relatively
large induced bipartite subgraphs . Similarly, one can ask the following
question. Given a natural number r > 3 and a real c (0 < c < ;), what is the
maximal integer,f,.,(n)=f such that every K;free graph with n vertices and
at least en 2 edges contains an induced bipartite subgraph with at least f
edges . We are unable to prove asymptotically tight bounds for . f_ .(n) even
if r=4. Our only results in this direction can be summarized, as follows .

PROPOSITION 5 .2 . Let f, (n) denote the same as above . Then there exist
two constants ti,, i. 2 >0 depending only on r and c such that

By Lemma 2 .4, we can choose an edge x, x, e E(G) such that there are at

(i) í,nlogn<f4_(n)< ;.,n 1r2 logn

	

if r=4 ;

(n) n2gr-2 )(log n )2- 2/Ir 2,
<f- (n) < ;.'n$"3)/tr+2l(r+4) log 2 n

(iii)
if r > 4 is even;

.,n2,'(r-21(loge)'-2,(-2)<f; .,(n)< .2ns jr,3)log2n

Proof:

if r>4isodd.

Let G be a K,-free graph with n vertices and at least cn 2 edges .
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least 4c' n 2 edges between F(x,) and F(x2 ) . But G[F(x,)] is K,_,-free, so
by an easy corollary to a well-known theorem of Ajtai, Komlós, and
Szemerédi [1], y(G[I'(x ;)]) < p(njlog n)'-'t''-'-', i = 1, 2 . Hence
G[F(x,)ul'(x2)] splits up into y(G[F(x,)])y(G[F(x2)]) induced bipar-
tite subgraphs, and at least one of them must have at least

4c3rt2	 > A n 2/°-2 '(log n)2-2i(,-2)
y(G[F(x,)]) y(G[I'(x2)])

edges .
The upper bound can be established by the following construction . Let

r > 4, and let V(G) be divided into two equal classes V, and V 2 . Let any
pair of points in different classes be joined by an edge, and let V ; induce a
K,-free subgraph in G containing no independent set of size +" log n,
where r,=Hr+1)/2~ and r2=[(r+1)/21 . The existence of such graphs
was proved by Spencer [14] . Obviously, every induced bipartite subgraph
of G has at most

i,2 n 'ii„ t i,+2ü .á+ a log'n

edges, which gives the upper bound if r > 4 . The case r = 4 can be treated
similarly. 1
We end this paper by answering the following question of Füredi .

Characterize the class of those graphs F which have the property that any
F-free graph with n vertices and cn'- edges has an induced bipartite
subgraph with at least v, .n 2 edges .

THEOREM 5 .3 . Let F be a graph whose vertex set can be split into two
disjoint parts A and B such that F[A] is empty and F[B] is a forest. Then,
any F-free graph G with n vertices and cn 2 edges has an induced bipartite
suhgraph with at least an t edges (e = P.(, c) > Q) . Moreover, no other graphs
have this property .

Proof. Assume that G has cn 2 edges but no induced bipartite subgraph
with en' edges. With no loss of generality we can assume that each vertex
of G has degree at least cn/2, because the deletion of vertices with smaller
degree leaves a non-trivial graph of minimal degree at least cn,/2.

Partition the vertices of G into sets R and S such that the number of
edges between R and S is a maximum . Then, each vertex of R (or S) has at
least cn/4 neighborhoods in S (or R) . If not, the maximality of edges
between R and S would be contradicted by moving a vertex to the other
side.

For an appropriate S=S(c) select a maximum number of vertex disjoint
independent subsets R,, R 2 , . . ., R,, such that R ; I >, Sn . Let R' be the
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remaining vertices of R . In the same manner select vertices S„ S z , .. ., Sy of
S with corresponding set S' . By assumption there are less than Epgn 2 edges
between the R ;'s and the S ;'s . Thus, with no loss of generality, we can
assume that there are at least c'n z edges between R and S' (or equivalently
between R' and S) for some c' =c'(c) > 0 . In addition, S' contains no
independent set of order dn.

If k= I V(F)I, then there are k vertices in R, say x„ x,, . . ., x,z , such that if
S" = F(x,) n • • . n F(x„) n S', then I S" I > c"n for some c" = c"(c) > 0
(see [7]). If IE(S")I _>4k IS" ;, then G[S"] contains all trees on k vertices
and G contains E On the other hand, if E(S") I < 4k IS" 1, then S" con-
tains an independent set of order at least I S" I/8k > bn. This contradiction
completes the proof that G contains a bipartite subgraph with n 2 edges.
To verify the last statement of the theorem consider the following

graph G on n vertices . The vertices are partitioned into two equal parts R
and S with all edges between R and S in G. The vertices of R are indepen-
dent, and the graph G[S] has no cycles of length as small as I V(F)I and
no independent set with more than O(n''' log(n)) vertices (see [6]) . If Fis
not of the required type, then clearly F is not in G. Also, G contains no
induced bipartite graph with sn 2 edges . I

A. Hajnal pointed out that Theorem 5 .3 can also be deduced by using
arguments in [11 ] .

Some other related problems can be found in Hedetniemi, Laskar, and
Peters [13] and Erdös and T . Sós [10] .
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