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The notion of a transversal of a latin square easily generalizes 1o more general
arrays. We present some of the known combingtorial results in this area and
indicate the open questions,

They concern m ¥ n rectangular arrays of mn cells (m =< n), each cell containing
a symbol. A transversal of an array is a set of m cells, no two in the same row or
same column, A latin transversal s one whose symbols are distinet. A row or
column is latin if its symbels are distinct. If m = n and each symbol oceurs exactly
n times. we call the array an equi-n-square. If each row and column of an
equi-n-square 15 latin, it 15 a latin square. The definitive work [1] on the subject.
published in 1974, contains 639 references and 73 problems. The earliest result is
due to Euler.

Marshall Hall [2, and see the earlier work of Lowell Paige, 3] examined transver-
sals of # — 1 by n arrays obtained from an abelian group 4 of order n, as follows.
Let 4 ={ay,...,a,}. Corresponding to each element o in A is thée sequence
{a+ ay,...,a+ a,), recording translation by a. Let (b,..., h,_,} be a sequence
of # — 1 not necessarily distinct elements of 4, and form the n — T by n array of
the translations of 4 by by,.... b, ;. Each row is latin, but there may be duplica-
tions in the columns. Hall proved that such an array has a latin transversal.

In [5] Stein introduced several types of arrays, including the equi-n-square, and
established the existence of transversals with many distinet elements. For example,
the equi-n-square has a transversal with at least

inac gt 1 :
n_]_-ﬂ“{-ﬁ_-“i;_ ={1-1/e)n = 0.63n

distinct svmbols. He also gave equi-n-squares (n = 2) without a latin transversal,
and showed that n by n arrays in which each symbol appears exactly g times have
transversals with at least n — g/2 symbols.
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More recently. Shor [4] showed that every latin square has a partial latin
transversal of length at least

n—553Inn)’

and observed that his method will yield better results, but not as good as n — log,n
{log to base 2},
There are several oulstanding conjectures, The most notewarthy are:

Conjecture 1. An equi-n-square has g transversal with at least n — 1 distinef
syambols.

The special case of the title has been associated with Herb Ryser's name, while [1. p.
103] attributes it to Richard Brualdi. The answer is affirmative for latin squares
which are the Cayley tables of abelian groups.

Conjecture 2. An n — 1 by n array in which each symbaol uppears ai most g rimes
(g = n) has a latin transversal.

The case g =n would ;mei:.r that a row-latin m — 1 by n array has a latin
transversal, and would also imply Conjecture 1. For g = 1, conjecture 2 is trivally
true, and the case ¢ = 2 follows from ¢ = 3, which can be proved as follows.

Tueorem 1. Let 2 < k < m < nand assume that every m by noarray in which each
symbol appedrs at most 3 times has @ latin rransversal that misses & proseribed cells,
Then every such m + 1 by n + 1 array has a latin transversal that misses k proseribed
cells.,

Proof. Consider an m + 1 by a + 1 array in which each symbol appears at most
3 times and in which k cells are proscribed. There are two cases: (1) some row or
column contains at least 2 proscribed cells; (2) no row or column contains more
than 1 proscribed cell.

Case 1. Consider a row (or column) with at least 2 proscribed cells, Since k < m,
there 15:a cell ¢ in that row which is not proseribed. Denote the symbol in that cell
by t. Delete the row and column containing ¢; producing an m by n array. This
array has at most & — 2 proscribed cells and at most 2 cells with the symbol 1, so it
has a latin transversal that misses the proscribed cells and does not have the symbal
{ init. Adjunction of cell ¢ gives a latin transversal for the original m+ 1 by n + 1
array.

Case 2. Consider a cell that 15 on a row of one proscribed cell and on a column
of another proscribed cell. Delete the row and column of this cell and argue as in
Case 1.

An exhaustive search showed that every 4 by 3 array in which each symbol occurs
at most 3 times has a latin transversal avoiding any 2 proscribed elements. Hence
every m by m + 1.array has this property for m = 4. A similar analysis showed that
for n = 6, every n by n array in which each symbol appears at most 3 times
possesses a latin transversal avoiding 2 proscribed cells.

Theorem 2 is proved much as Theorem 1.

Tueorem 2. If every m by n array in which each symbol oceurs af most 3 times has
a latin transversal that passes through any given cell, then everym + 1 by n + 1 array
in which each symbol appears ar most 3 times has the same property.
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Mote that there is no latin transversal through the top left cell of a 4 by 4 array -
which contains the configuration of Fia. 1.
Our final theorem is an unpublished result of Erdds and Joel Spencer,

FiG, 1.

THEOREM 3. Let k be fixed. Ann % n array in which each symbol appears at most
K times has a lavin wansversal if n is sufficiently large.

Their proof will also work if k& < (Ina)" ® and they believe that it may be
possible to make it do so for k < (In n)¢ for every fixed c, but beyond this there
may be serious difficulties. [J, Dénes [6] made a conjecture equivalent to Conjecture
1, and some other relevant remarks.—Ed.]
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