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1. Introduction.

Let G{n,m) denote the set of graphs with n vertices and m edges. It is well-known
that each G eG(n,2n — 2) contains & subgraph of minimum degree 3 but there exists a
G eG{n,2n — 3) with no subgraphs of minimum degree 3 (see [1] p. xvii).

It was proved in (2] that each G ¢ G(n,2n — 1) contains a proper subgraph of minimum
degree 3, but there exists G ¢ G(n, 2n — 2) without this property. In fact, a stronger result
was proved in (2], namely that GeG(n,2n — 1) must contain a subgraph of minimum
degree 3 with at most n — ¢y/n vertices for some e > 0. It was conjectured in [2] that each
G eG(n,2Zn — 1) contains a subgraph of minimum degree 3 with at most en vertices for
some absolute constant ¢ < 1,

In this paper we study cycle lengths of graphs which have no proper subgraphs of
minimum degree 3. For ease of reference, let G*(n,m) denote the set of graphs with n
vertices, m edges and with the property that no proper subgraph has minimum degree
3. The results mentioned so far show that GeG*(n,m) implies m < 2n — 2, and if
GeG*(n,2n — 2) then G has miminum degree 3. Throughout the paper we investigate the

cycle structure of graphs G, with G ¢ G*(n, 2n.—2). In fact we give the following conjecture.

CONIECTURE: If GeG*(n,2n — 2), then G contains all cycles of length at mast k where
k tends to infinity with n.

Our results are all related to this conjecture. We have several examples to deman-
strate the role of 2n — 2 in this conjecture. For example for each n there exists graphs
G, GeG*(n,2n — 3), such that G has no triangle (Examples 1 and 2). It is also true that
there are G £ G*(n, 2n — 3) such that G has no cycles of length 5 or more (Example 3). For
every r, we construct a graph G e G*'(n,2n — ¢(r)) such that G has no cycles of length less
than or equal to r (Theorem 4). In fact, the minimum value of ¢(r) is determined precisely
far r = 3,4.

On one hand, our conjecture says that the graphs in G*(n, 2n — 2) contain small cycles.
We prove that these graphs contain Cy,Cy and Cg (Theorem 2.) On the other hand, our
conjecture says that the graphs in G*(n,2n — 2) contain long cycles. Our main result is
that G ¢G*(n,2n — 2) contains a cycle of length at least |logn| (Theorem 5.). However,
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graphs in G*(n, 2n — 2) does not always contain very long cycles (as large as ¢4/ for some

¢ > 0, Example 7).

2. Properties of Graphs without proper subgraphs of minimum degree 3.

In this section we give a lemma and a theorem which we shall use frequently in sections
3 and 4. We first introduce some terminology.

Consider an ordering z1,%3,... ,Zn of the vertex set of a graph. An edge z;z;,1 > j
of the graph is called a forward edge on z; and a backward edge on z;. The forward
(backward) degree of ; is the number of forward (backward) edges incident to z;. We shall
let d*(=;), d(z;) denote the forward and backward degree of x;, respectively.

For any graph G we formally define an ordering of the vertices of G as follows: z;
is a vertex of minimum degree in G. If 1,z3,... ,2; are already defined and t < [V(G)|,
then let 7441 be a vertex of minimum degree in G — {z1,23,...,2:}. If G has no proper
subgraph of minimum degree 3, then d*(z,;) < 2 for 2 £ ¢ < [V(G)|. Since we shall use

this ordering often, we formulate this statement as lemma.

LEMMA 1. Let G have n vertices and contain no proper subgraph of minimum degree 3.
Then, the vertices of G can be ordered so that d*(z;) is the minimum degree of G and
d*(z;) S 2fori > 2.

THEOREM 1. IfG eG'(n,2n— 2), then the vertices of G can be ordered so that d¥(z;) =
3,dMz;)=2for2<i<n—2,and d*(zn—1) = 1. Moreover d(z;) =1 for2 < i< n.
PROOF: In the ordering of the vertices described in Lemma 1 observe that
n—-1
2a-2=|B(G)|= Y d*(z) Sd(m) +2(n-3)+1<2m -2,

=1

Since d(z;) < 3 (otherwise G has at least 2n edges), d¥(z;) S2fori=2,3,...,(n—2)
and d¥(zn—1) £ 1, 2ll the inequalities are equalities. Thus, dt(z;) = 3,d™(z;) = 2
for 2 £4 £ n—2 and d"(za_y) = 1. Since d(z;) 2 d(z;) = 3 and d*(z;) < 2 for
1<iSn,d(z)21follows. B

COROLLARY 1. IfGeG"(n,2n — 2) then G has minimum degree 3.
3. Small Cycles in G*(n,2n - 2).

THEOREM 2. If GeG*(n,2n — 2) then for n 2 5, G contains & Cy and a C5. If
GeG'(n,2n—3) and n 2 6, then G contains Cy.

PROOF: For G e G*(n, 2n—2) consider the ordering of vertices given in Theorem 1. Clearly,
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Zn—2,Zn—1 and z, determine a C3. Without loss of generality we may assume that z,_3
15 adjacent to Tp—1 and z,.

Assume that { is the largest index such that z; is adjacent to z; for some j, i < j < n—1
There exists such an index since 1 = 1 is a suitable choice. If z; is adjacent to z,_1 or
Lo =, say to xp, then select any k > i such that k £ 5,k # n, k # n — 1. This gives the
Cs, 2{TnTpTn—_12;5%; in G.

If z; is not adjacent to either zn_; or to n, then (since d¥(z;) = 2) z; is adjacent to
some z, with ¢ < k,7 # k,n# k,n — 1 # k. But then #;2,2n—1202;2; is a C5 in G.

To see that GeG*(n,2n — 3) contains a Cy, observe that Theorem 1 almost holds in
that we can order the vertices of G as z1,73,...,Z5 so that at most one of the equalities
dt(z;) =2for 2 £1 £ n-2,d"(z;) =3, and d¥(zz—1) = 1 fails to hold. Moreover if
equality does not hold for some { then d(z;) is just one less than the value shown abaove. If
each of the equalities d(zn—1) = 1,d"(zqn—2) = d"(zn—3) = 2 hold then the subgraph of
G induced by X = {zn_3,2n—2,Zn_1,%Zn} has five edges and there is a Cy in G. Therefore,
we assume that there is no €y in the subgraph induced X. Also, by a suitable permutation
of the vertices in X, we may assume that z5-3%n-2, Tn—3%n—-1, Tn—3%n &nd TngT,-1 are
edges in X. But d*(z,-4) = 2 and the only way to avoid a Cy in G is to assume zn_4 to
be adjacent to zn—3 and to z,. Since n 2 6, zn_p exists and d (zn—5) = 2. Thus, there
exists a Cy in G containing z,_5 and three vortices of {zn,Tn—1,Tn—2,Tp-3,Zn-4}.0

With more work it is possible to show that GeG*(2n —2) always contains Cg for n = 6.

The following constructions show that Theorem 2 is sharp.

EXAMPLE 1: Let n = 6 be even. Consider the graph on n vertices defined as follows. Let
Z1%y...2pn—2 be a cycle of length n — 2. Let y and w be two new vertices with y adjacent
to all z; of even index and w adjacent to all z; of odd index. Finally place an edge between
y and w. The graph obtained contains no triangles, (in fact, is bipartite) has no proper

subgraph of minimum degree 3, and has 2n — 3 edges. W

EXAMPLE 2: Let n = 2k+1 2 9 and consider a cycle of length & with vertices z1x2 .. .24,
For ¢+ = 1,2,...,k — 1 place new vertices y; in the graph with each y; adjacent to z;.
Finally, let v and w be two additional vertices of the graph such that each are adjacent to

V1,42, ., W —1 and zp. The resulting graph has Zn — 3 edges, no triangle and no proper
subgraph of minimum degree 3. B

EXAMPLE 3: Consider the graph obtained from K3 n_z by placing an edge between the
two vertices of the two-vertex color class. This graph has no cycles of length 5 or more, has

2n — 3 vertices, and contains no proper subgraph of minimum degree 3. B

EXAMPLE 4: Assume that n — 2 is divisible by 4, n 2 10, and consider a cycle of length

n — 2 with vertices zy,%2,23,...,%Zn—2. Let y and w be two new vertices. Join vertex y to
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z; for i =1 or i = 2(mod 4) and join w to z; for { = 0 or i = 3 (mod 4). This graph has
no Cy, has 2n — 4 vertices, and has no proper subgraphs of minimum degree 3. It is easy
to medify this example for n =0,1,3 (med 4). W

Based on these examples, we conclude that Theorem 2 is sharp: there exists
G eG*(n,2n — 3) without C3 (Example 1 and 2); there exists G eG'(n,2n — 3) without
C5 (Example 1 and 3); there exist G ¢ G*(n, 2n — 4) without €4 (Example 4).

Up to now we've only considered the existence of Cy, (for k = 3,4,5) in G¢G*(n,2n—-2).
We continue by looking for the minimum m that G ¢G*(n, m) contains a cycle of length
less than r. Theorem 2 and Examples 1 and 2 show that m = 2n — 2 when r = 4, The

upper bound for m in cases r = 5 and r = 6 are given in the next result.

THEOREM 3. Let g(G) denote the girthof G. If n 2 6 and G € G*(n,2n—4), then ¢(G) < 4.
Ifn 28 and GeG*(n,2n — 6) then g(G) £ 5.

PROOF: Assume G ¢G*(n,2n — 4) and apply Lemma 1. Clearly d*(z;) < 3, otherwise G
has at least 2n edges. If n 2 6 the subgraph H induced by =, 2n—1, #n—2,%n—3,%n—4 in G
has at least (2n — 4) — 3 — 2(n — 6) = 5 edges. We may assume that H is a cycle of length
5, otherwise H contains Cy or Cy and g(G) £ 4 follows. Therefore d™(zy) = 3,d%(z;) =2
for ¢ = 2,3,...,n — 5. But 2.5 is adjacent to two vertices of the five-cycle H giving a Ca
ar Cy.

To prove the second part of the Theorem, assume & € G*(n,2n—6) and apply Lemma 1.
Again, tf+[zl} < 3. Since n = 8, we consider the subgraph H induced by {za,zn-1,Zr-2,
Tp-3,Tn-4;Tn-5,En-6} in G. Thus, H contains at least (2n — 6) — 3 — 2(n — 8) = 7 edges.
Let © be a cycle of H with minimum length, so that C is a cycle without a diagonal. If
[C] = 7 then H = € and d*(z;) = 3,d%(z;) = 2 for i = 2,3,..,n — 7. In particular,
Zn-7 is adjacent to at least two verices of C giving a cycle of length at most 5. I |C| = 6,
then without loss of generality assume %w,Tn—1,%n-2,%n-3,Tn—4,%n—5,Zn i3 a 6 - cycle
and g is adjacent to 5. If To_g is adjacent to any vertex z; for n — 4 4 < n then
we have a Ca,Cy or Cs. Therefore, H has 7 edges and again d¥(z;) = 3,d7(z;) = 2 for

2<i<n-T7 Inparticular d¥(zn—7) = 2, and it is easy to check that the only case

when Zp_7,Zn-5,-..,zn does not induce a cycle of length at most 5 in G oceurs if zn—7 is
adjacent to Tp_g and 1,3 (see Figure 4). It is easy to see that d(zp—8) = 2 implies the
existence of a cycle of length at most 5. Thus |C| £ 5 completing proof of the theorem. W

To show that the first part of Theorem 3 is best possible we give the following example.

EXAMPLE 5: Assume n is divisible by 5 and n 2 10. Let zjz3zszszs7) be a five-cycle
and y1¥z...Yn—5 v is a n — 5 cycle. Vertex z; is adjacent to y; if and only if j = ¢ (mod
5) (for all#,1 ¢ £ 5). This graph has 2n — 5 edges, has no proper subgraph of minimum

degree 3 and contains no Cy or Cy.
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We do not know examples of GeG"'(n,2n — T) with g(G) 2 6 for infinitely many n.
However, it is possible to find G € G*(n,2n — 8) with g(G) = 6 for infinitely many n.
The next theorem shows that graphs in G*(n,2n — ¢) do not always contain small

cycles.

THEOREM 4. For every postive integer r there exists ¢ = ¢(r) and a graph
GeG'(n,2n - c(r)) such that g(G) > r.

PROOF: Let k be a natural number and let Cy,Cy, . .., Cy be vertex disjoint cycles of length
t = 2.5 — 1, We shall define the graph G by adding edges to the graph C; UCyU---UCy.
Assume that the vertices of C; are :‘i,:;, ..., 2} (indexed in the natural order of the cycle).
The definition of Gy, is recursive. Set Gy = Cy. f G1,Gy,...,G—y are already defined we
shall define G} by adding edges zy to G_; U Ci such that zeCy, yeCy_y. The definition

will preserve the following properties (for each 1,1 £ ¢ £ k):

(i) each cycle of G, is longer than r
(ii) the maximum degree of G; is at most 5, and
(iii) dg,(]) =4, dg,(a}) =2, dg,(2}) =3fr22j<t-landi2 2

Note that properties (i), (ii) and (iii} trivally hold for { = 1, since G; = C.

To define & we add edges e, = :i‘yg, g = :fybeg = z?y:, e = Ig‘g’s,...,ﬁf_l =
zf_ly:_l to Gp_y U Cg, such that ijV[Cg__l} for § = 0,1,...,t — 1 and G} satisfies
properties (i), (ii), and (iii) for { = k. Observe that (iii) holds independent of the choice of
each y;, so that we need only select each y; such that (i) and (ii) hold. The edge e, can be
defined arbitrarily. Assume that ey, ep,...,e, are defined for 0 = s < ¢ — 1 in such a way
that properties (i) and (ii) hold for G' = Gy_; UC U {es,€1,...,6s}. We define e;-; as
follows. Let W denote the set of vertices in C_y which can be reached by a path of length
at most r from z§+1 in the graph G'. Since (i) holds for G, [W| < 57! and therefore
V(Cpoq) = W| > t — 5™ = 5™ _ 1, Let T be a subset of V(Cj_;) — W such that
|| = 57+1. By definition, for any yeT' the graph G'U e, statisfies (i) with e, 11 = z:_Hy.

Using property (iii) for i = k-1

> de, (W) S3T|+1=35""" 1.
yeT

Sinee G' is obtained from Gj_; by adding s + 1 edges,

SdpW <Y dg, () +s+1<3 5 b1 1=5" -1
yeT yeT

Thus there exists an ys4+1¢T with dg'(y54+1) < 5. Thus with e;41 = z§+1y,+|‘ the graph
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G" = G' U g4y satisfies properties (i), (ii) and (iii). Therefore G} is defined.

It is clear that |V(G)| = kt and |E(G})| = 2kt —t. The proof is completed by showing
that G has no proper subgraph of minimum degree 3. Assume to the contrary that G*
is such a proper subgraph. Since ffc,,(=f) =2, ::f £ V(G'). However, dc.'k-:f [.tf_l) =2
implies z¥_; & V(G*). Repeating this argument we get that :? éV(G*)for1 255t
But dg, —¢, {(z*1) = 2 and by observations just like those made above, none of the
vertices of C)_) belong to G*. Continuing in this way we see that G* is the empty graph,
a contradiction. Hence G eG*(tk, 2tk — 1) for all k with ¢ = 2- 51 — 1, showing that
efr)=2- 571 _ 1 is a suitable choice. W

4. Long cycles in G*(n,2n — 2).
In this section we prove one of the main results of the paper, that is G¢G*(n,2n — 2)
contains a long cycle. Note that G e G*(n, 2n — 3) does not necessarily contain even a path

of length 4 (see Example 3 in Section 2).
THEOREM 5: If GeG*(n,2n —2), then G contains a cycle of length at least |logn]|.

PROOF: Consider the ordering of G of Theorem 1. Since d(z;) > Ofori=2,...,n, we

can find a spanning tree T recursively in G as follows. Place z1 in T. If #;,23,...,% arein
T and t < n, then choose any edge z;z;41 of G such that 1 =4 £ ¢. Redefine T by adding
vertex z¢.q and the edge z;z¢.) to the old T'. By definition of the tree, d (z;) = 1in T'
for 2<i<nand d(z;) £ 2in T for 2 £1 £ n. Since d¥(z;) =3in @, T is a tree of
maximum degree = 3. Therefore, T contains a path P of length at least |logn| starting
with z;.

Let zy = z,,2y,,..., 1y, denote the vertices of P in the natural order defined by P i.e
T T is an edge of P for 1 £ j < k— 1. Notice that #; < 1y < --+ < 1 follows from the
definition of T since d(z;) < 2in T for 2 £ 1 < n. We call a path P = (z;,2i;,..., 2, )
in & a forward path if 1} < i3,-++ < 1. Note that the definition depends on the order
Zy,23,...2y defined by Theorem 1. The discussion up to this point insures that G has a
forward path of length at least |logn]|.

Let P = (z;,%i,..-,%;,) be a forward path of G with a maximum length. Since
d (z;} 2 1, and d¥(z;) 2 1in G for 2 £ 4 £ n - 1, it follows that 4 = 1,4} = n. Let
t be any positive integer such that 1 £ ¢ < k and ¢ # n — 1. Since d¥(z;) 2 2 in G for
1<{%n-2, wecan find a forward path P in G starting at z;, and ending at some vertex
z;,r of P such that

(a) F; and P are edge disjoint
(b) V(P)NV(P) = {zy, i}

Note that (a) implies t+1 < t'. We claim for t < & that the paths P; and Py are vertex
disjoint if ¢’ < s or if s = t' — 1. The case t' < s is obvious since both Py and P, are forward
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paths. Assume s =¢' — 1. But t+1 < ' and s+ 1 < &' implies that P, and P; do not have
common endpoints. Assume that z is the last common vertex of P; and P we find on P,
by traveling along Ps from its starting point z;,. It is easy to see that the following edge
sequence is & forward path: starting from zj, =11, travel along P to z;, ; continue on P
to z; from z travel to z; = z;, ., along P finally from z;/ to z;, = =, travel along P.
This path is longer that P. This contradiction proves the claim.

Choose a subset Q1,Q3,...Qy of the paths P, P;,..., P as follows. Set @, = P If
Q1,@Q2,...,Q; are defined and the endpoint £,,» of @, is not z, then Q41 = Py_y. If the
endpoint z;,r of Q; is zn then set r = 5.

It is now easy to construct a cyele using all the vertices of PUQU---U Q.. But P
has at least [logn| vertices so that the cycle C has length at least |logn|. |

Finally, to see that GeG*(n,2n — 2) does not contain necessarily a very long cycle,
(larger that cy/n) consider the following example.

EXAMPLE G: Let k be an integer, k 2 4. Let C be a k -cycle with vertices z;,25,...,1;.
Select a new vertex w and connect w to each z; with vertex-disjoint paths of length k — 1.
(The only common vertex of these paths is w). Select another new vertex y and let y be
adjacent to all vertices except those of {zs,z3,...,z;}. Let G} be the graph just defined.

The graph G has k(k—1)+2 = n vertices. Since d(w) = k+1,d(y) =n—k, d(z;) =4
and all the other vertices are of degree 3, @} has

k+l+n—k+4+(n-3)3=2n

-2
2

edges, It is easy to check that G has no proper subgraph of minimum degree 3. It is also
easy to see that the longest path of G — y is smaller that 5k. Therefore the longest path
of Gy, is smaller that 10k < 10y/n + L.
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