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AN EXTREMAL PROBLEM FOR COMPLETE BIPARTITE GRAPHS

P. ERDGS, R. J. FAUDREE, C. C. ROUSSEAU and R. H. SCHELP
Dedicated to the memory of Paul Turdn

Abstract

Define fin, k) to be the largest integer g such that for every graph G of order n and size g,
G contains every complete bipartite graph K, , with a+h=n—k. We obtain (i) exact values for
Sn, 0) and f(n, 1), (i) upper and lower bounds for f(n, k) when k=2 is fixed and n is large,
and (iii) an upper bound for f(n, len]).

1. Introduction

Extrema! graph theory, which was initiated by Turédn in 1941 [4], is still the
source of many interesting and difficult problems. The standard problem is to deter-
mine f(n, G), the smallest integer ¢ such that every graph with n vertices and g edges
contains a subgraph isomorphic to G. It is striking that whereas Turan completely
determined f(n, K,,), there is much which is as yet unknown concerning f(n, K, ;).
In this paper, we consider a variant of the extremal problem for complete bipartite
graphs. In this variant we ask how many edges must be deleted from K, so that
the resulting graph no longer contains K, , for some pair (a, b) with a+b=m.
Specifically, we seck to determine an extremal function f(n, k) defined as follows.
For m=1, let B,, denote the class of all graphs G such that G2K,, for every
pair (a,b) with a-+b=m. Then for n=k+1, f(n, k) is the largest integer ¢ such

that every graph G of order » and size [; —g 1s a member of B,_;. In this paper

we obtain exact values for f(n, 0) and f(n, 1), upper and lower bounds for f(n, k)
when k=1 is fixed and n is large, and an upper bound for f(n, |en]).

2. Terminology and notation

All graphs considered in this paper will be ordinary graphs, i.e. finite, un-
directed graphs, without loops or multiple edges.

A graph with vertex set V and edge set E will be denoted G(V, E). If |V|=p
and |E|=gq, G is said to be of order p and size g. With X, YS V¥, the set of edges
in E of the form {x,y} where x€X and y€Y will be denoted E(X, Y). The

complement of G will be denoted G.
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The size of G will be given by g(G). The order of the largest connected component
will be given by u(G) and the order of the smallest connected component will be
given by n(G). In particular, n(G)=1 means that G contains an isolated vertex.

Let A be a finite set. Then A* will denote the Cartesian product AX AX...X A4
with k factors and [A]* will denote the collecton of k-element subsets of A.

Where x is a real number, | x| and [x] denote the greatest integer =x and the
least integer =x, respectively.

For any notation or terminology not explicitly mentioned in this section, we
refer the reader to [1] or [2].

3. Calculation of f(n, k) where k is fixed

Our starting point is the following simple observation. If G is of order n and
u(G)=[n/2], then GPK,, with a=[n/2], b=|n/2| and so G¢B,. The opposite
direction is described by the following useful lemma.

Lemma 1. If G(V, E) isagraph of order n such that (i) p(G) = {n/2}, (i) n(G)=1,
and (iii) q(G)=|2n/3]—1, then GEB,. This result is sharp.

Proor. The proof is by induction on n. If n=2, then G is required to be empty
and so the conclusion holds. Let u(G)=k. It is easy to see that the result holds if
k=1 or 2, so we may assume that k=3. Let H=G—X, where X is a component of
order k. Then H is a graph of order n—k and n(H)=1. Now q(H)=|2n/3|-k=
=|2(n—k)/3]— 1. the second inequality being by virtue of the fact that k=3. Also,
u(H)Y=min (k, |2n/3]—k+1). If 3k=n, then k=[(n—k)/21 and if 3k=n+1, then
[21/3] — k+1=[(n—k)/2]. Hence, in all cases H satisfies (i)—(iii) ard so, by the
induction hypothesis, HEB,_,. Since X and H are completely joined in G, it
follows that GEB,.

From the remark made earlier, we know that condition (i) cannot be weakened.
To see that (ii) cannot be weakened, note that if #(G)=1, then GPK, ,_,. Finally,
with n=7 set m=|(n+1)/3]+1, k=|n/3]+1, I=n—m—k and consider the graph
G=T,UT,UK,, where T, and T, denote arbitrary trees of orders m and k, respec-
tively. In this case, we have u(G)=[n/2], n(G)=1 and ¢(G)=|2n/3]. However,
GDPK,, with a=|2n/3|+1, b=[n/31—1. This example shows that condition (ii1)
cannot be weakened. O

With the aid of Lemma 1, we can obtain the exact value of f(s, k) in case
k=0or 1.

TaeOREM 1. Forall n=2, f(n, 0)=[n/21—1 and for all n=3, f(n, 1)=[(n+1)/2].

Proor. With m=[n/2]+1, let G=T,UK,_,, where T, denotes an arbitrary
tree of order m. Thus, G is a graph of order n, g(G)=[n/2] and p(G)=[n/21+ 1. Since
1(G)=[n/2], it follows that G¢ B, and this example shows that f(n, 0)=[n/2]1—1.
To prove the inequality in the other sense, consider an arbitrary graph G of order
n and size g(G)=[n/2]—1. Note that such a graph must satisfy (i) u(G)=[n/2],
(i) n(G)=1, and (iii) ¢(G)=[2n/3]—1. Hence, by Lemma 1, G€B,.

With m=[(n+1)/21+1, let ¢6=C,UK,_,,, where C,, denotes the cycle of
order m. Thus, G is a graph of order n and size ¢(G)=[(n+1)/2]+1. Moreover,
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if x is an arbitrary vertex of G, then p(G—x)=[(n+1)/2]=[(n—1)/2]. It follows
that for each x G—xDPK,, with a=[(n—1)/2], b=|(rn—1)/2] and so this example
shows that f(n, 1)=[(n+1)/2]. To prove the inequality in the other sense, con-
sider an arbitrary graph G of order n and size q(G)=[(n+1)/2]. Let x be a vertex
of maximal degree in G, and let H=G—x. If x has degree =2, then q(H)=

=[(n+1)/21—2=[(n—1)/2]—1. If x has degree =1, then G is the union of a collec-
tion of disjoint edges and so in this case as well q{H) =[(n—1)/2]—1. Therefore,
by the first part of this theorem, HeB, ; and so G€B,_;. 0O

COROLLARY. Let t(n) denote the largest integer q such that for every graph G
of order n and size q, G contains every tree of order n. For all n=2, t(n)=[n/2]—1.

Proor. Since each tree of order n is contained in an appropriate complete
bipartite graph K, , with a+b=n, it follows that 1(n)=f(n, 0)=[n/2]—1. On the
other hand, the graph G=(n/2)P, (n even) or (i—_-((n—3)/2)4r"2L_JP3 (n odd) is a
graph of order n and size ¢(G)=[n/2] such that GPK, ,_,. (Here, mH is used to
denote the graph with m components, each isomorphic to H.) This example shows
that ((n)=[n/21—-1. O

At this point, one may be tempted to conjecture that for each fixed value of k,
f(n, ky=n/2+0(1), perhaps even exactly calculable as in the case of k=0 or
k=1. In fact, we find that for all k=2, n/2+AVn=<f(n. k)<n/2+BVn, where
the positive numbers 4 and B depend only on k. Thus, there is a very striking dif-
ference between the case of k=1 and that of k=2. In order to establish the facts
concerning the behavior of f(n, k) when k=2, we shall need several preliminary
results.

The following lemma uses the term suspended path. A path xg, x;, ..., x; In
a graph G will be called suspended if its interior vertices xy, ..., x;,_, are of degree 2
in G, whereas its end vertices (x, and x;) have degree 2.

LEMMA 2. Any tree having k vertices of degree 1 is the union of at most 2k—3
edge-disjoint suspended paths.

Proor. The proof is left to the reader.

LemMa 3. Let T be a tree of order n+1 where n=2. There exists a vertex x
such that p(T—x)=[n/2]. Consequently, there is a partition of the components of
T—x into two parts such that each part has at least [n/3] vertices.

Proor. The proof is left to the reader.

Lemma 4. Let G(V, E) be a connected graph of order p and size p+I1—1.
With k=2, set d=min (|k/2)/(4/—3), 1/4). Then, there exists X€[V)* such that
w(G—X)=[(1-9)pl

Proor. Delete / edges from G in such a way that the resulting graph H is still
connected, i.e. so that H is a tree. The deleted edges determine a subtree T in the
following way. First, we find those vertices which were incident in G with one of the
deleted edges and so define a set A. Then, we define T to be the union of all paths
in H which join pairs of vertices from 4. Let 4, denote the vertices of 4 which
have degree 1 in T and set A,=A4—A,. According to Lemma 2, T is the union of
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at most 2|4,|—3 edge-disjoint suspended paths. The vertices of 4, now subdivide
these suspended paths into what we shall call elementary paths. The elementary
paths may be described in the following way. The end-vertices of the elementary
paths are precisely those vertices x such that either (i) x€A4 or (ii) deg (x)=2 in T.
Suppose that there are r elementary paths Py, P,, ..., P,. Since |4|=2l, it follows
that r=2|4,|+|4.|—3=4/-3.

Note the following useful property of the construction described thus far. Sup-
pose that x is a vertex of G and that it is not a vertex of 7. Then, there is a unique
path in G from x to T. If there were two such paths, then one of them would have
to use one of the edges which were deleted in going from G to H. This would put
x on a path in H joining two vertices from A and so force x to belong to T. In light
of this property, we note that the collection of elementary paths Py, P,, ..., P,
may be used to define a partition V=(V;, V,, ..., ¥,) of the vertices of G according
to the following scheme. If x is an end-vertex of one or more elementary paths, it
is identified with an arbitrarily chosen one of those paths. If x is an interior vertex
of an elementary path, it is identified with that path. Finally, if x is a vertex of G
which is not a vertex of T, let w be the other end-vertex of the unique path from x
to T and identify x with the same elementary path as is w.

Now we are ready to describe and put to use the crucial properties of the ele-
mentary paths. Let ; and v; be the end-vertices of the i'" elementary path, P;. Our
construction insures that if x is any vertex of ¥; other than u; or v;, every path from
x to a vertex in V—V; contains either u; or v;. In other words, by deleting u; and
v; from G, we completely disconnect the vertices of ¥/ from the remaining vertices
of G. Without loss of generality, we may suppose that |Vj|=...=|V,|. Set
m=min ([r/4], |k/2]) and consider the graph G—X, where X={u;, v;,i=1,...,m}.
Since |Vy|+...+|V,|=mp/r=0dp, it follows that pu(G—X) satisfies the stated bound
unless |V4|=[(1—=3)p]. In case |Vi|=[(1—8)pl, set B=V,U{u,r,} and con-
sider the tree T’ spanned by the vertices of B. By Lemma 3, there exists a vertex x
of this tree such that the components of 7’—x can be partitioned into two parts,
each of cardinality at least [(|V;]—1)/3]. Now we may delete x and either u; or v,
whichever is appropriate, and so disconnect from G a set of at least |p/4] vertices.
In this case, for X={x,u,} or {x,v,} we obtain u(G—X)=[3p/4]l. O

Now we are prepared to prove our theorem concerning f(n, k) with k=2.

THEOREM 2. Let k=1 befixed and set A=Y|k/2|/16 and B=}3k(k—1)/(k+1).
Then, for all sufficiently large n,

nj2+AYn < f(n, k) < n2+Byn.

ProoF. Let G(V, E) be a graph of order n and size g=n/2+A4, where 4=4 Vn.
We wish to prove that there exists X¢[V]* such that G—X satisfies the conditions
of Lemma 1. This will establish the lower bound for f(n, k). Since d=o(n), it
follows that the number of connected components of G is at least n—g=n/2—o(n).
Consequently, #(G)=2. On the other hand, if #(G)=2, then u(G)=o(n) and so
by deleting just one vertex from G we obtain a graph which satisfies the conditions
of Lemma . Hence, we now assume that n(G)=1. Since this is the case, we may
assume that u(G)=[(n—k)/2], in fact u(G)=[(n+k)/2] for, otherwise, we may
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simply delete any k vertices from the largest component. Suppose that the largest
component is of order p and size p+/—1. Hence, we have the bounds p=g=n/2+4
and I=q—p+1=4. With a view toward applying Lemma4, note that if
d=1k/2)/(41—3) then (1 —6)p=<(1 —|k/2]/44)(n/2 + A)<n/2+(A*—|k/2]n/8)/A. There-
fore, in this case and with our choice of 4, we have [(1—d)pl=[(n—k)/2]. Cer-
tainly if é=1/4, [(1—-0)p]=[(n—k)/2] and so the desired result follows from
Lemma 4.

The upper bound is established by the following simple construction. With m
chosen to be an even integer, let H be a graph of order m which is regular of degree
k+1 and (k4 1)-connected. An example of such a graph has vertices 0, 1, ..., m—1
with two vertices i and j joined if i—|(k+1)/2|=j=i+](k+1)/2] (mod m) and, if
k+1is odd, i is joined to i+m/2 for 1=i=m/2. The fact that such a graph is,
indeed, (k+1)-connected was proved by Harary in [3] and the proof is also given
in [1, pp. 48—49]. Set r=m(k+1)/2 and let the edges of H be e,, €., ..., e,. For
i=1,2, ..., r, insert a vertex y; subdividing ¢; and make y; adjacent to /;—1 new
vertices. Finally, add isolated vertices so that the resulting graph G(V, E) is of
order n. Thus, G is of size q(G)=r+(,+...+1). Without loss of generality, we
may assume that /,=/L=...=/. Now make the following choices for the para-
meters of G. Set m=2[y5kn/8(k*—1)] and /,=...=l,=[V5(k—T)n/8k(k+1)]=1.
Then choose /44, ..., ,sothat m+(l, . +...+1,)=[(n—k)/2]+1. Let Y={py, ..., e }-
It is apparent that for every X€[V]f, we have p(G—X)=u(G—Y)=[(n—k)/2]+1.
Also, we have ¢(G)=[(n—k)/21+1+kl+(k—1)m/2<=n/2+Byn for every &=0.
Since u(G—X)={(n—k)/2} for every Xe[V], it follows that G¢B,_.. This
establishes the upper bound. O

4. An upper bound for f(n, [en])

At present, very little is known about f(n, k) when k- with n. However,
the results of the preceding section suggest that f(n, [en])<[(1/2+35)n] where §;0
with ¢ and this much can be proved without difficulty.

THEOREM 3. Let O<e<e~* be fixed and set 6=} 6elog(1/e). For all suffi-
ciently large values of n,

f(n, len)) < [(1/2+ d)n].

Proor. Set p=[12(1+d)nl, g=[(1/2+0)n], k=[en), r=qg—p, a=[(n—k)/2,
b=|(n—k)/2|, and ¢=a+p—n. Using the probabilistic method, we shall prove the
existence of a graph G of order n and size =g such that GP K, ;. Let V={1, 2, ..., n},
X={1,2,...,p} and Y=[V]>. The probability space used to prove the existence
of G may be described as follows. Let Q=0,XQ, where Q,=X? and Q,=7Y".
Each point in Q is given probability 1/|Q|. A typical point in Q is ©=(w,, w,)
where w,;=(x,, ..., x,) and w,=()y, ..., y,). Corresponding to @ there is a graph
defined as follows: {i,j} is an edge in the graph for each occurrence of x;=j,
x;=i or y,=1{i,j}, k=1, ..., r. It is understood that any loops and/or extra edges
which may be generated by the random method are simply not included in the
graph so formed. If G2K,, then for some m, c=m=a, there are disjoint sub-



324 P. ERDOS, R. J. FAUDREE, C. C. ROUSSEAU AND R. H. SCHELP

sets of X, namely 4 and B with |4|=m and |B|=p—k—m, such that E(4, B)=0¢.
Now for fixed 4 and B, consider the event E(A, B)=¢. The number of points
of Q, in this event is (m—+k)"(p—m)?~*—™p* and the number of points of Q, in

r

this event is [[;] —m(p—k—m)| . Hence, we obtain the bound

Prob (G 2 K, ;) = mz:'c [:1] [p;m] (m+k)m(ﬂ;,m)"k"mpk (l _m(p—}j—rn))"

Using Stirling’s formula and some elementary bounds, we find that each term in
the sum is bounded by

(1+2Kk/n)" (p/k)* [1 =k p= _“)/ [g]]

Substituting the values of a, k, p and r, we find that Prob (G2K, ;)0 as n—+e
provided that (1+2e)((1+06)/2e)(1—(1—e)(6—e)/2)*<1. A simple calculation
shows this to be the case when O<g<e~* and d=}6elog(l/e). O

r

5. Additional problems and results

The bound for f(n, |en]) provides a satisfying tie with the results for f(n, k)
where k is fixed; still, it leaves us with more questions than answers. Among other

things, the result shows that if F(g) <X lim f(n, |en])/n exists, then ii;rc? F(s)=1/2.
But, does lim f(n, [en])/n exist?

PrOBLEM 1. For O0<x<1, does lim f(n, |xn])/n exist?

By a variety of simple arguments, it is possible to prove bounds of the form
Fy(x)<f(n, |xn])/n< Fs(x) which hold when O<x=<1 is fixed and n is sufficiently
large. Hence, it is at least plausible that lim f{(n, [xn))/n exists. As an example of

an upper bound for f(n, |xn])/n, we give the following argument. Starting with
the complete graph K,, we wish to remove g=|yn] edges e;,eq, ..., €, in such
a way that all K,, ,, subgraphs with m=[(1—x)n/2] are destroyed. Having found
such a number y, we are assured that f(n, |xn])/n<y. Let X; denote the set of

K, subgraphs which remain after e; has been removed. Clearly, | X =[:}] [H;m] .

At the stage of removing the edge ¢, , there are |X;| remaining K, ,, subgraphs and
n .. . N o

[2]—1' remaining edges. Counting multiplicity, the remaining K,,, ,, subgraphs con-
tain |X;|m?® edges. It follows that there is an edge whose removal destroys at least

| X;| m? 2 of the subgraphs in X;. By choosing such an edge for e;.;, we obtain
2 y

|X,‘+]I§EX§|[1”—m2/[;]]. Following such a procedure for i=1, 2, ..., g, we obtain
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q
1X,|< [ ’:] {n;m] [l ~ mﬂ/(;]] . An easy calculation using Stirling’s formula allows
i

us to conclude that if y is chosen so that (1—(1—x)%2)<((1—x)/2)'~*x* and n
is sufficiently large, then |X,|=0. As x--0, the upper bound for f(n, |xn])/n that
is obtained by this argument is quite inferior to the bound given in Theorem 3.
The advantage of this argument is that it is applicable for all x satisfying 0<x<1.

The second problem is not concerned with the calculation of f(n, k), but is
certainly related to the investigation described in this paper.

ProBLEM 2. For all n=2, determine the largest integer m=f(n) such that for
every tree T of order n, TEB,,.

We have obtained upper and lower bounds for f(#) and these results may be
published elsewhere.

Finally, we note the following generalization of the basic problem considered
in this paper.

PROBLEM 3. For r=2 and n=k+r, let f,(n, k) denote the largest integer
q such that for every graph G of order n and size q, G 2K(a,, ..., a,) for every parti-
tion (ay, ...,a,) of n—k intor parts. Determine f,(n, k).

The proofs given in this paper extend naturally and easi!, .o the study of £, (n, k).
For r=3, the induction argument used in the proof of Lemma 1 yields the fol-
lowing result.

LemvA. Let r=3. If G is a graph of order n such that (i) u(G)=[n/r1 and
(1) ¢(G)=2n/(r+1))—1, then G2K(ay, ..., a,) for every partition (a,, ..., a,) of n.

Now we can state the following generalizations of Theorems 1, 2 and 3. The
reader will find that the proofs given earlier in the paper have been so structured
that they readily yield the results now stated.

THEOREM. For all r=2 and n=r, [,(n, 0)=[n/rl—1. Except for certain excep-
tional cases, f,(n, )=[(mn—1)/r1+1 holds for all r=2 and n=r+1. The excep-
tional cases are fy(4, 1)=1, f3(6, 1)=2, f,(8, 1)=3 and, for r=4, {,(r+ 1, )=1 and
Lr4+2, H=f(r+43, 1)=2.

THEOREM. Let r, k> 1 be fixed and set A=Y |k/2|/8r and B=Y 6k (k—1)/((k+1)r).
Then, for all sufficiently large n,

nfr+AYn < f.(n, k) < n/r+Byn.

THEOREM. Let O=g=e~* be fixed and set 6=Vr(r+1)elog(l/e). For all
sufficiently large values of n,

Jr(n,|en)) < [(1/r +0)n].

Exactly as in the special case of r=2, the methods used in this paper provide
an effective means of studying f,(n, k) only when k<<n. Thus, for example, the
generalization of Problem | to consider f,(n, |xn]), O<x=<1, is an important
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problem about which little is known at present. With n and r fixed, f,(n, k) is defined
for 0=k=n—r, and it is worth pointing out that in addition to the k=0 and
k=1 cases, f,(n, k) is known exactly for k=n—r. We know that f.(n,n—r)=
=(m—r+t+1)s/2—1, where n=(—1)s+¢, 0=t<r—1. This is Turdn’s theorem.
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