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ABSTRACT: In this papes we present a pumber of unsolved problems of
the simple, symmetric random walk together with the relevant known
regults,

1. INTRODUCTION

We consider the simple, symmetric random walk on the r-dimensional
integer lattice. It is perhaps surprising how many unsolved preblems
remain in this old subject. In this paper we present a number of un—
sglved problems together with the relevant known results. We do not give
any proofs but we give as many references as possible. Together with the
presented unsolved problems we try to indleate whether we believe that
they can be solved by the methods standing at our disposal or we feel
that some pew ideas of methods are necessary to settle them.

2+ RANDCM WALK ON THE LINE

ba a sequence of 1.i.d.r.v.'s with

Let Xyelgwees L
F{X=+1) = B(Xy=-1) = 1/2
and n
Sp =0 § =1 % (n=1,2,00e)s
1=

5, is considered as the location pf the particle (invelved in the
random walk) after n steps. )

2.1, ‘he favourite wvalues of a random walk

ist
_ Eftw,n) = # {%r 0Ofksn, Sp=x)
‘be the local time of the randem walk, i.e. E{x,n) is the number of
visite in it up o n. A peint ¥, is called a favourite value at tha
moment n if the particle wisits x, most often during the first n steps
= 1

B
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£i'xnin:| = max E{x,;n).
X
The investigation of the properties of the Favourite values started
simultangously by Bass and Griffin {1%85) and curselves ([1984). One can
easily observe that for infinitely many n there are two favourite wvalues
and algso for infinitely many n there iz only gne favourite yalue with

probability one. More formally speaking let Py be the set of favourite
valugs L.e.

B o= [xt Elxin) = max E(x,nl]
and let |FnT be the cardinality of Fp. Then
pllF,| = 2 0.} = BllF,| = 1 $i0.) = 2.

1.} We do not know wether 1 or more faveurite values can ocour
infinitely often i.2. we agk:
pl|r,| = riie.} = 2 (r=3;2,5;054)5
We thought that 0 iz a favourite value i.o. that is B{D e Fy i.0.}
= 1. To our great surprise Bass and Griffin showed that it is not so
and they proved that the favourite waluoes are golng £5 infinity faster
than nlfz {logn}'ll. In fact they have

o
Filim i$§?%l—— tnf {|x|, X E Pyl ==} =1
nah:u i
if n*11l. We showed that the favoorite wvalue i.0. larger than
(l=e} (2Zn loqlognilfz LaBs
e{lim sup (1+e)  (2n loglogn)~1/2 jnr { el xeF =1 d.p:}=1.
'+ =

2.) wWe do not khow whether the & oan be replacsd by 0 in the above

statament.

Let aln) be the number of @ifferent fawourite values up to n, 1.e.

n
ain) = | £ Fyl. We guess that aln) is very small i.e. a{n}<
k=1
:lagnjc for: some o > 0 but we gannct prove 1t. Hence we ask

3.) How gan one deseribe the limit behaviour of ain)?
4:) We also ask how long can a point stay as a favourite value i.e.
let 1 £ i=ifn) < j=i(n) = n be two integers for which
3
s 5
k=1

and j-i=R(n) is as big as possible. The guestion is to describe tha
Limit behaviour of 8in).

5.} Further if ¥ was a favourite value once, can 1t happen that the
favourite value moves away from % but later it returns to ® againg, i-e.
do seguences ag<hp<ec; of positive random integers exist such that

Fa,, Fby = @ and Fp Fo #0 fn=1,2,...1%

&) To investigate the jumps of the favourits values looks also
interesting. Let n=niw} be a positive integer for which Fp Fpyeg = €.
Then the jump j, is defined &as

n = PP Fp4! = min {|x-y|; xE Fhy ¥1 FE+1}-
The thecrem of Bass and Griffin implies that j; = /4 (logn)~1l {.c.a.s.
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It looks wvery 1ikely that lim jp = = a.s. We do nor see how one can

=
describe the limit behaviour of ju.

2.2 Long head-runs

We {1978} studied the length of the longest head-run By, l.e. By is the
largest integer for which

Iin,&g)=2,
whersa
ITin,k) = max !ﬁj+k-$jl (0s k & nls
O<isn=-k

Duf 1978 paper contained a domplets enough charasterization of Zy but
the result was extended by Guibas-0dlycko (1980), Samarowa (1981),
BEvész (1982), Ortega-Wechebor (1984), Deheuwvels (1985), Deheuvels,
Devroye—-Lynoch (1986), Deheuvels=-Steinebach (1986}, ErdSs-Rkévész [1986)
among uthara, Mow we propose some further problems.
Let E'.‘ be the length of the longest tail ron, i.e. E,n iz the largest
integer- fbr which
T* {n:,ﬁ;'l = -.E;
whure
{n, 8 = min {S143-84) .
0= jsn—k
7.} How can we characterize the limit properties of |z -zn|?
A trivial argument shows P2y z i:gad=1 but it is not clear at all
how big |2,-25]| can be.
(2} (3]

Let ztl} = B and let %577 237 y... be the length of the second,
third,... longest head-run up =+ £ §S 11} [23

8.) We ask about the properties of 2 . It is clear again that
B{Eé zéE} i.0.)] = 1. The lim sup properties of 2{1} AE} look harder.

8.) Let %k, be the largest integer for which

P{zm m z”‘n’ Lot =1,
Charadterize the Iimlt propertiss of - | .

2.3, on logarithmis and other densities

In many problems on random walk one gets density results anly if we
teplace ordinary density by some more general concept of density. As an
‘example we consider the seguence of time pointe when the particle
returns to the orﬁgin. Let

. ==, 1 if 5;:='L'.I';
e = {u 1f  s3f0.
: ik
Then the seguence £ (0,n) = L Yy does not chey law of large numbers bot
k=1
Chung and Erdés (1951) proved
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n I
lim (logni™L £ K2 yp =22 gus.
f k=1
A similar resglt is due to P.Lévy who lnvestigated the legarithmic
density of those n's for which £.>0. In fact let

e, 4k A B0y
i B Af B a0
Then P.L&vy proved that
oy, T =1 i
{Logm) B ST Wei=lfE o EuEs
k=1

In gonnection with result wo ask:
10.) Does the segiencs

1/2 1

g -
[l &
k=1
satisfy the central limit theorem. Thiz guestion does not seem to be
very hard.

Our next probléem is connected to the problem of long head-runs.
Using the same notation as above let

— 98 A B

T = i % if 2y > EE.

i.e. Wy = 1 if the longest head run up téon i85 lenger than the longest
tail rum.

11.) Deoes the logarithmic density

n

i et E Ko Uy

i k=1
exist with probability one. This problem seems to be net very hard.
2.4, Rarely wisited points
It is easy to see that for infinitely many n almost 'all paths agsume
evary value at least twice which they assume at all, di.e. let

£.in) = # {ks Efkyn) = r}
ba the number of points visited sxactly r—times up to n. Then

B{filn) = 0 f.o.} = .

12.1 Woe do not know if for inifinitely many n almost all paths
assume evary value at least (r+l)-timesg (¥r=2,3,...) which they asaumes
at all; i.e. let

r
i f£yin) = gpin)
i=1
and we ask
Plgzin) =0 i.o.} = ¥
We would guess that this probability is 0 if © * 2 but perhaps it is 1
if =2
13.) For every r (r may depend on nh) investigate
liminf £pin} and limsup Epin}.
n+= n + =

{logn) ™ Vy = % logn)
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3 already stated liminf f3(n) = 0. P.Major (19B6) proved
I &
flinl
lim sup = =il 4
= lag n

where 0 < €€ = but its exact value is: unknown.
Let e be the i-th unit-vectar on BT i.e. 25={0,04:-+0,1:0p-+20) and
lat ¥1: Xaeees be a sequence of 1.i.d.r.v.'s with

1 - )
plxg=eg} = plxg=—ei) = 33 (i=1,2,....4).
Further let
So=0;  Sn=X1+Xpt... 4K, fn=1,2, . u .t

¥5 RANDOM WALK IN THE SRACE

Most of the probisms Formulated in Section 2 ecan be reformulated in
d-dimension and a number of new preblems can be found. At first we give
a few remarks to the already stated problems. Later we present some Dew
problems.

3.1. Multivariate versions of the pne dimensignal problems.

In connection with the favourite walues it is pnatural to ask

14.) Does the favourite wvalue of the randem walk converge to
inifinity in case d=27

The answer is ¢learly positive when d 2 3 and wvery likely it is
glag 80 in ecase d=2 but the procf is not olear.

In connection with the rarely visited points a result of Dvaoretzky
and Erdfe (19%0) implies that in case d 2 2 a.s. there will bs many
points visited exactly onoce if n 18 big enough. In fact we have lim

n+m
Fgfn) = = goa, if d £ 2. Dvoretzky and Brdos as well as Erdis and Taylor
11960 and 1960) have some results te describe the limit properties of
fein} but a complete description is missing.

3. ¥, Special problems in gase d & 2.

Let ue consider the largest sguare around the origin completely covered
y the path during the first n steps. Clearly we say that a sSquare
Tih;i]'x —n,ﬂl is completely covered duaring the first n steps if for
any x € ~Apﬂr=x [‘Ei& there exists a 1 S k= kyix) S n such that Sg=x.
Let A, be the largest integer for which the ‘sguare E".'p‘ﬂfhﬂ-.l % [:—An,Alﬂ
ig completely covered. Clearly lim A; == a.8. We ask
o
15.) How rapidly converges Ay to infinity?

Clearly in wgase d & 3 the volume of the largest completely covered
gube around the origin does not go to infinity. However there will be a
completely coversd large gube somewhere.




i P. ERDMIS AND P REVESZ

16.) wWhat is the wvolume of the largest completely covered cube in
cage-d 2 27

17.}) where is the largest completsly covered cubs located?

a} in case d=2 we ask whether the canter of this cube convarges
to infinity

B} in ecase d 2 3 it ig clear that the écenter is golng to infinity
but the speped iz not clear.

Instead of the largest completely covered cube we can consgider the
largest “essantially" covered one. For example cne cab poneider the 5
largest ilnteger Bo=B,Ip) (O<p<l) for which 100p% of the cube L—Bn,Bm
is coversed during the £irst n steps.

1B:) Duestion 15=17 should be refeormulated for essentially coversed
cubs.

CQuesation 15 ls already formulated in Erdfs—Taylar {(1960) where an
intutive solution is also given.

The following guestions look connected to the abave ocnes

189.) Between n and ntty (b + = hew many new points will be
coversd? Sj{nijﬁtn} can be considered as a newly covered point if

(i) 54 ¥ 8§y (k=0,1,2,...,3=1)
or
f1i) 84 # Sk (k=nundlia..,3-1)s

20.) How long time do we have to wait after n steps to abtaln a new
point? In fact lat Z be the smallest integer for which

5“+zﬂ # Ei [£=F 2 oo pm)is
How gan we characterize 2T
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