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1 . Introduction . One of the best-known results in extremal set theory is the Theorem
of Erdös-Ko-Rado [3] :

Suppose n > 2 k, and let 9i be a family of k-subsets of an n-set M such that any two

members of M intersect non-trivially, then I J1I <
(k - 1)

. Furthermore, the bound can

be attained, and the extremal families are precisely the families SJ7ta = {X D a : a E M{ for
k > 3. Many proofs of this result have been given, in addition to the original proof see
e. g. [4, 9, 10] . Since all the members of an extremal familiy J2 have an element in common,
we say that M has representing number 1 .

What if we do not allow the sets of Ti to have an overall nontrivial intersection? How
large can then V be? The answer to this question has been given by Hilton-Milner [8]
with a further proof appearing e . g . in [6] : Let 9Y be an intersecting family of k-subsets of

an n-set M such that

	

X = ¢ then

	

< n - 1

	

n - k - 1n

	

I_ k-1

	

k-1 )+1 for n>2k .
Xem

Again the extremal families are characterized . Since the members of 9t are allowed
to contain one of two points, but not a single one we say that 9t has representing
number 2 .

In this paper we estimate the cardinality of an intersecting family with an arbitrary
representing number r, 1 <_ r _< k. We first give the relevant definitions . All sets will be

assumed to be finite. The collection of all k-subsets of a set M will be denoted by
CM)

.

We say that a family M is intersecting if any two members of M have a non-trivial
intersection .

D e f i n i t i o n . Let 9N be a family of sets, and R a single set. R is said to represent 9N
or be a representing set for 9N if R n X * 0 for all X E M. 92 has representing number r
if r is the cardinality of a smallest set representing U.

Since an intersecting family T1 is represented by every one of its members we note that
the representing number r of such a family satisfies r < min (I X 1 : X E TI) . In particular,

if DI S:
kC
/ then 1 <_ r < k.
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Theorem. Let n, r, k be natural numbers with 1 <_ r <--_ k < n . Denote by g (n ; r, k) the

maximal cardinality of an intersecting family SJJ? c (M) of an n-set M with representing

number r. Then there are constants c, ,k , C, ,k only depending on r and k, such that

Cr,, nk-r < g (n ; r, k) < Cr, knk- r

Sections 2 and 3 are devoted to a proof of this result with a few additional comments
appearing in Section 4 .

2. Proof of the upper bound . This section establishes the existence of the constant C, ,k
as spelled out in the statement of the theorem . We divide the proof into a series of lemmas .
First we need a definition .

D e f i n i t i o n. Let W be a family of sets and let u e 111, u> 1. A d (u)-system of 2f is
a subfamily B c 21 such that

(i) 101 = u,
(ü) any two members of 93 have the same intersection C . C is called the stem of 0 .

The following lemma appeared in [2] . The easy proof goes by induction on a .

Lemma 1. Let a, b e N, b > 1 . Then there exists a smallest number f (a, b) E 111 such
that any family of sets 91 with I21I > f (a, b) and (X E W I X I -<_ a) possesses a
d (b)-system. Furthermore, f (a, b) _< a! (b - ly .

Lemma 2. Let W be a family of sets with X E 2i I X I _< k. Let, further, 0 be a family
of sets such that every X e 0 is a representing set of 9t and satisfies I X I < b. If

101 > f (b, k + 1), then there exists a representing set Y of W with I Y I <= b - 1 and Y c Z
for some Z e 0 .

Proof. Let { Y, . .

To facilitate the induction used in the proof of the theorem we introduce the following
function .

D e f i n i t i o n . Let n, r, k c N. For e c N, <_ k define the functions

h k (x) = x

The following facts are immediately verified from the definition .

h,:Q -> Q

1

	

k-1
h,(x)=	(x-f(k,k+1))- Y f(i,k+1) for

	

<k.

(n
- r)

	

i-,, + 1

k-r

8*
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Lemma 3 . i) h,+I
(x

- h, (x)
(k -

r))
= f (?'+ 1, k + 1) for all x,

k-1
ü) if x>

n-r
Y_ f(i,k+1)+f(k,k+1)then hr-I(X)>O'k - r i_ r

We come to the crux of the proof .

Lemma 4. Let n, k, r and M, 9Mi be given as in the statement of the theorem . For a sub-
family M' M and t < k let

9J2',, _ {X

	

M: X represents 9Mi, I X I <_ e and there exists Y e M' with
X~Y} .

Then 19M ,, I > he
(I ' U •

P r o o f. We use downward induction on ~. For = k we have 9Mtk ? 9M1' and thus
19Yk I > hk (19R' 1) = 19M I . Suppose we already know that 19Mt~ + 11 > h, i (19R' 1) holds for all
subfamilies 9MY c 9Mi . We determine step by step distinct sets Xi , Xz , . . ., Xa e 9J1f with
a = max (0, [hr (I TV 1)j) . Let a > 0 and 1 <_ < a. Suppose we have already found sets
X 1 , X" . . .,Xp ,e9JQ' . Set

TV' = {X e V' : X ;;? X i forsome i,I<-i<a-1}

Then TN - 9Jí and hence ITNe+II > he+I (19Mí1) by the induction hypothesis . As every X i
represents 9Mí we have IXi I >- r by the assumption on 9Mt, and thus

{X c M : X - Xi } I
(k - r)

(I = 1, . . ., Q - 1) .

From this we infer

ITYI = IU'1-19R"I

1• 9N'I-W-1)(k-r)

•

	

19MZ'I-(a-1) (k-r)

•

	

IM'I - he (I Mt'I)
(k - r) .

Since h,+I is strictly increasing we conclude from Lemma 3 (i)

IA,+11>=h,+I (JAI) > f (/' + 1, k + 1) .

Now Lemma 2 applied to % = 9M1, B = A,,, implies the existence of a set X p with
IXfl I <_ t' representing 9Mt and of Y e A,,,, with XQ -- Y. Y is, in turn, contained in a
set Z e 9Jí, Y -- Z, by the definition of 97Z~+1 . In summary, Xa c Z e 9Jí c TV. Hence
X, e 9M' and XQ must be distinct from all sets X1 , . . ., Xp_ 1 since X, = X i would imply
Z e 9R" = 9M' - TR, whereas Z e A. El
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P r o o f o f t h e u p p e r b o u n d . Suppose, on the contrary, there is no such con-
stant C,,k . Then there are n, M and a family 971 satisfying the assumptions of the theorem
with

k 1

(*)

	

11I> k
_
r Y_ f(i,k+1)+f(k,k+1) .

i=r

Applying Lemma 4 with W = 972 and z° = r - 1, we conclude 1972 r _ 1 1
>_ h r _, (19711) and

thus 972, 1 1 > 0 by Lemma 3 (ü) . But this contradicts the fact that 972 cannot be repre-
sented by a set of cardinality less than r, and the proof is complete .

	

0

From the inequality (*) and Lemma 1 we obtain the following estimate of Cr,k .

Corollary . For given n, r, k and M, 971 as in the statement of the theorem we have

k

1M1 < Y- i! k' n' - ' .
=r

3 . Proof of the lower bound . Let r and k be given. The Erdös-Ko-Rado Theorem states

g (n ; 1, k) = k - 1 for n >_ 2 k, hence C1, k exists. For r > 1 we use a generalization of the

construction in [1] which includes the optimal family of the Hilton-Milner Theorem [8]
for r = 2 and the one given by Frankl [5] for r = 3 as special cases .

Assume n >_ k + (k - 1) + • • • + (k - r + 2) + 1 . Choose pairwise disjoint sets
S i (i = 0, . . ., r - 2) with

1
Si

1 =
k - i, a subset T c So with 1 T 1 = r - 1 and an element

x U S i . Denote by Mi the family

Mi ={X:X-Si , 1Xr)S;1=Ifor1<j<i,1Xr)T1=1}

(i=1, . . ,r-2),

and by 971x the family

Tix = {X : 1X1 = k, x e X, X r) Si * 0for all i} v {X : 1X1 = k, x u T -- X} .

r-2
The family 971 = U 9R i v M7 v {So } is intersecting, has T v x as representing set, and

i=1

it is readily seen that no smaller set can represent M. Since the second part of 972, contains

already
k -

r
sets, the existence of Cr, is established .

4. Families with representing number k. As mentioned before, the precise value of
g (n ; 1, k) and g (n ; 2, k) is known whereas the family 972 of the previous section was shown
to be optimal in [5] for r = 3 and n >= n o (k) . Let us go to the other end and consider

g (n ; k, k) •

The theorem says in this case that g (n ; k, k) is independent of n for n >= n o (k), so we
denote it shortly by g (k) .

The corollary in Sect. 2 gives g (k) < k! kk , and it was shown in [1] that, in fact,
g (k) <_ kk . To gain further insight into g (k) we observe that any maximal family
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911
c ( k )

with representing number k must include all representing sets of 911 of size k.

This, in turn, immediately yields the following alternate characterization .

Proposition . Let 9Jt c (k ) be an intersecting family . Then the following condi-
tions are equivalent :

i) 9W is maximal with representing number k .
ü) 9J1 is maximal with respect to the condition that to every X E 9J2, x e X there exists

Y E 911 with X n Y= {x} .
k

The construction of Erd�s and Lov�s in [1] ields g(k) > k! Y 1 , and thus
i=1 l!

g (k) >_ (e - 1) k! for k -> oo . For small k, we have g (1) = 1, g (2) = 3 . Using the preceding
proposition it can be easil shown that g (3) = 10 and, with a little more work, g (4) = 41
which was also found in [7] . Hence for these values, the construction in [1] is optimal, and
it is quite plausible that optimalit alwa s holds .

Two interesting questions come to mind : First, improve the bounds on g (k), and,
secondl , estimate the threshold value no (k) .

A c k n o w l e d g e m e n t . The authors are grateful for some ver useful comments b
Z. F redi who independentl proved our main theorem.
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