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1. Introduction. One of the best-known results in extremal set theory is the Theorem
of Erdés-Ko-Rado [3]:

Suppose n = 2k, and let M be a family of k-subsets of an n-set M such that any two
n—1
k—1
be attained, and the extremal families are precisely the families M, = (X sa:a e M| for
k = 3. Many proofs of this result have been given, in addition to the orginal proof see
e [4, 9, 10]. Since all the members of an extremal familiy I8 have an element in commeon,
we say that I has representing number 1.

What if we do not allow the sets of M to have an overall nontrivial intersection? How
large can then 9K be? The answer Lo this question has been given by Hilton-Milner [8]
with a [urther proof appearing e.g: in [6]: Let T be an intersecting family of k-subsers of

an n-set M such that [ X =0, then |~:uug(::‘ ! heprairrie

members of M intersect non=trivially, then || = ) Furthermore, the bound can

1 k—1
Xem
Again the extremal families are characterized. Since the members of MM are allowed

to contain one of two points, but pot a single one we say that M has representing
number 2,

In this paper we estimate the cardinality of an intersecting family with an arbitrary
representing number r, 1 = r = k. We first give the relevant definitions. All sets will be

assumed to be finite. The collection of all k-subsets of a set M will be denoted by (T)

)+1 forn> 2k

We say that a family M is intersecting if any two members of M have a non-trivial
intersection.

Delinition, Let M be a family of sets, and R a single set. R is said to represent 98
or be a representing set for MiF R ~ X £ O for all X M WM has representing mumber r
if r is the cardinality of a smallest set representing 9.

Since an intersecting family N is represented by every one of ils members we note that
the representing number r of such a family satisfies r = min (| X]: X € M), In particular,

; M
Lfiﬂig(k

then 1l =r =k
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Theorem. Let n,r, & he natural numbers with 1 = r = &k = n. Denote by gin;r, k) the
maximal cardinality of an intersecting family N = (T) of an n-set M with representing
number r. Then there are constants ¢, .. C,  only depending on r and k, such that

it T=glmn k=S C 0t

Sections 2 and 3 are devoted to a proof of this result with a few additional comments
appearing in Section 4,

2. Proof of the upper bound. This section establishes the existence of the constant €, ,
as spelled out in the statement of the theorem. We divide the proof into a series of lemmas.
First we need a definition.

Definition. Let 9 be a family of sets and let we N, u = 1. A A (u)-sysrem of 9 is
a subfamily B = W such that

i) |B|=u,
(i) any two members of B have the same intersection €. € is called the stem of B.

The following lemma appeared in [2]. The easy proof goes by induction on a.

Lemma 1. Let a be N, b= |. Then there exists a smallest number fla, bye N such
that any family of sets W with || = fla, B) and (X e = |X| = a) possesses a
A (bsystem. Furthermore, [ (a, b) = al {(h — 1)"

Lemma 2. Let M bea family of sets with X & ¥ = | X| = k. Let, further, B be a family
of sets such that every X B is a representing set of U and satisfies | X| = b, If
|B| = f(b, k < 1), then there exisis g representing sel Y of Wwith |Y|=b—1and Y = Z
Jor some Z € B,

Proof Let{Y,, ..., ¥}t beadik + l)}sysiem of B with | ¥| = bforalliand stem ¥
(guaranieed by Lemma 1). Then |¥| = b — 1, ¥ = ¥, & B. We claim that ¥ represents 20
If, on the contrary, there existed X e ¥ with X ~ ¥ = § then X would have to intersect
all the disjoint set ¥; — ¥, ¥, — ¥...., Y., — ¥ in contradiction to |[X| =k 0O

To facilitate the induction used in the proof of the theorem we introduce the following
function,

Definition., Let nyr, keN. For £ e N, £ = k define the functions k,: @) — @)

hy(x) = x

The following facts are immediately venfied from the definition.

b, (x) = {x — [k, b+ 1)) — 'ﬁ' flik+1) for ¢<k.
i=f+1

Et
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Lemma 3. i) h,., x—hf{x}(E::))=fw+ 1,k + 1) for all x,

ii) :;rx}(:::) S £k 1) 4 1k k + 1) then by, (x) > .

We come to the crux of the proof.
Lemma 4. Let n, k, v and M, R be given as in the statement of the theorem. For a sub-
Sfamily D' = WM oand £ = k let

M = {X = M:X represents- M, |X| =& and there exists Y with
X e Yk

Then |I| = & (0]

Proofl We use downward induction on ¢, For ¢ = k we have I, = M’ and thus
|90 | = Ay ([T0|) = |90 |. Suppose we already know that |90 | = &, (|30 |) holds for all
subfamilies " = W We determine step by step distinet sets X, X5, .. X, & with
a = max (0, [h (|9]). Let « >0 and 1 < ff =2 Suppose we have already found sets
X Xa oo Xgor 200, Sat

M={XedM': X o X, forsomeil=i=f—1}
Ot =W — M.
Then i = D and hence [, ;| = k., (M) by the induction hypothesis. As every X,

represents M we have | X,| 2 r by the assumption on M, and thus

X = M:X 2 X‘}lg(:::) f=1...p=1)
From this we infer

|| = (| — ||
= || —w—:u(:j")

r

= (| —{a—n(z:;)
> || — h,nmrn(:::).
Since h,, is strictly increasing we conclude from Lemma 3 (i)

lﬁ.u-llg h{+1”5m” =flf+ 1, k4 1)

Now Lemma 2 applied to 9 =M, B =, ., implies the existence of a set X, with
|X4| = ¢ representing W and of Ye'll,, , with X; = Y Y is in turn, contained in a
set ZeM, ¥ = Z, by the definition of M, .. In summary, X; Z e = M. Hence
Xy e 90, and X, must be distinct from all sets X,,..., X,_, since Xy = X, would imply
ZeW' =M — M, whereas ZeDM. O
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Proof of the upper bound. Suppose, on the contrary, there is no such con-
stant C, ;. Then there are n, M and a family R satisfying the assumptions of the theorem
with

n—r

*) I?J?l:(k_r)tgfﬁ.k+1}+ffk,k+1}_

Applying Lemma 4 with 0 = M and £ = r — 1, we conclude |, _ | = h, _ | (|90} and
thus |, _,| = 0 by Lemma 3 (ii). But this contradicts the fact that Y0 cannot be repre-
sented by a set of cardinality less than r, and the proof is complete. [

From the inequality (*) and Lemma 1 we obtain the following estimate of C, .

Corollary. For given n, r, k and M, TR as in the statement of the theorem we have
&
mmg(Zimﬂf".
I=F

3. Proof of the lower bound. Let r and k be given. The Erdds-Ko-Rado Theorem states
: : }) forn = 2k, hence ¢ ; exists, Forr = 1 we use a generalization of the
construction in [1] which includes the optimal family of the Hilton-Milner Theorem [§]
for r = 2 and the one given by Frankl [5] for ¥ = 3 as special cases.

gin; 1. k) =

Assume nzk+k—1)+--+(k—r+ 2+ 1. Choose pairwise disjoint sets
S li=0.....r—2) with |§;] =k — 1, a subset T < §, with [T] =r — 1 and an element
x4 | ] 8. Denote by M, the family

M={X:X28,|Xn§l=1forlsf<i|XnT|=1}
(i=1,..,r—2)

and by MM, the family
M, ={X:|X|=kxeX, X S+0foralli} w{X:|X|=kxu Tc X}

r=2
The family T = L_.I M, M, {S5,] s intersecting, has T x as representing set, and
=1

it is readily seen that no smaller set can represent . Since the second part of IR, contains

already (z : :) sets, the existence of ¢, , is established.

4. Families with representing number k. As mentioned before, the precise value of
gin; 1, k) and g(n; 2, k) 15 known whereas the family 9 of the previous section was shown
to be optimal in [5] for r = 3 and n = ng(k). Let us go to the other end and consider
ginm: k, k)

The theorem says in this case that g(n; k. k) is independent of n for n = ng (k). so we
denote it shortly by gkl

The corollary in Sect. 2 gives g(k) < k!K*, and it was shown in [1] that, in fact,
glk) = k*. To gain further insight into g(k) we observe that any maximal family
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MY : : ; ;
m = (k ) with representing number & must include all representing sets of M of size k.

This, in turn, immediately yields the following alternate characterization.

Proposition. Let T = (T) be an intersecting family, Then the following condi-
tions are equivalent:

i) 9N s maximal wich representing number k.
i) UM is maximal with respect to the condition that to every X e M, x & X there exists
YeMM with X n ¥ = {x},

k
The construction of Erdds and Lovasz in [1] yields gkl =kl & |]1 ., and thus
i=1 1

gik) = (e — 1) k! for k — oo, For small k, we have g(1) = 1, g(2) = 3. Using the preceding
proposition it can be easily shown that g{3) = 10 and, with a little more work, g (4) = 41
which was also found in [7]. Hence for these values, the construction in [1] is optimal, and
it is quite plausible that optimality always holds.

Two interesting questions come to mind: First, improve the bounds on g{k) and,
secondly, estimate the threshold value ng (k).

Acknowledgement. Theauthors are grateful for some very useful comments by
Z. Firedi who independently proved our main theorem.
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