TRANSACTIONE OF THE
AMERICAN MATHEMATICAL BOCIETY
Volume 312, Number L, July 1987

ON THE DISTRIBUTION OF THE NUMBER
OF PRIME FACTORS OF SUMS a+b

F. ERDOS, H. MAIER AND A. SARKOZY

ABSTRACT. We continue a sories of investipations by A. Balog and two of the
authors (P. Erdos and A. Sé.rlmzﬂ on the arithmetic properties of the elements
a+b whereac A, b€ B, A and B “dense sequences.”

The present paper transfers the famous Erdos-Kae theorem on the normal
digtribution of the number of distinct prime factors of integers to such “sum
sequences.”

1. Throughout this paper we use the following notations: For any real number
r let |z] denote the greatest integer less than or equal to z, and let ||z|| denote the
distance from z to the nearest integer: |z|| = min{x — [z]. 1 + [z] — =). We write
¢2™F = ¢(z). The cardinality of the finite set X is denoted by [X|. v(n) denotes
the number of distinct prime factors of n, while {1(n) denotes the total number of
prime factors of n counted with multiplieity. We denote the distribution function
of the normal distribution by ¢(z):

o(z) = (2m) 112 fz eV 2y,

—od

2. Recently in several papers Balog, Erdos, Sdrkozy and Stewart have studied
problems of the following type: If A, B are “dense” sequences of positive integers
then what can be told about the arithmetic properties of the sums a + b with
a € A, be B? (See, eg, [1,4, 7 and 8].) These results show that from many
aspects the behavior of these sums s similar to the behavior of the sequence of the
congecutive integers, Thiz fact led us= to the following question: is it true that if
A B are “dense” sequences, then the sums a 4 b with a € A, b € B must satisfy
an Erdos-Kac type theorem (see [3])7 In other words, is it true that if A, B are
gets of integers not exceeding = and |A|, |B| are “large” in terms of z, then the
distribution of the numbers

(vla +b) — loglog z)/(loglog z)"/?

can be approximated well by the normal distribution?

First we are going to show that if we count any integer n that ean be represented
in the form a + b = n only once (independently of the number of solutions of
a+b = n) then the answer to the question above is negative. To see this, define the
set A in the following way: A =2U{n:n<z,n=1 (mod2), v{n+2) > loglogz},
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270 P, ERDOS, H. MAIER AND A, SARKOZY

and put B = A. By the Erdis-Kac theorem, we have |A| = |B| ~ z/4, It can
be shown (by using, e.g., the Chinese remainder theorem) that almost all the even
integers n = 2k with n < 2z can be represented in the forma+a'. a e A, a' € A
g0 that the number of the integers that ean be represented in the form a 4- o' is
altogether about z 4+ z/4 = 5z/4. On the other hand, again by the Erdbs-Kac
theorem, about half of the even integers n = 2k < 2r satisfy

(1) v(n) > loglog &

{and they almost all are of the form a+a'), and also all the odd integers n satisfying
d<n<z+2and (1) areof theforma+a', a € A, a' € A (with a = 2) so that
there are about z/2+ /4 = 3z/4 integers satisfying (1} and of the form a+a'. This
is mueh more than their expected number ~ 1/2 - 5z/4 = 52/8 (since the expected
number would be half of the number of all the integers of the form a+a’), and thus
no Erdés-Kae type theorem c¢an hold.

Omn the other hand, we will show that if we count the sums a+ b with multiplicity,
then the following Erdis-Kace type theorem holds,

THEOREM. There erist absolute constants zq,C, such that if z > zg, A, B are
seta of positive integers not exceeding x and | i an arbitrary positive integer, then
we have

) Ik [ —loglogx
H(a,b):a€ A, bEB, v(a+h) <1}~ (-——-—[,“E,m}m) IMIBI‘
< Crz(|A||B])*(log log z) =114,

We note that one can prove the analogous assertion with Q1{a + b) in place of
v(o +b) in near the same way. However, some technical details are slightly simpler
in case of the » function, and this is the reason that we have preferred to study
this case.

We guess that (2) can be improved by replacing the exponent 1/4 on the right-
hand side by 1/2 but unfortunately we have not been able to prove this. (On the
other hand, certainly (2) does not hold with an exponent larger than 1/2 in place
of 1/4.)

By the theorem above,

(|AIB)[{(a,b): a€ A, bEB, v(a+b) <}
can be approximated by
dr( [ =loglog )
(loglog z)1/2

= (|AlIB])~" = of(loglog z) /%),
Probably the upper bound on the right-hand side can be improved. On the other
hand, it cannot be replaced by O{exp(sy/Toglog rlogloglog z)). This can be shown
by the following construction: let P denote the product of the primes not exceeding
(e/3)yToglog zlog loglog =, and let A = B be the set of the integers of the form
kP where 1 < k < z/P. It is easy to see that in this case, i

r*(|A||B]) ™! > exp(ev/loglog x log log log ),

(2)

provided that
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and, on the other hand, the sums a + b have “too many” prime factors, so that,
e.g., for | = [loglog x| we have

(JA|IB)""H(a,b):a€ A, bEB, vla+b) <} < % — 25

I—loglogz \
<* (taziogars)

for some & = () > 0,

We will prove the theorem above by using the Hardy-Littlewood method.
Another alternative approach could be to use the moment method but it would
sive much weaker estimates, On the other hand, the moment method has the ad-
vantage that it is more flexible so that one can use it to derive some nontrivial
results also in some cases when the more analytical approach does not work, e.g.,
when the cardinalities of the given sequences are smaller. We hope to return to
these questions in a subsequent paper.

3. Our theorem follows relatively easily from Lemma 1 below.
For{=0,1,2,..., put

S{z,l,a) = E e[no)
nex
pim )=l

I —loglogx
5e) =4 (gioges)

LEMMA 1. There exist absolule constants zy,Cy such that for z > @y, 1 =
0,1,2,..., and any real number o we have
|]
S(z,1,0) — E(z,1) }_ e(na)

=]

and

< Cyz(loglogz)~1/4,

In this section we are going to derive our theorem from Lemma 1, while §§3-8
will be devoted to the proof of Lemma 1.

Put
Flo)= 3 elan), Gla)=)_ elba).
cEA beB
Clearly, we have

|{(a,b): a € A, beB, via+b) <}

={ 5 Dl 0 R Ee((wb—n}ajda

aEA BEB aEA BEB
nElnpin) =l n<lap(n)<
a+b—rn=0
1
=[ Ze{ua) Ze{ba} Z e(—na) | do
0 NzeA B n<2r

winl<l

=f] F(a)G(a)$(22,1,—a) da.
i}



2742 P. ERDOS. H. MAIER AND A. SARKOZY

Thus by using Lemma 1 (with 2z in place of z), Cauchy’s inequality and the Parseval
formula, we obtain that

l{(a,b): a € A, beB, vla+b) <} - E(z,1)|A|B|
< |{(a:b): a € A, be B, v{a+b) <} — E(2z.1)|A|B||
+|B(22.1) - E(z,1)||A|[B|

[

fl Flo)ola)5(2z, !, —c) dae — E(2x,1) E 1
i

cEA BER

+a({1ug1ogz}—*f*muﬂ|)

1
= [ F(o)G(a)8(2x,1, —a) do — E(2x,1) XC 1
70 acAbED
neiradb-n=0

+ 0 (1oglog z)~/*[Al[B)

- f )G (0)S(22. 1, —a) da
(i

[2=]

—E{Ez.l}le[u}G{u} > el~na)da
0

n=1

+0/(loglog z)*/*(A|B)

[22]

S(2z,0.—a) — E(2z.1) ) _ e(~na)

n=1

1A

1
fu F(a)liG(a)] dor

+o ({iﬂglog z]—lf’ﬂmum)

1
=0 (m(lnglogz]"”" f |F(a)||Gla)] da) +o ({1agzugz)—if2|ﬁ||3|)
1]

1 1 1/2
= (z[]ﬂglﬂg i (f |F(a)]? daf |G{a}|1da) )
1] ]

+0 (uuglog :}—Wmum)
= O (a(loglogz) ~*/4(|A|[B|)*/*) + O ((loglog 2)~*/*|A||B)

= 0 (s(|AlIB)**(loglog =)~/

{since clearly |E(2z,1) — E{z,1)| = o((log log x)~*/?) uniformly in ) and this com-
pletes the prool of our theorem (assuming Lemina 1).
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4. We start with an outline for the proof of Lemma 1. The method bears
resemblance with that of Vinogradov applied in the proof of his Three Primes
Theorem [9]. We decompose the interval I = [0,1). Let

={a €1:[la < 27" (loglogz)!/4}.
The asymptotic equation 2]
S(z,l,a)~ E(z,1) ¥ e(na)
=1

is shown only for o € My. It follows easily from the Erdos-Kae theorem with ervor
term [2] by partial summation. For o ¢ My we merely show that S(z,[,a) and
El[:u.!}z:lf_]__l e(no) are both small.

Let O3 > 0 be a fixed large constant. The set M, is defined by M, = {a: ||a]| <
21 10g%3 £} — M. For each rational number a/g with 1 < g < log® z,0<a < g,
(a,q) = 1, we form the neighborhood

M, , = {o: |o—afg| < 27 10g® 2},
We denote the umion of these “major ares” by Ma:
M= |J M,

l<g=log® x
{w.q)=1

To estimate S(z,l,0) = 3 < .yiny<i €lna) for a € Mg we factor n = mPi(n).
(Here and in the sequel Pi(n) will denote the ith largest prime-factor of n.) We
apply the prime number theorem of Page-Siegel-Walfisz to deal with the sums over
the Py(n)'s. The estimate for & € M, is much simpler but depends on the same
basic ideas.

Let Mg = I—{MyUM,; UM;). Here we again use the factorization n = mPy(n).
However the sums over Fp(n) are estimated by a mean-value argument.

5. Before estimating S{z,l, &) on the "major ares” we prove some preliminary
lemmas.

LEMMA 2.

Z eno) = j:r efuea) du + O(||al|z).

nag
{ Here and in the sequel the constants implied in the O- and < -symbols ore absolute
unless indicated otherunse.)

PROOF, This follows immediately by Euler’s summation formula,
LEMMA 3. Letz23 A>1,0<|8 <z Y23logz)"". Then

j; 1&‘:“} du < 7 (logz)™! (2 — oo).
PROOF. We have

/3 |ni1:3 .[2 1“;“}# + [B e(Bu) (logu) '], Cee

+873 f T odld) L,

1z uflogu)?

Each of the three terms is < |3~ (logz) ™.
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LEMMA 4. Letl <q< (logz}*“;(e,§) = 1. Then we have

e(pu)
2. elfp)= ma}f logu *

r=z
pr=cmod §

+0cs (“ + |8|z)z exp(—Ca(log zj“i}) ,

where 4 > 0 15 an absolute constant,

PROOF. We apply the prime number theoremn of Page-Siegel-Walfisz [5, p. 144,
Satz 8.3,

m(uigye) = %ﬂ liu+0Og, (“ exp{~Caflog 'u]m})

for z1/? < u < 2. Lemma 4 follows immediately by partial summation.

LEMMA 5. Letw(z y) denote the number of n < z that have only prime factors
<. Thern we have for y < z,

_logloglog y log log y }
tﬁr{z,ylﬂzexp{ ey logz +loglogy + O T P

for y=y(z) — o0 as z — 0.

PROOF, This is a result of Rankin [6].
In the sequel we will use repeatedly conditions of the form

_ log
Pi{m) = exp (_—J{lug Ba :.,-}3) i

Therefore we introduce

i L logx
(5.1) Y=Y(z)=exp (—{]og!u_g z}“) .
LEMMA 6. 1
Z p <p, (loglogz)®.

mez/ (log o398 cm Py (m) <z

PROOF. We set m = k- P, P = Py(m), B = (logz)*“3, Then the summation
condition for mP; (m) implies

(2/Bk)M < Py(m) < (a/k)"2,
By Lemma 5 we have

¥ i Y p+O(loga™)

mez/BomP {m)<e m k<)Y ﬂﬁfﬂk}]"'!{P{lx.ﬂ'th
P prime
The P-sum is
log B (log log z)*
log{z/k) ~% " logz
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6. We now turn to the “major arcs” estimate.
LEMMA 7. (i) For o € My we have
§(z. 1, 0) g, z(loglog )2,
(ii) For v € My we have
S(x, 1 @) €e, ol ™t + z(loglog 2)®/(log z).

PROOF. We first prove (i) and then indicate the modifications necessary for the
proof of (ii].

Given (a,q) with g < (logz); (a,9) = L; |a —afg| € 7 (logz)®®. Let
g=p;' - pir.pr < -0 < Ppy i > 0, be the prime factorization of g. By application
of the Chinese remainder theorem we get a decomposition

a_ b by b ;
E=@+E++ﬁ““—; with [b{,ﬂi}f-‘].

We factor n = pfmP, where (m,p;) = 1, k = 0, P = Pi(n). Then we replace
S(z,l,a) by a slightly modified sum S'"{a). (For the sake of simplicity we omit
the dependence on z and [ in the notations during the proof of Lemma 7.)

S(z.1,a) = M (a) + O(2/p; (log log z)/?),

where
sW(e)= 3 elna)+ e e(ne)
n<zi(np)=1 nsrm=Elmod py
win]=l pin)<l+1
= Z Sﬂhﬁ{&)!

k>0

with
T
8, kla) = Z Z e(pfmPa) + O ( ) :
m<z Pel{py k) Pilogz
w{m}=l—1;(m,p; })=1 P prime
Pi{m}<z/mp}

Here I{p1, k,m) = [max(Py(m), p1);z/mpk]. The ervor-term O{z/(pflogz)) con-
tains the contributions from n with double prime factor Py(n)?. We now determine
the positive integer L = L(p;) by

pi < (logz)*P < pi*.
Furthermore we define
M= M{I,‘,Fij
={m<z¥Y ' (mp)=1;mP(m) < x/(log )% w(m) <1 —1}.
Then we replace S''{a) by 512 (a):

(6.1) §M{a) = §%(a) + R,

where
8@ (a) = Z E E e(pfmPa).

O=k<LmeEM pg;;mﬂ
P prime
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For the estimate of the error i we have to consider the effects of three modifications:
the restriction of the k-sum to & < L, the additional condition imposed on m,
m € M, and finally the change in the range of summation from P € I{py, k. m) to
P < z/mp%. We have

T
(6.2) Sy, k(o) < -
& Sntl®) < gy

In the second step we apply Lemma 6,

(6.3) Z Z E | < @I{Iuglug z)®,

O<k<L wmgM Pelipi.km)
m=z¥ "' P prime

The contribution of m > z¥ ~! is < z/(log z) by Lemma 5. In the last estimate we
can assume that m € M. We ohserve that max(P;(m), p1) < (z/mp¥)(log z)~
and thus

3. elptmPa)= Y s[p’fm!’ﬂ}m(m)

PEI{p1 km) P<z/mp)
P prime P prime

which gives

z Z Z e(pfmPa)

O=k=LmeM Pel({p ko)
P prime

Z Z Z e(pimPa) +G(!ug:c)

Dk<LmeM poyimpt
P prime

(6.4)

From (6.1), (6.2), (6.3) we get
(6.5) R < z(loglog =)/ (log z).

We now set § = q/p;' and decompose the sum 5%/ (a) according to the residue
class mod g of n = pfmP. We set

(6.6) §¥a)= )  S.(a)

¢ il f

where

Z Z Z e(pimPa).

O<kSL-meM Pz /mpt

We denote the residue classes mod p]*, by sp¥, where (5,p;) = | and decompose
S: (@) according to residue classes of pfmP modp]'.
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We et ¢ —afg=4.

s@=0Y [ ¥ % (%)

p"T'I:
meEM | 0<ksqy 1<a<p;—1 L

® AT e(fpfmP)
PE:,."mp'f'
ftmP=cmod

FP=m™lamod p]' "~ =

+ 3 3y clepimP)|,

mekzL  peaimpt
p‘l' mP=cmodq

where 9 = e(e(ba/p3* 4+« b, /p3* )}, ¢ the common residue class of n = pfmP mod g,

Let
= Z e{ﬁp’{mP}l for k < -y,

{k:pym. ) sz;mp‘, P prime
mp1 = mod g
P=m~'smodp]? "

= > el0pfmP)  for k= .
R TR P<z/mpt; P prime
mpt P=cmod §

By Lemma 4 we have now with 7 = ﬂp*m. 2= ﬂt{mp’“:

:n,.i'mp.
e(0pymu) i
¢{GP1 ) Ja “logu
Z +0 (--— exp{—ﬂ.;{lngm}'”) for k <y,
= 4
[ heypry o ) 1 fm"rmpl s[ﬂp"mu} du
dlgp; ™) Ja lng u
+0 (% exp{-(-‘;;{lugm}”a}) for £ = 7.

\
The substitution v = pfu gives

[ zfm e{ﬂm-u
dlg) log v

( z{loglog z)?
dlg)m(logz)?

) for k& < 7y,

— 1 fﬂ'" elfmo)
(kpym.d) &l'?(q;ﬂ,_'”)l':’k 4 log v

| —2llogloga)” for & > 7.
L ¢ (api ™) phmllogz)®
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Thus
5 M ol fmu)
Sela) =9 & (—) f du
mgﬂ ¢lg) Emnzdp.;l o ) [ logw
3
(1+o[tekezl ) 4,
Since the inner sum without the error term is zero we get
(6.7) 5@ (g Z 5. M_
cmod g ng -

Part (i) of Lemma 7 now follows from (6.4) and (6.8). The proof of part (ii) is
much simpler since we need not consider residue classes.
In analogy to (6.1) we obtain

(6.8) S(z,l,a) =8%(a)+0 ((log log z)° /log =)

with
{2} Z Z e{mPa).

meM P<z/m
F prime
We now follow the estimate of 35 - = but omit the factor p¥ and the congruence
conditions. By Lemma 3 we get §/)(a) < |||~ which together with {6.9) proves
(ii) of Lemma 7.
7. We now estimate S{z,[, «) on the “minor arcs”, As a preparation we need
LEMMA 8. oo =
n < 2 Pi(n) < 2Pa()] < 2B 0B
PROOF. We factor n= mFgI[n}Pl (n) and get

T
3 d. PgPi'{ 2 Bl | B

Bysr B Py <25, YiisPhsz n<z
Pyin}=y

z{loglog r)*
logz
LEMMA 9. If f,a.q',q are integers, U, o are real numbers with 0 < ¢’ < g,
U=1,|la—afqgl < 1/q° then we have

S+q'

Z mm( 3y |!) <4l +qlogg.

This is a special case of Lemma 8a in [9, p. 24].
LEMMA 10. Letl<qg<z, (a.q)=1, a=alg+0/¢*, |0] < 1. Then we have

(loglog z)?

s
(5J1 a} b log =

T

oy /2
+ (logz)*/* G + 2 4+ (logz)™% + (log =)™ 3) :
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PrROOF. In S(z, |, a) we can restrict the summation te n with
Py(n) < z/(log z)%.
The number of exceptional n is €¢, z/(logz)(loglogz). This follows from
1 loglog x
Z P fae logz

=/ (log ) "3 < P<x
P prime

We again decompose n = mP, where P = Py(n). We get

[y - zloglogx
S(atia) = 3 Suw(a) +0 (—IDEI ) :

where

Suvle)= 3 Z elmPa).

Fem<l'  W<P=xz/m
VePiiml<2V P prime
{v'=an)

7y

The U/, V-gum runs over < (log z)? pairs (I/,V'), where U > (log z)72. The number
of n not counted in the sums Sy v (a) is, by Lemma 8, < z(loglog«)? /(log x}. We

now estimate Sp .y ();
2

Shyle) <t S Y.  e(mPa)
Uem=th |2V<P<z/m
P prime

<U ¥ e(m{ Py — Py)a).

Py Py Tem<minlx /Py xf Fe 1)

F 1
BBl i izt (”‘ Ta(P, —_Plel)

Py Pasz/U

=v ¥ ;3 1!111'11(1'31“?]“”)

—rfU<n<ef/U | mnase /7
iy —nr=n

w lzgﬂl fJ'+Zl'.|li‘ |
U = min (U,—)
v j=—lz/Uq] n=jq+1 llemil
[=/tra] 1
& Z {U+qlngq]{z(—+l) (] +glogag)

J=—lz/Uq]—1 Uy
T i g Ir 1
— 4+ 1] (I 1 = 2 k= T Sl el
-@:m(uq+)ti +4q)logx I]ﬂgz(q+x+z+{f)

logl),

1 q e
21 hesgth gl = 1 3
5 ugm( -I—{ng]l -+

This proves Lemma 10.
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B. We now conclude the proof of Lemma 1 and thus of our theorem. The Erdis-
Kac theorem with remainder [2] gives

Z 1= E(z,l)u+O(u(loglogu) /%) for u>z/2

nEu
vin)<l

From this it follows by partial summation that
&L
Slz,lia) = E[EJ:'_[ elua) du+ O((1+ |Ja||z)z(log log z)~*/3).
1

By Lemma 2 the ¢laim of Lemma 1 now follows for & € Mp. By Lemma 2 the claim
of Lemma 1 now follows from lemmas 2 and 7 and from the fact that [J* e(uo) du <
lix]l=. For & € M3 by Dirichlet’s approximation theorem there exists a,q with
(a,q) =1, log“ = < g = z(log £)~%2, and |a —a/g| < 0/q%, |#] < 1. Lemma 1 then
follows from Lemma 10, That concludes the proof.
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