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§1. Introduction

Let v(n) denote the number of distinct prime factors of n. In Part I of this paper
[5], we studied the equation

(1.1) n+v(n) = m+v(m), n#m

and generalizations where v is replaced with a more general arithmetic function. In
this part, we study the distribution of the n for which v(n)=~ v(n+1) and the n for
which @(n)=®(n+ 1), where ¢ is Euler’s function.

It seems reasonable to conjecture that there is a positive constant ¢, such that the
number of n=x with
(1.2) vin) = v(n+1)

is (¢;+0(1))x/Vloglog x. Indeed, from the Erdds—Kac theorem, most integers n
satisfy

(1.3) |v(n) —loglog n| = K}loglogn

where K is some large constant. In fact, the asymptotic density of the n which satisfy
(1.3) is exactly
1 f

V2n 2k
which is nearly 1 if K is large. Thus if n and n+1 both satisfy (1.3) and if we view
v(n) and v(n+1) as “independent events™, then the “probability” that (1.2) holds
should be at least (2K }/log log #)~*. Summing these probabilities would then give
order of magnitude x/}log log x solutions n of (1.2) with n=x, thus supporting the

conjecture. A refinement of this heuristic argument even suggests that ¢;=(2 V=)~

It is not even known, however, if (1.2) has infinitely many solutions. Our princi-
pal result in this paper is that a slight weakening of (1.2) has at least the “correct™
order of magnitude for the number of solutions n=x.

etk dy,

THEOREM 1. There are absolute constants ¢y, ¢;>0 such that for x=3, the
number of n=x with

(1.49) v(m)—v(n+1)]| = c,
is at least cyx[}loglog x.
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The proof of Theorem 1 is based on the fundamental lemma of the combina-
torial sieve. By using Selberg’s lower bound sieve (see Halberstam and Richert [6],
Theorem 7.4 which gives Lemma 1 below with ©#=4.43) and a more careful argument,
Theorem 1 can be proved with ¢;=3. However, the proof would be longer and not
involve any essentially new ideas, so we present here only the simpler version in
Theorem 1.

It is to be remarked that our proof of Theorem 1 easily gives the same result
with @ in place of v, where Q(n) is the number of prime factors of n counting multi-
plicity. If d(n) denotes the number of divisors of n, our proof also shows that the
number of n=x with d(n)/d(n+1)=2" where i is an integer with |i{|=¢, is at least
¢sx[Vlog log x. Recently, Heath-Brown [7] proved that d(n)=d(n+1) has at
least ¢,x/(log x)7 solutions n=x where ¢,=0. He announced that his method also
works for Q(n)=Q(n-+1). It is not unlikely that some refinement of his idea would
also work for (1.2).

A result somewhat weaker than Theorem 1 can be immediately obtained using a
special case of a theorem of Barban and Vinogradov (see Elliott [2], Theorem 20.1).
From this theorem, for x=10" and z=0,

El- #f{n=x: v(r+D)—v(@m)| =z V2loglogx } =

:7]_' ('_'2"'2(41!-{—0[
Vim =

[ i log log log x ]]
Vloglog x ¢ log logloglog x J)

Applying this result to values of z near 0 gives

#{:3 =x:|v(n+1D)—v(n)| = ¢ logloglog x }x ___ﬂgloglogx s
loglogloglog x Vloglog x loglogloglog x

for some constant ¢;=0. We are endebted to R. R. Hall and G. Tenenbaum for this
observation.

Some changes in the proof of Theorem 1 give the following result which we state
without proof.

Turorem 1°. For each positive integer k. there are absolute constants e, (k),
¢y(k)=0 such that for x=3, the number of n=x with

max {v(n), v(n+1), ..., v(n+k)}—min {v(n), v(n+1), ... v(n+k)} = ¢ca(k)
is at least c¢,(k)x/(loglog x)*2.

In the third paper in this series, we shall complement Theorem 1 with an upper
bound result of the same order of magnitude and also give an upper bound for the
frequency of solutions of (1.1).

We shall complete this paper with a result concerning Euler’s function @(n).
In [3], it is shown that the asymptotic density of the n with @(m)<®(n+1) is 1/2
and the same for the n with @(n)=®(n-+1). Thus as a corollary, the number of
n=x with

(1.5) &(n) = P(n+1)

Acta Mathematica Hungarica 49, 1987



ON LOCALLY REPEATED VALUES OF CERTAIN ARITHMETIC FUNCTIONS. I 253

is o(x). The following result implies, for example, the stronger assertion that the
solutions of (1.5) have a bounded sum of reciprocals.

THEOREM 2. For large x, the number of solutions of (1.5) not exceeding x is at
most x[exp {(log x)"/?}.

The proof of Theorem 2, which is based on the argument in [8], can also be used
to show the same result for the equation o(n)=0c(n+1), where ¢ is the sum of the
divisors function. We conjecture that for every ¢=0 and x=x,(¢) the equations
d(n)=b(n+1), a(n)=c(n+1) each have at least x'~* solutions n=x. We cannot
prove, however, that there are even infinitely many solutions for either equation.

§2. Preliminaries for Theorem 1

In this section, we record three results which will be used in the proof of Theo-
rem 1.

LemmA 1. Let po(n) denote the least odd prime factor of n if n is not a power of 2
and let py(2¥Y=1. Then there are real numbers u=1, x,, and c=>0 such that if
a, b, a,, b, are nonnegative integers satisfying

ab # 0, aby—ayh =1
and if x=max (x,, a“, b*), then
#{n = x: po((an+ag)(bn+by)) = x™, (an+ayg)(bn+by) # abmod 2} =

" ab -
S @(a)®(b) log®x’

Proor. This follows from the “fundamental lemma” of the combinatorial sieve
(see Halberstam and Richert [6], Theorem 2.5). Note that il 2|ab, then the sieve
result implies that we may insist that (an-+a,)(bn+b,) be odd, while if 2{ab, then
(an-+ay)(bn+b,) 1is even for all n.

Limma 2. Let n(x, t) denote the number of n=x with v(n)=t. Then uniformly
for x=3 and integers t satisfying

(2.1 [t—loglog x| = (loglog x)*3,
we have

) e e [1 c)[__lc"*."’aI

— +0((loglo x—1]
V2n Vloglog x }-"loglogx] (toglog)~")

where c is defined by the equation: t=loglog x+c Vloglog x.

Proor. From a result of Sathe [9] and Selberg [10], for any B=0 we have uni-
formly for x=3 and integers f with 1=r=B loglog x,

n(x, 1) = 10; > (log(:igl;c?"‘ F(logr;):g x] [1 +e [m)]
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where

1 z 13
. F(z)‘r(1+z)g[]+p—1][l_ﬁ]‘
If ¢ satisfies (2.1), then

F[—-i:l—] =140 [—L] +O((log log x) =),

log log x Vloglogx
t—1 —etj2 a
(log ligx') g xloi [l +0 —!c—_iil_—]—ko((log log x)“)],
(t—1)! Y2z Vloglogx Vloglog x

which proves the lemma. Note that a somewhat weaker version of this lemma follows
from [4].

LemMmA 3. Let us put

1
Sy = 2 —.
pln
There are numbers x, and 4, y=0 such that if x=>x;, then there are at least nx
nitegers n=x with
1
2.2 S = —
(2.2) (n) = T

Prook. For any t, let D(t) denote the asymptotic density of the integers n with
S(n)=t. By the Erd6s—Wintner theorem (see Elliott [2], Theorem 5.1) D (1) exists
for every ¢. It is easy to see that D(r) is strictly increasing on [0, ==). Thus
D(1/10)>0.

By the Erdés—Kac theorem (see Elliott [2], Theorem 12.3) the number of n=x
with [v(n)—loglog x|>4 }loglog x is

[ 2_ fe"’f3d1+a(l)]x.

V2r j

and |v(n)—loglogx| = 4 }loglogx .

Let 0<=#=<=D(1/10) be arbitrary and choose 4 so that

2 o s 1
V.z_.ﬂ_ fc dt <D[ﬁ-]—~)‘;.

A

Then for large x, at least yx integers n=x satisfy (2.2).
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§3. Proof of Theorem 1

Basically, the idea of the proof of Theorem 1 is to construct many pairs n, n+1
from a fixed choice of integers a, b where bln, aln+1, v(a)=v(b), and v(n/b),
v((n+l)/a) are small. Then v(n)=v(n+1). To show there are many such n for a
given choice of a, b, we use Lemma 1. To show there are many pairs a, b, we use
Lemmas 2 and 3.

Let x belarge. Let u=1 denote the number defined in Lemma 1 and let v=u+42.
Let .7 denote the set of integers a satisfying

(3.1) a=x", S() |v(a)—loglog x| = 24 }loglog x .

St
=10

where S and 4 are defined in Lemma 3. Then (with n given in Lemma 3)

(3.2) it l"; log x.

Indeed, if x'/**<y=x"" and x is large, then by Lemma 3, the number of members of
& that do not exceed y is at least ny. (We use the fact that log log y=log log x +
+0(1)). Thus (3.2) follows from partial summation.

For ac.«, let #(a) denote the set of integers b with

(3.3) b=x", (a,b)=1, v(b)=v(a).

Finally, for a€«/ and b€%(a), let g(a, b) denote the number of integer solutions
Y1, yp of

X
(3.4) ay—by, =1, 0<y = L Po(r1ye) = X', ab#y,y, mod?2.

For such a quadruple a. b, y;, y, let
(3.5) n=by,, n+l = ay,.

Then n+1=x and by (3.1), (3.3), and (3.4), we have (a, y;)=(b, y,)=1. Thus from
(3.3), (3.4), and (3.5)

v+ D —v)| = (@+v0)—vO)—vO)l = V() —v ()| = v+1.

We shall then take ¢;=v+1 in Theorem 1.

We next note that for a given integer n, there is at most one quadruple a, b, y,, ¥,
satisfying (3.1), (3.3), (3.4), and (3.5). Thus if f(x) denotes the number of n=x
satisfying (1.4) with ¢,=v-+1, then

(3.6) =2 2 gab).

at o bgda)

Note that Lemma 1 immediately gives a lower bound for each g(a, b). Indeed,
if’ positive integers y;. y, satisfy ay, —by,=1, then y;, y, are of the form

v =bm+b,, y.=am+a,,
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where m=0,1,2, ...,
0=by,<b, 0=a,<a, and aby,—ba,= 1.

Thus from Lemma 1,
ab x/ab . x
8(a,0) > &G gy TogGlab) | - “ablogix’
Therefore, from (3.6)

(3.7 fx) =

lez,;

Co—s—
log® x J€w a B

We now estimate the inner sum. If #(a)(y) denotes the number of members of
%(a) below y, then, for y=x",

Ba»= 2 1= 23 1-2 2 1=
b=y b=y pla b=y
(a,b)=1 v(B)=v(a) plb
vib)=v(a) v(by=v(a)

= n(y, v(a))——%’ [n [%, v(a)]—l—n[-;—;, v(a)-l]].

For xY*=p=x"" and p=/y,
J 1
n [:K, v(a)] ~T [';— ,v(a)— 1] m—-n(y, v(a))
uniformly, by Lemma 2 and (3.1). Therefore for large x, and x""<y=x'",

ea(a)(y):-_r[i—m 22, via) -2 3 2= (1-35@)x(, v(@)+0(/7).

p=Vy
Thus from (3.1), we have

. 1
Ba)(y) = 5 n(y, v(a))
for large x and xl‘“‘“’<y§x”". From this inequality, (3.1), and Lemma 2, we have

log x
— = (4Y2n ve2d®)t —=Z_
bex(a) b ( ) Vloglog x

for large x. Combined with (3.2), and (3.7), we thus have

i x

X ) S e
/&) Vloglog x
which was to be proved.

Acta Mathematica Hungarica 49, 1987



ON LOCALLY REPEATED VALUES OF CERTAIN ARITHMETIC FUNCTIONS. Il 257

§4. Proof of Theorem 2

In this section, we outline the proof of Theorem 2. It is nearly the same as the
proof in [8] dealing with amicable numbers.
For simplicity of notation, we put

1
I = exp {(log x)"3}, L = exp {f (log x)?3log log x}.
Let P(n) denote the largest prime factor of n. From deBruijn’s estimate [1], the num-
ber of n=x with P(n)<L? is o(x/l). Thus we may assume that
(i) P(n) = L* and P(n+1) = L2

It is easy to see that the number of n=x divisible by a non-trivial power exceed-
ing I® is o(x/l), so we may assume that

(ii) if k* divides n or n+1 where a=2, then k'=[.
Now we show that we may assume that
(iii) n/P(n) = L, (n+1)/P(n+1)= L.
Let n=mp, n+1=m'p’ where p=P(n), p"=P(n-+1). From (i), (ii), and (1.5) we

have
®(m)(p—1) = ®(m)(p'—1).
Using this equation and mp+1=m'p’, we have
4.1 P (2(mym’—m@(m’)) = @(m)—m®(m")+md(m).

Assuming n=4, (1.5) implies that m=1 and m’=1. Thus the parenthetical ex-
pression in (4.1) is not 0, for otherwise

P(m) _ 2(m’)
“m  m

?

contradicting (m, m)=1, m=1, m’=>1. Thus m, m" determine p’ and p. So the
number of n=x for which (1.5), (i), and (ii) hold, but (iii) fails is at most the number
of pairs m, m" where either

m=1L, m"=(x+1)/L? or m=x[L?, m' <L,

which is O(x/L)=o(x/l).
Continuing with the notation m=n/P(n), m’=(n+1)/P(n+1), we now show
we may assume that

(iv) P(d(m)) = I, P(d(m")) = I
Suppose P(®(m))<I*. We have
(4.2) ®o(m)= [] (g—Dg* " = a,a,...q,

a%|[m

where ¢ denotes prime and each a; is some ¢—1 or g. Thus the function ¢ not only
maps m to the integer @(m) but also gives a factorization of ®(m) as a,a,...q,
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(order of factors is unimportant) where at most one @;=1. It is easy to see (cf. [8])
that there are never 3 distinct integers m;,, M., 3 such that not only are @(m,)=
=d(m,)=P(my), but the factorizations a@,a,...a, given by (4.2) are the same.

If (k) denotes the number of unordered factorizations of & into factors exceed-
ing 1, then the number of unordered factorizations of k into factors where at most
one factor is 1 is 2f(k) (for k=1). Let N(z) denote the number of m with
l<=®(m)=z and P(P(m))<I'. Thus

Nay=4 2 [0
P{k)-d“

This sum is identical with the sum in the first display on p. 186 in [8]. From the argu-
ment there (see (6)), for all large x and z=L,

(4.3) N(z) = zfI2
If n=x satisfies (1.5) and (i)—(iii), then
ono_ X
P(n) — P(n)
Thus the number of such n with the first inequality in (iv) failing is by (4.3) at most

L=m=

2 Nxlpp= X ——O(x/f)
p=x/L pP= Ju’L P
Similarly, the number of n which the second inequality in (iv) fails is o(x/l). Thus we
may assume (iv).
Finally, we may assume that

(v) P(n) = P(n+1).

Indeed, the case P(n)=P(n+1) can be treated in the same way so that there is no
loss of gencrality in assuming (v).

Let n=mp, n+1=m'p’ where p=~P(n), p’=P(n+1) and assume n=x,
n satisfies (1.5) and (i)—(v). From (iv) there is a prime r=/[* with r|®(m), so that
rl®@(n)=®(n+1). Thus from (ii) there are primes ¢, ¢ with g¢|m, ¢'|ln+1 with
g=¢’=1modr. Thus

(4.4) n+1=mp+1=0modq".
Since mln, ¢'|n+1, we have (m, g")=1, so that (4.4) puls p in a cerfain residue class
a(m, g’y mod ¢’. Also, p=¢" by (v). Thus the number of n=x which satisfy (1.5)
and (i)—(v) is at most

1=

r=1 g=1(r) m=0(g) ¢'=1(r) p=a(m,qa')(g")
q=x m=x q¢'=x+1 d=p=x/m

.”2222—<222“°gx

o Sl imy ; - Tm
xlog® X ,xlogix xlogix
w3 S EREE 3 X0 L TEE o)

This completes the proof of Theorem 2.
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