MOLTIFLICATIVE FUNCTIONS AND SMALL DIVISORS

1 2
K. Alladi , P. ErdSs and J.D. Vaaler

k]
1. Introduction

Let § he a set of positive integers and g be a multiplicative
functlon. Consider the problem of estimating the sum

S(x.g) = | gin). (1.1)
SX
n £8
A natural way to start is to write

gln) = f hid} (1.23)
d|n

and reverse the order of summation. This im turn leads to the
eatimation of the contribution arising from the large divisors d of
n, wheres n 8, which often presents difficulties. TIn this paper we

ghall characterize in varlous ways the followlng idea:

"loage divdsona of a squate-juee infeger fave (1.3)
moae piime dovidons Than The amall ongs

When the sultiplicative Function h iz small in size, (1.3) will be
useful in several situations to show that the princlpal contribution
is due to the small divigors. The terms “large” and “small” will he
made preclse In the sequel.

An application to Probabllistic Wumber Theory is discussed in

ll}n leave of absence from “MATSCIEKCE™, Institute of Mathematical
Sclences, Madras, Indla.

*The research of the third author was supported by a grant from the
Hatlional Sclence Foundation.

3.l'u! this paper evolwed we had several wseful discussions with

Amit Ghosh, Roger Heath-Brown and Michael Vose.



Sec.d; Indeed, {t was rthis application which motivated the present

paper (4ee |L]|, [3]}. Our discussion in the first two sections ia
quite weneral = in Se2c.2 the principal result s derived for sets
rather than for divisors only and din S2p.3 the main inequality is
for submulciplicacive funccliona. This Ls done In the hope Chat out
elementary méChods may have other applications ss well, perchaps even

outaide of HNumher Theary.

2. A mapping for sets.

1f n is not sguare it is trivial to note that half ics divisors
are less than #m . TIE n is square—Tree there ig also an locerestcing
one=to-one correspondence, namely: there is a hijective mapping m
betwaen the divisers d of o which are less than ¢/n and the divisers
4" of n which are greacer than ¥ such thac

midy =:d” =0 (mod d) (213

(of course the mapping M depsads on n). In fact, this mapplop Ls a
spacial case of a rather general ane-to-ane correspondence that can
be set up batween subsets of & finite set, as we shall presently

SEE.

Let 5 ba & finfte set and % a finite measure on the set nf all

subsets of 8. Fer edach t # 0 define
a{c,8) = {EL S : A{E) < £},
We then have
Theorem 1. Fot cack ¢ 3 0 fhete &4 a peamifadion
T gt Alr,S) + ale,8)
auch fhat for ald E = afc,§) we have 'c,s{ﬂn F = .
Remathks There are trivial cases here. 1f X(8) < £ then A(r,5) is

the nower set of 5 and so the permutation E + S — E has the desired
property. If ¢ = 0 chen A(0,%) 18 the power et of 5(”) whera




k]

SED} = | geB : als) = 0}. Here B + 3{01 - E 18 an appropriate
permutation. So in the proof that follows we assume that

0 ¢t < As).

Preof. 1f S has carcdlnallty |§| = 1 the result is trivial. We
proceed by lnductlion of |S!.

Let |5| = ¥ » 2 and assume the result is true for sets with
W - | elements. Pick x In § with A{{x]}) < t. (If such an x does

not exist the result is trivially trus because A(t,8) = 0.) Let
T =& - {2} and note that |T| = ¥ — L. Py our inductive hypothesls

there 18 for sach v # 0, 8 permutation “T|T of A{T,T) such that
Trt,rfl} E=pforall Ec A(7,T).
We partition A(c,S8) inte three disjolnt subsets as follows:
A (t,8) = [E C A(r,S) | x < E |,
A, (t,s) = [B c aCt,8) | = ¢ B, t - a0{x}) € A(B) = t},
Ay(t,8) = [BE = A(t,8) | x (B, A(B) <t - AC() 3}
Mext, define
CRIE) A](t,ﬂjll Aztt.S} + Ale,T)
by ¢(E) = E = {x} and
g oz Alt = Al{x}) T » hlﬂt,S}
by W(E}) = E u {x}. Clearly both 4 and ¢ are bijectlve. Also
(e, $)U A, (c,8) = Ale,T)

and

Aaft,S} = (e = A{{x}}, T).

We define = as follows
£,5



"y, lE)) A B A (8L A (c,S)

t.5
o Seacap), aR] IEEC AL

It I easy to check that -: s ‘has the desired properties and this
proves Theorem 1.

Corollary. Lef 8, 4 be as above. Degine
B(e,8) = [EC 8§ : a(8) -t < MBI |;

then there & a bijection g o @ At,S) = B(t,S) such fhat
E o g(E) jor all E ¢ Al,S).

Prood. Deflne 9 ’(H =8-w g(E) and use Theorem L.

Let n = pyeseP, be square-free and 5§ = lpl. p,'....pr} with
Jl.{pi} = log pye 1 = 1,2,..4,F+ We apply the Corollary with this
cholce of 8 and ) {and with t replaced by log t} to obtain the
following result, which, In view of lts number theoretic form, i=s

given the status of a theorem.

Theorem 2. Lef o be squane-free and ¢ » 1. Then there & a owe-
Zo-one mapping m. befween the divisors d of n which ate fesy fhan on
egual Lo ¢ and those divisons 47 o0f n which ane grealenr fhan ox
equal to nfe, such fhat

Mt[d] = 3" =0 [(mod d).
Wemaris .

l.) In Theorem 2 the parameter t could be greater Chan n s but
only t % /n 1s of Interest here, If t > /n then 7 = n/t
< /a . In this case m_produces a correspondence between
d < tand 4" >t. The divisors between 1 and t can be
mapped onto themsalves and m for t » /n can be easily

4

constructed from m_, where T € Vn.

T‘
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2.} The cage £ = ¥n 1ls of special interest hecause 1t shows
that for a multiplicative function h satisfying O <« h < 1

we hawve

T hfd) s 2§ hid), for all square—fres n.

3 (2.2}
din dln

d ¢ vn

Hote that (2.2) iz an fmmedlate consequence of (2.1) (which
i1s Theorem 2 with t = +n ) Thecause h(d”} < hid).
Inequality (2.2} ecan be proved directly without use of
{2.,1) a8 was polnted out by Heath-Brown. For this direct

proof and applications see [3], [1].

1.) 1In & private correspondence to one of us (K.A.) R.R. Hall
reported that Woodall had arrived at the mapping (2.1) a
few vwears ago. Never-the-less, applications of such
mappings or Inequalities to Probabllistic Number Theory in
(11, [3], appear to he new.

4.3 When h = 1, clearly (2.2) is False. 1In fact, im thils case
{2.2) does not even hold Lf 2 ia replaced by an arbitrarily
large constant. Hote that the constant 2 Is hest possihle
in (2.2) by taking h = 1.

3. A useful Lnequality.
In view of (2.2) we may ask as to what sort of conditions one

should Impose upon h so that for all sguare-free n,

d}n hid) < A

i hid), (3.1)
d s

n

nl.l"k

where k& # 2. Because of {1.3) we may expect (3.1) to hold provided
hip) is quite small.

To get an idea concerning the size of such h we consider the
special sultlplicative Functlon with hip) = ¢ > 0, Let r he a large
integer and pyy Pgasss, P, primes such that Py ™ Pa ™ Py “ese™ P
Lat n = PiPgsesle In this situation a dlvisor d of n satlsfies

d < nlfk provided d has (asvymptotlcally) < r/k prime factors. Thus,



L -1 T r{k Ty-L =1
{ E hid) }[ ] h{d) ]' = {1""2? { L [E]';'- ] (3.2}
dln dd]n 1k e ' '
amn

The maximum value of [I]EL beeurs when 4 = tef(e+l), 48 r +i= . 8o
the left hand side of (3.2) is unbounded L{f c/{c+l) > 1/k, L.e.,

if ¢ » 1/(k=13. (n the other hand LF ¢ <€ 1/{k=1} thean the
expresslons in (3.2) are ~ 1 as v » @ , This example led one of us
(¥.A.) to make the followlng conjecture, part (1) of which appeared
as problem 407 In the Wesd Comsd Numben Theoqy Comfenence, AsLLoman
[1983)

Conjecture.
(1) Fen eack k 2 2, theme exdsds a consfant e, such that (3.1}
hotds for abl mubtipficative funetions h Aafisfying
0 < hip) < Cpr g abl p.
(1L} Tn part (1) = 1/ (1) wa admessdbte,

To thiz end we now prove an fnegquality for certain submultiplicative
functions h, namely, those h for which h{mn) « hi{m}h{n}, if
(m,n) = 1.

Theorem 3. Lled h > 0 be swubmuliiplicative and satisfy 0 < R{p) < e
€ 1flk=1) fon cff promes p. Then fon afd sguate-free n we have

: ke =l
d? hd) « {1 - 2| d% h(d) .
B e

d < n

Progd. We begin with the Familfar decompositen

)f hWd) = | n{d) + hipd),
din d

| n/p df‘ nlp

where p is any prime divisor of n. Submultiplicativity yields

hip) f hi{d) = h{p) [ hid) + n{p} } hipd) (3.3)
d|n d| nfp 4| nfp

> 1 hinp) + h(p) | hipd)
d| nip d| nfp
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= {1 +nip}} I hid) .
d| nfp

Next, obhserve that

B L 1/k d K _
hia) » i ntay Lasta _/d) T i htd) - oo [ hld)Meg d.
d e din Logln '™} dik B &Tu
din {3.4)
In addition

F hid} log d = f hid) f log p = % log p f hipd)
din d|n o|d pln d| nfp

(3.5)
. v lo h
< l h(d”{ .";..._E_E!.J.F.l ]
d}“ ofa 1 * ()
because of (3.3). Since 0 < hip) < e, we have Bip)/(1 + h(p))
“ef{l + ¢). By combining (3.4) and (3.5) we ohtain Theorem 3,

Remanfed o

1.} Theorem 3} proves Conjecture (i) for any % < 1/(k=1). The
case ¢ = 1/(k=1) (part (L1)) 1a scill open when k > 2
{for k = 2 this Is (2.2)}). The analysis ondeclving (3.2)
shows that ¢ > 1/{k-1) ls not possible.

2.) Tt would he of interest to see 1f the constant

T |
{(1-= i+£c can be lmproved. An attempt to deal with the

case ¢, = 1/{k-1) may throw some light on thias question.
3.) ®. Balasubramaniam and 5. Srinivasan (personal communica=-
tion to one of us - K.A.) have obtained slightly weaker
versions of Theerem 3 in response Lo our conference query
in the course of proving Conjecture (L} for
1 =1}s
& € fie-1}
4.} If h Is submultiplicatlve, then so ia hT{nJ which 18 equal
to hi{n) when n €« T and Is zero for m » T. The proof of

Theorem 3 shows

nd < [ § n@ - — Bie) log p 1=l
:I;n an lag t P{“ 1 + hip)

d=<T dst peT
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holds wniformly for all square—free O <t < T and
submaltiplleative h satisfying h » 0 and
B¢ hip) < (log £3f(leg nfe) .

5.) Let h be super-multiplicative, that Is, himn) > h{mdh(a),
for {m,n} = I. Soppose hip) » ¢ > 1/{k=1) for all primes
p. Then the proof of Theorem 3 can be modified to yleld
the dual Lnequality

* k=1

hid) 2 - hid)
d|n

d{u
d < gtk

for all square=-free n. Here also the altustlon regarding
c = L/{k=1) Ls open.

&, An application.
Let S be an Inflalte set of positlve lntegers. Deflne

sd::, - l 1 [
gs<x, m { §
a0 (mod d)

and set X = 5,{x). Tn addltlon, let
5,00 « =24 v 0

where @ Ils maltiplicative. PFlrst we assume that Ed satisfles the
following conditlon:

{G=1) Thera exlats & >» 0 guch that wnifoemly In x

IRy (x0)| < 5—*‘-}“1 (eautvalently S,(x) <M§ﬂl gor 1 ¢ a i,

We also require Ry Lo satisfy at least one of the Ffollowing two
conditlons:

{c-2) Ildi::‘,ll € wl(d), or

(C=3) There exist 8 > 0 such that to each U > 0 thére Lg V > 0
-satlafylng




¥

i ¢ IRg001 € %/ oa"®) .
d < X /{leg XD
Furthermore, we also require that there exists ¢ > 0

such that

|Rd|:==}[ < (&:-E—x + 1) :vcd}. L d sx,
whare win) = }plul s

Examples of sets S5 satisfving these conditions Lnclude

{(E-1} §=[0(n) | n=1,2,3,...}, where O(x) 15 a polynomlal
with positive Integer coefficients, Here w(d) = p{d), the
number of solutlons of Q{x) = 0 (mod 4} and i‘ﬂ‘.dl < pld),
g0 (C=2) holds. We may take & = 1/({deg 0) In (C-1).

{E=2) S=(p+a | p=prime}, where a Is a Flxed poslitive
integer. Here w{d) = d/¢p(d) where 4 is Euler’s
functlon. By the Brun-Tiltchmarsh Lnequality (see
Halberstam=Richert [6], p.l107) we can take any & = (0,1)
in (€-1). By Romblerl”s theorem (see [6], p. 111}, we see
that (C-3} holds with 8 = 1/2.

Let f be a (complex valued) strongly additlive Function, namely,
one that satlsfles

Etn) = J f(p).
pln

The gquantities

Ay« [ EL) Ly geg - ] LERue)

Pax pax ¢

aet like the “mean” and “varisnce” of E{n), for m ¢ 5, n %« ®x. Our
problem Is to obtaln & bound For

I I8y - A *, 1= 1,2,3,...

nex

nkE§
in terms of B(x), In the speclal case where $ Is the set of all
positive Integers, Elliott [4&] has solved this problem elegantly.
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Recently ome of us (K.A.) has [mproved Elllott”™ s method Lo order to
make 1t applicable ta subsets. Tn [2] sets § with & = 1l in {C-1)
are treated whereas In [3] the situatlon coacecnlng § in (E-2) is
Investipgated. It Es thls Ilmproved method which we ghall employ

here; we sketch only the main ldeas slnce detalls may be Found In

21, [31.

We start by Introducing a simplificatfon: We may assume that
f > 0, This Ls hecause the [nequality

o+ 6 ¢ lal" + |5l (4.1)

is walld for all complex npumbers a and bs S50 a complex function
could be decomposed into its real and imaginary parts. If f Ls real
valued we can write £ = f - [, where f+. f are non-negatlve

strongly addltive Ffunctlons generated by
+ -
£ (p) = max(0,6(p)], £ {p) = - min(D,E(p)].
For convenlence we Introduce the distribution Function

P ) =% ) 1.
nex, ne 8§

Fln)-Al{x)a /Blx)

We note that for even R

1 " £ bz
——— ] [Ea) - AMx))T = [ vTdR ), (4.2)
IE{x}IIz néx —= i
n &8

Our aim is to show that the moments of F_are bounded (uniformiy
In x).

To accomplish this we conslder the bilateral Laplace transform
o
T (x) = L euvd?‘“{v} i

If there is R > 0 for which Tu{x} £ 1 when |u| < R, then it follows
that the expression in (4.2) is hounded. Horte that

by —— ~uhl(x) /VB=Y
0 =g [ MW TROMEY e o,
11
nex nex
nES nEs

e S —
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where

(4.7
uf{n)/VBlx)

gln) = e

Of ¢ourse g s strongly multiplicative (that ls g{n) = TI'“ glpd),
because f is strongly additive. Our gaal therefore 1s to bound
S(x,g) (see (1.1)) suitably. We have two cases.

Case 1: wsbD=>Dcgel,

In a tecent paper [2] it was shown by uslng s sleve method,
that In Case 1, for the sets § satisfying elther (C-2) or (C-3), we

s <% TT [ 1 iﬂ-'ﬂla;}—i-?-"iﬂj : Ch.4)

pex
Caseé Zru >0 => g 3 1.
Here we let 4 = 1/k (ln €-1) and assume that F satisfles
| max £{p) } /VE(x} € 1. {4.5)
pex

Then we can choose B » 0 (suffleclently small) such that
BT D o
20k=1} *°
With h as 1in (1.2) we note that O < hip) = gip) — 1 < —2“1;_” .

Also h(p®) = 0 for all p, e » 2, hecause g ls strongly mlcipli-
cative. So by Theorem 3

slx,g) = | f hid) € T f_ hid)
din d nﬁ

nax nex
néEs nfs d=n
5 hid)s, (x) .
4% xé d

By {C-1) we obtain

5{!,3‘}(]{ I&Mi}%(ﬂ‘x'ﬂ-(l‘_ht }:{J]' (4.6)
dex pax

Inequallties (4.4) and (4.6) comhine with (4.3) and (4.3) to yield
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Tu{x} £ 1 For |u| < B. For details relating to such calculatlona
see [2], Sec.7 .« Therefore by means of this method we obrain the
following extenaion of a result of Elllett [4],

Theorem #. Lot f be s above and |£| satdsdy (4.5). Then

T [etn) - ACx)|® €, xst 2, fok atd >0 .
nax
nes

Hemails |

1.} Although our discussion was for even &, Theorem 4 is
stated for all £ > 0. This iz because one can pass from
even L to all positcive real oumbers by a sultable
application of the Hilder-Minkowski fnequality.

2.) 1f f satisfies certaln additional conditlons then one ean
uge the above method more carefully te obtain asymptotic
estimates for Che moments. In these cases the weak limit of
P“{v} would exist. Such asymptotic estimates are obtalned
in [2] for S with 6 =1, and In [3] for § in (E-2). For
these sets the full strength of Theorem 3 I3 not required.
The inequality (2.2) (which follows from Theoram 2)
sufflces.

3.) There are certaln open problems concerning the hehavior of
additive functions in palynomial sequences (see Elliott [5],
Val. 2, pe 335). Part of the dlfficulty ln such questions
L because we do not fully understand the moments of
addicive Functlons In these sequences. Theorem 4 [ derlved
In the hope that Lt might shed some light on these

questlons.

4,) We restrlet our attention to strongly additlve Functlons
for the sake of simplicicy. From here the translitlon to
general additive functlons is not difficult. This procedure
for the case § = 1 Ls illustrated im [2], Sec.l0.
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