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1 . Introduction

Let S be a set of positive integers and g be a multiplicative

function . Consider the problem of estimating the sum

S(x,g) _

A natural way to start is to write

n~x
n ES

g(n) .

	

(1 .1)

g(n) _

	

h(d)

	

(1 .2)
d n

and reverse the order of summation . This in turn leads to the

estimation of the contribution arising from the large divisors d of

n, where n S, which often presents difficulties . In this paper we

shall characterize in various ways the following idea :

"Lcucge dívizou o{ a squwLe-~ Lee ín#egen have

mahe pníme diviz ou than the ama2e ones.-
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When the multiplicative function h is small in size, (1 .3) will be

useful in several situations to show that the principal contribution

is due to the small divisors . The terms 'large' and small' will be

made precise in the sequel .

An application to Probabilistic Number Theory is discussed in
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Sec .4 ; indeed, it was this application which motivated the present

paper (see [1], [3]) . Our discussion in the first two sections is

quite general - in Sec .2 the principal result is derived for sets
rather than for divisors only and in Sec .3 the main inequality is

for submultiplicative functions . This is done in the hope that our

elementary methods may have other applications as well, perhaps even

outside of Number Theory .

2 . A mapping for sets .

If n is not square it is trivial to note that half its divisors

are less than do . If n is square-free there is also an interesting

one-to-one correspondence, namely : there is a bijective mapping m

between the divisors d of n which are less than do and the divisors

d" of n which are greater than do such that

m(d) = d' - 0 (mod d)

	

(2 .1)

(of course the mapping m depends on n) . In fact, this mapping is a

special case of a rather general one-to-one correspondence that can

be set up between subsets of a finite set, as we shall presently
see .

Let S be a finite set and a a finite measure on the set of all

subsets of S . For each t > 0 define

A(t,S) _ {E c S : a(E) 5 t} .

We then have

Theorem 1 . Fon each t >. 0 ,the)te íás a permutation

7T t S
: A(t,S) + A(t,S)

6 ueh that {Or aU E c A(t,S) we have ,

	

(E) n E = 0 .
t,S

RemwLk. There are trivial cases here . If A(S) < t then A(t,S) is

the power set of S and so the permutation E } S - E has the desired
property . If t = 0 then A(O,S) is the power set of S(0) where



3

S (0) _ { sE S : X(s) = 0} .

	

Here E + S(0) - E is an appropriate

permutation . So in the proof that follows we assume that

0 < t < X(S) .

P400{ .

	

If S has cardinality ISI = 1 the result is trivial .

	

We

proceed by induction of ISI .

Let ISI = N >, 2 and assume the result is true for sets with

N - 1 elements . Pick x in S with a({x}) < t .

not exist the result is trivially true because A(t,S) _ 0.) Let

T = S - {x} and note that ITI = N - 1 . By our inductive hypothesis

there is for each r 3 0, a permutation n T T of A(T,T) such that

7r T T(E) n E_ 0 for all E c A(T,T) .

We partition A(t,S) into three disjoint subsets as follows :

A1 (t,S) _ {E c A(t,S) I x E E },

A2 (t,S) _ {E c A(t,S) I x & E, t - a({xl) < a(E) s t},

A3 (t,S) _ {E c A(t,S) I x EE, a(E) < t - X({xl)} .

Next, define

A1 (t,S) U A2 (t,S) } A(t,T)

by ~(E) _ E - {x} and

~ : A(t - a({x)),T) + A 1 (t,S)

by r(E) = E U {x} . Clearly both ~ and

	

are bijective . Also

A2 (t,S)U A3 (t,S) = A(t,T)

and

We define nt S as follows
.

A3 (t,S) = A(t - a({x }), T) .

(If such an x does
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~t,T~~(E))

	

if E E A1 (t,S) U A2(t,S)

~( 7T t-~({x }) >T(E))

	

if E ( A3(t,S) .

It is easy to check that n t s has the desired properties and this

proves Theorem 1 .

Corollary . Le-t s, a be as above . Ve6ine

B(t,S) _ {E c S : X(S) - t 5 X(E)J ;

then theu is a b.íjectíon
at,S

: A(t,S) } B(t,S) such that

E c at's (E) Uon aU E E A(t,S) .

YndoA . Define at s(E) = S - n t s(E) and use Theorem 1 .
>

	

>

Let n = p l . . .p r be square-free and S = {pl , p2>" •p r} with

a(p i ) = log p i , i = 1,2, . . .,r. We apply the Corollary with this

choice of S and X (and with t replaced by log t) to obtain the

following result, which, in view of its number theoretic form, is

given the status of a theorem .

Theorem 2 . Let n be square-U ee and t a 1 . Then -there i6 a one-
-to-one mapping mt between the divi6ons d oU n which cute .less than on
equal to t and those divi6ona d' oU n which are gneaten than on
equal to n/t, such that

mt (d) = d'

	

0 (mod d) .

Kemanhs .

1 .) In Theorem 2 the parameter t could be greater than Jn but

only t s do is of interest here . If t > Jn then T = n/t

<

	

In this case mT produces a correspondence between

d 5 T and d' 3 t . The divisors between T and t can be

mapped onto themselves and m t for t > in can be easily

constructed from mT , where T < Jn .
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2 .) The case t = is of special interest because it shows

that for a multiplicative function h satisfying 0 5 h 1

we have

h(d) 6 2

	

h(d), for all square-free n .
dln

	

dln
d . Jn

(2 .2)

Note that (2 .2) is an immediate consequence of (2 .1) (which

is Theorem 2 with t = Jn ) because h(d') < h(d) .

Inequality (2 .2) can be proved directly without use of

(2 .1) as was pointed out by Heath-Brown . For this direct

proof and applications see [3], [1] .

3 .) In a private correspondence to one of us (K .A.) R .R . Hall

reported that Woodall had arrived at the mapping (2 .1) a

few years ago . Never-the-less, applications of such

mappings or inequalities to Probabilistic Number Theory in

[1], [3], appear to be new .

4 .) When h % 1, clearly (2 .2) is false . In fact, in this case

(2 .2) does not even hold if 2 is replaced by an arbitrarily

large constant . Note that the constant 2 is best possible

in (2 .2) by taking h - 1 .

3 . A useful inequality .

In view of (2 .2) we may ask as to what sort of conditions one

should impose upon h so that for all square-free n,

h(d) k

	

h(d),

	

(3 .1)
d n

	

d n 1/k
d < n

where k a 2 . Because of (1 .3) we may expect (3 .1) to hold provided

h(p) is quite small .

To get an idea concerning the size of such h we consider the

special multiplicative function with h(p) = c > 0 . Let r be a large

integer and pl , p21-1pr primes such that pl -
p2 - p3 -"'- pr'

Let n = Plp2" 'pr • In this situation a divisor d of n satisfies

d 6 n 1/k provided d has (asymptotically) < r/k prime factors . Thus,
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r/k
{ ~ h(d) }{

	

h(d) } -1

	

(1+c)r{

	

(R)CZ }-1

	

(3 .2)
dln

	

ddl~ nn 1/k

	

R=O

The maximum value of (k - occurs when k - rc/(c+l), as r + m

	

So

the left hand side of (3 .2) is unbounded if c/(c+l) > 1/k, i .e .,

if c > 1/(k-1) . On the other hand if c < 1/(k-1) then the

expressions in (3 .2) are - 1 as r } - . This example led one of us

(K .A .) to make the following conjecture, part (i) of which appeared

as problem 407 in the Glee# Coa.S-t Numbers Theony Con6 nenee, Aad,loman

(1983 ) :

Conjecture .

(i) Fon each k > 2, thene exists a con/stant ck auch that (3 .1)

hokdis ~on aU muk#tpeí.cative 6uncttonh h eat 6ying

0 < h(p) < ck, 604 a

	

p .

(ü) In pahLt (i) ck = 1/(k-1) ds admis,,íbke .

To this end we now prove an inequality for certain submultiplicative

functions h, namely, those h for which h(mn) < h(m)h(n), if

(m,n) = 1 .

Theorem 3. Let h > 0 be eubmatipei.cative and eat-i~s{yy 0 < h(p) < c

< 1/(k-1) {ion aU pnLí.mee p . Then (on aU equane-{nee n we have

h(d) < { 1 - i+c }-1

	

h(d) .
dln

	

d n 1/kd < n

YnOOU . We begin with the familiar decompositon

h(d) _

	

h(d) + S

	

h(pd),
d n

	

d~ n/p

	

d n/p

where p is any prime divisor of n. Submultiplicativíty yields

h(p)

	

h(d) = h(p)

	

h(d) + h(p) Z

	

h(pd)

	

(3 .3)
d n

	

d n/p

	

d n/p

h(np) + h(p)

	

h(pd)
dl n/p

	

dl n/p



Next, observe that

1/k
h(d) >

Y
h(d) log(n 1/kd)

	

h(d) - log n

	

h(d)log d .
d o 1/k

	

d n

	

log(n

	

)

	

d k

	

d o
d<n

	

(3 .4)

In addition

h(d) log d =

	

h(d)

	

log
p

=

	

log p
d n

	

din

	

pfd

	

pin

	

d n/p

h(d)J {

	

(logp) h(p) }

din

	

pin

	

1 + h(p)

because of (3 .3) . Since 0 < h(p) < c, we have h(p)/(1 + h(p))

< c/(1 + c) . By combining (3 .4) and (3 .5) we obtain Theorem 3 .

Remah" .
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_ {1 + h(p)}

	

h(d) .
dl n/p

h(d) < {
i

h(d)1{1 -

	

1
din

	

d n

	

log t P n
d < T

	

d<t

	

p<T

h(pd)

h(p) logp }-1
1 + h(p)

(3 .5)

1 .) Theorem 3 proves Conjecture (i) for any ck < 1/(k-1) . The

case ck = 1/(k-1) (part (ii)) is still open when k > 2

(for k = 2 this is (2 .2)) . The analysis underlying (3 .2)

shows that ck > 1/(k-1) is not possible .

2 .) It would be of interest to see if the constant

kc -1{1 - 1+c }

	

can be improved . An attempt to deal with the

case ck = 1/(k-1) may throw some light on this question .

3 .) R . Balasubramaniam and S . Srinivasan (personal communica-

tion to one of us - K.A.) have obtained slightly weaker

versions of Theorem 3 in response to our conference query

in the course of proving Conjecture (i) for

ck < 1/(k-1) .

4 .) If h is submultiplicative, then so is hT(n) which is equal

to h(n) when n 4 T and is zero for n > T . The proof of

Theorem 3 shows



5 .) Let

for

holds

	

uniformly for all square-free

submultiplicative h satisfying h % 0 and

0 < h(p) < (log t)/(log n/t) .

P .

the

h be super-multiplicative, that is, h(mn) > h(m)h(n),

(m,n) = 1 . Suppose h(p) > c > 1/(k-1) for all primes

Then the proof of Theorem 3 can be modified to yield

dual inequality

h(d)
d n
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(1 +c)(k- 1)
k

for all square-free n . Here also the situation regarding

c = 1/(k-1) is open .

4. An application .

Let S be an infinite set of positive integers . Define

and set X = S I (x) . In addition, let

d~n 1/kd < n

L

	

1 ,
s<x, s ( S

s=-0 (mod d)

Sd (x) = Xwd(d) + Rd(x) ,

h(d)

0 << t s T and

where w is multiplicative .

	

First we assume that Rd satisfies the

following condition :

(C-1) There exists d > 0 such that uniformly in x

IR d (x)I < Xw dd) (equivalently Sd (x) < Xwad)) for 1 5 d < x 6 .

We also require Rd to satisfy at least one of the following two

conditions :

(C-2)

	

IRd (x)I < w(d), or

(C-3) There exist S > 0 such that to each U > 0 there is V > 0

satisfying



such that

where v(n) _ ~p I
n
1

Examples of sets S satisfying these conditions include

9

Q

	

V IRd(x)I

	

J X/(logUX)
d < X /(log X)

Furthermore, we also require that there exists c > 0

IRd(x)I < (X lodgX + 1) cv(d) ,

(E-1) S = {Q(n) I n = 1,2,3, . . .], where Q(x) is a polynomial

with positive integer coefficients . Here w(d) = p(d), the

number of solutions of Q(x) 0 (mod d) and IRd I ~, p(d),

so (C-2) holds . We may take ő = 1/(deg Q) in (C-1) .

(E-2) S = {p + a I p = prime}, where a is a fixed positive

integer . Here w(d) = d/~(d) where ~ is Euler's

function . By the Brun-Titchmarsh inequality (see

Halberstam-Richert [6], p .107) we can take any ő E (0,1)

in (C-1) . By Bombieri's theorem (see [6], p. 111), we see

that (C-3) holds with S = 1/2 .

Let f be a (complex valued) strongly additive function, namely,

one that satisfies

The quantities

f(n) _ ~ f(p) .

p 1 n

A(x) _
X

f(p)w(p)
and B(x) _ ~

If 2 (p)Iw(p)

p<x

	

p

	

psx

	

p

act like the 'mean' and 'variance' of f(n), for n c

problem is to obtain a bound for

if(n) - A(x)I Q ,

	

2 = 1,2,3, . . .
n~x
n E S

S, n < x. Our

in terms of B(x) .

	

In the special case where S is the set of all

positive integers, Elliott [4] has solved this problem elegantly .
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Recently one of us (K.A.) has improved Elliott"s method in order to

make it applicable to subsets . In [2] sets S with 6 = i in (C-1)
are treated whereas in [3] the situation concerning S in (E-2) is

investigated . It Is this improved method which we shall employ
here; we sketch only the main ideas since details may be found in
[2], [3] .

We start by introducing a simplification : We may assume that
f % 0 . This is because the inequality

is valid for all complex numbers a and b . So a complex function
could be decomposed into its real and imaginary parts . If f is real
valued we can write f = f + - f- , where f+, f are non-negative

strongly additive functions generated by

la + b~ <~

	

lalt + lblt

	

(4 .1)

For convenience we introduce the distribution function

We note that for even k

f+(p) = max~0,f(p », f_(p) _ - min(0,f(p» .

Fx (v ) = 1

	

1 .
nSx, n E S

f(n)-A(x)<v B

	12

	

(f(n) - A(x » £ = f

	

v QdFx(v)

	

(4 .2)
XB(x) £/

	

n,x
n ES

Our aim is to show that the moments of Fx are bounded (uniformly

in x) .
To accomplish this we consider the bilateral Laplace transform

Tu (x) = f~ euvdFx(v) .

If there is R > 0 for which T u

T (x) = 1

	

eu(f(n) - A(x)/VB(x)) - e-uA(x)/ B
g(n)>u

	

X n5x

	

X

	

n<.x
n ES

	

n ES



where

Of course g is strongly multiplicative (that is g(n) =

	

n g(p) ),

because f is strongly additive .

	

Our goal therefore is to bound

S(x,g) (see (1 .1)) suitably . We have two cases .

Case 1 : u~, 0 => 0 s g < 1 .

In a recent paper [2] it was shown by using a sieve method,

that in Case 1, for the sets S satisfying either (C-2) or (C-3), we

have

By (C-1) we obtain

11

g(n) = euf(n)/ B

S(x.g) < X

	

II

	

1 + (g(p) - 1)w(p))

psx

	

p

Cahe 2 : u > 0 => g > 1 .

(4 .4)

Here we let d = 1/k (in C-1) and assume that f satisfies

{ max f(p) } / B

	

< 1 .

	

(4 .5)
p<.x

Then we can choose R > 0 (sufficiently small) such that

1

	

g(p)

	

1 +

	

12(k-1)

(4 .3)

With h as in (1 .2) we note that 0 < h(p) = g(p) - 1 <
	 1	

2(k-1)
Also h(pe) = 0 for all p, e > 2, because g is strongly multipli-

cative . So by Theorem 3

S(x,g) _ ~

	

h(d) < ~

	

h(d)
n<x

	

d~n

	

n1~x

	

d nő
nE S

	

n ES d<n
ő h(d) S d(x) .

d 5 x

S(x,g) < X

	

h(d)w(d)
<1

X
II

~ i + h(p)w(p))

	

(4 .6)
d<xő

	

d

	

p <x

	

p

Inequalities (4 .4) and (4 .6) combine with (4 .3) and (4 .5) to yield
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Tu(x) < 1 for Jul s R . For details relating to such calculations

see [2], Sec .7 . Therefore by means of this method we obtain the

following extension of a result of Elliott [4],

Theorem 4. Le-t f he as above and If l satiz ~ y (4 .5) . Thevz

n~x
n ES

Kemanhs .

If(n) - A(x)I Q Kz XB(x) Q
1
2 , { oh aU k > 0 .

1 .) Although our discussion was for even 2, Theorem 4 is

stated for all Q > 0 . This is because one can pass from

even Q to all positive real numbers by a suitable

application of the H«lder-Minkowski inequality .

2 .) If f satisfies certain additional conditions then one can

use the above method more carefully to obtain asymptotic

estimates for the moments . In these cases the weak limit of

Fx(v) would exist . Such asymptotic estimates are obtained

in [2] for S with 6 = 1, and in [3] for S in (E-2) . For

these sets the full strength of Theorem 3 is not required .

The inequality (2 .2) (which follows from Theorem 2)

suffices .

3 .) There are certain open problems concerning the behavior of

additive functions in polynomial sequences (see Elliott [5],

Vol . 2, p . 335) . Part of the difficulty in such questions

is because we do not fully understand the moments of

additive functions in these sequences . Theorem 4 is derived

in the hope that it might shed some light on these

questions .

4 .) We restrict our attention to strongly additive functions

for the sake of simplicity . From here the transition to

general additive functions is not difficult . This procedure

for the case 6 = 1 is illustrated in [2], Sec .10 .
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