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ABSTRACT. Let N,.N5.... be a gequence of i.1i.d.r.v.'s with
PlV.i=+1l=P(X,==1]=1/2 Further let

S=05 =X+ N+ .+ Xn=1,2....) and

LY = maxg . v g S ox — Sy) (K =12, ... YiN=1,2...). Consider a
sequence [y | of pogitive integers and investigate the properties of the
mazimal increments [(NV.Kwv). This problem was studied by many authors in
cage of different {/N+ |'s. In the present paper we intend to summarize the
regults and prove a few new theorems. We are especially interested in the
eage K+ =loegN + dlog V) .In zection 1 we introduce a few netations and
concepts and recall the known results in the case Ay <clogV. In

gection 2 a key-imequality will be proved. The main resgylts are presemted
in section 3. Section 4 gives a survey of the case logV € hy = N,

1. NOTIONS AND A FEW ENOWN RESULTS

In order to present the results of our paper in a pleasant form, it is
worthwile to recall some definitions, see. e.g. Révész (1980 1982).

Let ¢= |7, | be & segquence of r.v.'s Then we formulate:
DEFINITION 1. The sequence filu) (0 =1.2....) belonge to the upper-upper
elags of ¢ (fyeLlil(g)) 1f & < filn) a.8. for all but finitely mamy n.
DEFINITION 2. The sequence faln) (r=1.2....) belongs to the apper-lower
elasz of ¢ (fae ULlZ{yi) 4 Z, > faln) a.8. 1.0,

DEFINITION 3. The sequence fyin) (0 = 1.2....) belongs to the lower-upper
tlags of ¢ (fa€ JUZicl) 48 20 < faln) a8, 4.0,

DEFINITION 4. The sequence fyln} (m=1.2....) belongs te the lower-lower
class of ¢ (f, € 12051} 41 2, = fyln) a.e. for all but finitely many .
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DEFINITION 5. 1If there exists a deterministic sequence f{in] gnch that
lim, {2, — fin)) =0 then we zay that { is asymptotically deterministic
(4D} .
DEFINITION 6. If there exist [i(n) € ZLl(¢). faln) € £L2%0¢), and A > U such
that f; —f1 £ A then we say that ¢ is quazi asymptobically deterministic
(QAD) .

Utilizing these concephts we present some known results,

(i) (Erdés-Révész 1976) Let - > ) and

Ky < [log N —logloglog NV + logloge — 2 = | = 41V )

Then {f{N.Kx)} iz AD and NN Ky)=Ky if N =2 No= Nalaiv).

(Bere and in what follows, log means logarithm with base 2, [z] is the
integral part of r.) This clearly means that with probability 1 for all N
big encugh the sequemce Ny, Vi...... Xy contains a rom of length Fj{N.). A
careful investigation of the number of such runs can be found in Dehenvels
(1985)

(ii) (ErdSs-Révész 1975) Let

WiV el <Ky € [log N+loglog NV —logloglog N +loglog e = 2—+|= % N.c).

Then [{¥. Ky} ie QAD and [(N. Ay)=Hhy or Ay —2 if N is big enoungh,
{iii) (ErdSs-Révész 19TE) Let

2l Vel = Ky < [log N + loglog N + 1+ ) log log log V| =N, ).
Then (V. Ky} is OAD and [N . Ky)= Ay or Ky —2 or Ky —4 if N is big
enough.

(iv} (Erdfs-Révész 19TE) In general,6 if

iVl = llog N+Tloglog ¥V +(1+<) loglog log ¥] < Ay
< fraalNf = e NH{T+1)loglog N=logloglog V-
—logl{T+ 1)1 +log log s — 2= <],

then {/{V.K+)) is QAD and [(IN. AN )= — 2T or K — 27— 2. and if

f?"T‘ . ﬂ."'-'. el < K~ < Vs |{.“-'. £)e
then {f(N. Kx)} i QAD and [N Avli=hv =27 or hyv -2 -2 or Ky —1T—1

(v) (Deheuvels-Devroye-Lynch 1988) Let A =clog N +ofloglog N).o> 1,

Then for any ¢ >0

afelog N+ (1 +<Jplogloe N 2 LLIITIN, Kv)).

alelog N+ (1 —cjeloglog N & L2IUTHIN. ),

slelog N} = (1 = )ologlog ¥ € SHZIHN. Kv)),

olelog N — il +rlplogloa N € LZCUIN Kb

where  is the unigne solution of the equation
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hWael = =rloge — [l —&)bogll = 2],

and

g=lflog t 2o
Comparing the above statements one can realize that {[[(N.Av)} is QAD
when Wy is "regular encugh" and smaller than log M + Tloglog NV with some
fixed T >0, However, when Ay = (1 ++)logy then the actual value of
fiN.H+) strongly depends on chance. [n fact, the upper and lower bounds
differ by QMloglog V1. One of the main aims of this exposition is te fill
the gap between the cases Ky =log VN + TloglogV and Ky = (1 + <) log V.

2. AN INEQUALITY

In thig section we prove
THEOREW 1. Let D= W =Ky 2 ¥ and 0 <=7y < K/2 Ascume also
Ky —x, N/Ky — . Furthermore,let

et T -—f\-l[H—])
n'.'—iJIhnT!—{I"-ﬁ.—_—I}g T B l”
Then it helds:
{3) If ¥p— x and N?*NWp' — ) then there are constants (') and 'y such that
Cpexpl—=Nm < PIMNK) < K =27) < Cyexp(—Np). (2

{ii) If Vp— > and hp — 0 then for any - >0 it Helds:

expl=1 4+ ) Np) <PV R) < K= 2F) < exp{—(1 —+)Np). (3

In order to make some of onr arguments more transparent, we shall

firet give a proof of the special case T'=10,
Lemma 1 For any A >0 it helds

(M2 o (M 2P e PUIIM 4+ KL K) = R) < (M 4202 g
Proof: Let up first define some events:

Ly =18p =K1Y,

A=Y, =05z =8 =~k
It clearly holds:

R S

Pia) =gk
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and,since {/(M+ K Kj=K}= .f.q.éJ. we obtain from the
inclusion-exclusion formula:

NV OP4)- N P44 SPIIIM+ K K)=R) < N P4y,
0 O M A< s M

and the assertion of our lemma follows from the fact that P(d;4.) =10 if
li—r| €K and =P[A;)P[4.) otherwise,

Now.in order to rrn_“ asgertion (i) of thearem 1, let M be chosen in
such a way that MNp® — 0 and A/M — 0. Let

M=K+ M -1
Ci= U 4

ra i =K

=M -K) =1

= 5

r=p| M =h =0

N M-Kil=1

E= 9| C;

r—0
N MR
E= U £

F=0

N M=K]=1

F= U N

=i

Dbvisuely,

E°F“ c (JIN.KY< K}yC E".

L s ST T
PESN=. it meEy:
f=b
| e W[ | |
PiE“) = [I Ry
A=
NoOAM-Ki=1 ]
P(FY) = 1 B{DY).

=4
Mow,ginee it iz also clear that P{E F )2 P(FYIPIF ), we finally obtain

MM -Ril=1 ) ] MNad-Ki-1 .
I rlEEsi<PiiivKizhk-2ri< [] Rich)

= |
1=l i
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Using lemma 1, thie can be restated as

((1=Mp)(1-Kp)) 9% < PUHN.K} < K = 2T) < (1-Mp+M2p?) s+

By our choice of M, both products on the left and right-hand sides are of
gize exp{—=Np+ (1)), 50 (2) is provem in this special came.

Now, in order to prove theorem 1 inm the general case, let us redefine
the events 4, in a snitable way:

{5k 2 K - 2T) it j=0
Aj=1 1S5 =5 <K—2T:0<r<j. 55 =52 K-2T} it 0<j<K
| {85 i =S e K=2T : joK S r <. S ymS2 K=2T) 1f K<,

The probabilities of these events can be estimated in the following way:
Lemma 2. If T < /2 then for 1< /< i it holds

(- Z) o {F e emmns (- gyl (*7)
Proof: Let
Y =ffril €r g j-1:8, € X}
Vi=ghlr:l<r<j—1:X, =-1LX.x=+1)}
Ys=#lril€rS =1 Xe=+1 gy = =1}
Clearly

P(d,) = PL4IN, = -LNj. 5 =+L.S5ajoq—8;=K=2T = 1) x
xP(X; = ~1}P(N; x = +1)

From the ballot theorem (cf. Takdcs 1987) it follows that

Pl X;==1X g =+1.5.5 1-8,=K =2 - LY,.¥3)
M+ =ty vo
Yi+¥a+1

and

Pl =8 =K =T = 1.¥)
= 1_+_].E{1+}|4115.".“.}."|—‘-‘_‘!J=h—ET-I,]"]
How,since the conditional distributiom of 1 is hypergeometric with
parameters A — 1, KN =T =1, and ¥, we get the estimates
Blil+ Y=V O[S ey -SG5 =K—2T - L.}Y)
= Bl +Y,=H5ga~%=K-2T- 1Y)
T )

Il
¥
i



B P. DEHEUVELS ET AL.
and

Elfll+Y, =Yy v IJ1S,-LH_.. -5 = K—-32T —1.Y)

< BV = Vy|[Sjipa—S=K-2T—1LY]+1
< E((fy - Ya) |“'J k-1—Si=K-2T— 1.7} 1

K-—1

Finally, the conditional distribution of } is binomial with parameters
J—1 and 1/2, so the assertion of our lemme is simply obtained by taking
expectations in the last btwo estimates.

From this point, we can proceed in exactly the same manner ag in the
proof for the case T=10, A proof of the second assertion of theorem 1 ig
alse obtained in a quite gimilar way, the only differemce is that the final
argument only yields somewhat coarser bounds om P(/(N.K) < A —2T).

3. STRONG THEOREMS

THEOREM 2. Let A=Ky ~logNV and 0 < ' =Tg < A /2 be nondecreasing
gequences of integers. Then

K -2T e LLC(I(N.K)) if N exp{—2"p{2")) < = (5)
nzl

K -2T e LUCHIN. K)) 4 N exp(=2"p(2")) = = (6)
n=N

K -2T e ULC{I(N,K)) if N 2"p{2") =2 (%)
wel

K -2T € WUCUH(N,K)) 12 N 2"p(2") < =< (#)
=X

Here p ie defined az in theorem 1, (1)
T R (0)

Proof. (6) and (B) are simple comsequences of theorem 1 and the
Borel-Cantelli lemma, while to prove (8) and (7) it is worthwile to utilize
the Erdds-Rényi form (ErdSs-Rényi 1870) of the Borel-Cantelli lemma. It is
quite obvious that the conditions (B), (6), (7), and (8) can be rTeplaced
regpectively h].r

N
b ( ){ |—ri]ﬂa’]l3ﬁ\"
loge

HF
h L2
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K
.\r-z"‘“*{ ) > (log N1, (7
r
' i
N2-h ‘(TJ < (log ¥) ™1, (#)
for some ¢ >0 and every .V big enough.
We shall investigate the case Ay = [Clog.V] with €' > | in a little
more detall proving the following
Consequence 1, Let N = Ay =|[C'log.N| with ¢'>1. Then
Cil =23 log N 4+ (1 + <)2ploglog N € UL CITIN. Ky]).
1 =23 log ¥ 4+ (1 = ¢)2ploglog N € U LEUT(N, K v)),
C{1—2d) log N —dplog log N =26 loglog log N
+H¥ log{l—27)+ 2 lozlog e+ 2plog 7+ 3604+ 1+« € SUSIHN. AW ))
Cl1=27) og N = 2plog log N =28 log log log NV
+H log(l—24)+2Wloglog e+ 2plog s+38+1—v & LN, KOx))
where 1 is the solution of
(23" =" =2,

1 -4
= 2
p=(2log —

!"l.

and ¢ ig am arbitrary positive number.

exactly the same as the corresponding classes in (v) of section 1 while Ghe
herewith given resnlts for the [UZ and [[LC classes are a bit sharper than
the corresponding results in (v).

Proof of consequence 1. Let

T=+K
then

2B B(i- )
and a little calcnlation shoews that the desired conditions are eguivalent
to (6+) to (B+), respectively.
How, let K =HRy=logV+ f[N]) be a non-decreasing sequence of
positive integers with ({n)= w{log.V| and consider the equatiocn

K ;
=l
(T] 3

— g — nd iz i
NaR e GoDlvl=q, 2 )



60 P. DEHEUVELS ET AL.

An easy calculation gives that the soluticen of this equation is

SN
loglog N = log fI.V)

We prove
Consequnence 2.
i) Assume that

N
N Tog V)
Then [(N.Kvy) is QAD and there exists an [y € LUZ(I{N.Ky)| and an

fo€ LLZ(I(N,Kx)) such that f;— [y < 3.
(£i) Assume that

SN = (log¥N)™ (b<a<1)

Then I{V,.Kv) is QAD and there exists an fy & UUC(/IV.Ky)) and an
Jo€ LLZU(N, Ky)) such that f; — [y < 2 4+ 1.
(iii) Assume that
JIN)

N—w (log V)1
Then [{.V. Ry} is not QAD.
Proof. Obszerve that

K-T . log N {log log ¥ = log F{.V))

T SNy

= for any =« > 0.

=1 for any > 0.

congequently

(1) if fiN) = ollog.N)}') and
w
=N = —l—x
o '(Ti] Hoe N)

then

Z_H_'b;l K > |:1 + '!I ]Uﬂ Ibg N
M+4 - loge

what proves (i),
(41) if f(N) = {log V}" and

a=fivi (;—1) i uﬁg_*\r]—l—r

then

LA
i+ 2, +1) 7 log e
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what proves (4i),
(iii) is trivial .

4. THE CABE Ky » logN

Up to mow we have studied the properties of [[V.fy) when

Wy 7~ < NKy /> and Ay < ClogN with some C' > 0. We have proved that
I{N.Ky) is QAD when fy <logN + [log V)" [0 < &r< 1) and in the case

Ky =[ClogN| (€' > 1) the difference between the UUC and LLC i

Hloglog V). We expect that this difference becomes greater as K. becomes
greater. It is really the case, however, we will see that the available
results become less complete as Ny becomes greater with the exception that
in the case Ay =N the law of iterated logarithm gives the complete
degcription of the four classes.

From now on the results can be more suitably presented using the
natural logarithm instead of the logarithm of base 2, hence {oy will be
meant in this sense. We present
THEOREM 3. (Deheuvela-Steinebach 1986} Let Ny be a sequence of positive
integers with Ay = |-“H-i where h»,ﬂ'lng\ is increscing and for some
p>1 KyllogN|™" is decreasing. Them for any ¢ >0 we have

anKy =t log Ky + (3724 )t log log N € WU C(T(N. Ku)).
Ky = g Ko + (8/2 = <)tz loglog N e ULEU{N . Kn)).
ay Ky =t log By + (1/2 + )15 loglog N € LUL{TIN. Kx)).
o Ky =15 log Kn + (1/2 = )5 loglog N & LLC{TN. Kx)).
vhere oy ig the unique pogitive solutien of the equatien
exp(=log NIK v ) = {1 +ay) 1 rovl 31 — gy )H-onl3

and
iy = L log L yan
b =
Hote that ooy = (2R log V)42
In the case when Ay 3 log’ NV we have
THEOREM 4. (Ortega-Wachebor 1984, Révész 1982) Let Ay be a sequence of

positive integers such that Ay = [v| where Ky is & sequence of positive
real numbers with

() Ky =
{iil Ky <N and .\"J'K'a is nondecreasing.

{4} "J,_,fi%ﬁ N — 20,
lag N i0

Gy JOENESE
Iog log N

Then
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SINIK Y € LUC (TN, K ))

and
sy(NVIEL? € LTIV Kx))

if #1(N) and #3(V) are increasing sequences with

o
N i V)R expl—e}(N]/2) < 0
N=1

=
N ol N By expl—o] (V) /2) = oc.
Awl
Further for any <> 0
L2 - o . i L3
Ky (Elngf\ Ry +loglog NKG' — 2logloglog N + log{ — + r!)
! ! ! : 3

e LUCHN. Kx))

and
g 1.3
K (Elng NEG 4 loglog VK3 — 2logloglog N — logfril + r:})
€ LLC(TIN. Kyl
Now we turn to the case whem A’y is so big that not even (/| of Theorem 4

surely holds. We consider at first the case Ky = CN(loglogN) ', The
following constant will be essential in our proofs.
Lemma 2. There exists & constant %Iug M. 2P < lng"%: such that

- 1 lf-'ij.l'.' = .'af_g—ll
D= nﬁﬂ (-—;lng(fﬂn det (i] Cilen ) duy ooty —y ]) (109

where F, = {0=gyy <y < ... <y} amd pfe) = {25]! zﬂl"{_’#r’?i'
Proof. Let (R [t).f > 0) be a Wiener process and get S|/ j=W{+1)- W) and
My =supgpy Slt). Put Py =P[M, <0}. We shall prove that

1
I'=J|]E1'1i!~——hlngP” (L1}

exigte.
Enowing that (11) holds, (10) is straightforward from a result due to
Shepp (1971, see, e.g.. theorem 3.1 in Cressie 1980) by which precisely

= ""{3“"“:{:'—”) |
P"_fﬁ'-.d“(ﬂif..fﬂn dyy o ditn oy 12

In order to show (11), we remark that F, iz noninereasing in 1 > 0 with
F= lﬁ. Futhermore, define a process
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ol L if0<i<)

! Py = s ;
R s BT o |

We have pla.t)=EILS(a)5(t)) ={1 = |a=1]|) ¥ 0 and

gty =ElSis)stl) =1 =le =t} VO 1f 0<#t <) or A< ot and py(mti=0
obherwige, Hence piyls.t) < ple.t) for all &f >0, and it follows from
Slepian’s lemma (Slepian 1962) that

P{ sup S\[t)<0)<P[ sup S(f)<0).
B N AT DL AL A

and hence that for all M\ A"2>0
Py_yzP Py (13)

Observing that S(f) and S{t + /) are independent for 4| > 1, and using (13),
we can prove that for amy Ao >0,

EfiSis iy £ P (14)
The first inegquality in (14) fellows from (13) and the remark that
wfifn] 2%  For the cecond inequality, observe that
Lola=1
(My<oie ) sup () < 0}.
=11 lo= k=t o [~ §)—a

By (12), we can easily compunte [ = '-';—"_5- ag follows:

i 1 o i }
[ (e )

£y

awh

P f | A
du f‘ (e&pi—;_—j{i:'l + (1= u}’}] —exp(= r;i] it
0 - -

=1 3
<3 J{ du [ lexp(=r{u® + (L —u)®)) — exp(—v) j dv
o A0

2T
fil 1 r—12
e — l)du = :
«’n [ff-F!+l —uj? H 4
By (14), we see that, for any fixed o> 0, we have
P £
% log P, < h}{l 12! 3 log Py = hi"_ s:p % log Fy < u—_t_- : log F, (13}

This in turn implies that H—iﬂg P,| is ultimately bounded as )\ — oo, It
follews that

I | 1
log Py ~ — log Py € —— sup |~ 1 -0
oy e b S o [ chs

as o — 2o whieh proves the existence of [ = lim, _l[—}'lng F,] together with
the bounds, for amy o > (1,
|

1
~ — g P ST < ——log A, (16)
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Taking o =1 in (18) completes the proof of lemma 3.
Bemark. The exact value of [' iz mot known at present.
S8imilar arguments as above enable ng Lo prove the following
Lemma 4. For any fixed a € R there exists a 0 < (0] < > such that with the
notation of lemma 3,

- 1 [ Sy =Y+ +a) . : )
I'{a) ,.IEE.:[ ﬂlug(jzhdet( DEij<n )—-i_,r....rfyn_l

= lm (—ilugP{ sup St} < ni) .
A—na A Dtk

Forthermore, I'{.) is strictly decreasing.

Starting from lemmas 3 and 4 and using the Komlds-Major-Tusnady
approximation, one can wagily prove the following result.
Lemma 6. Let ['=T(0) and ['[a) be as in lemmas & and 4. Assume that

1 <Ky €N is such that Ky —oc, Kv/V —0, and K" '*log N —0 as
N =20, Then, for any fixed « € IR,

tim (~EX g PN, Ky) < ak§?) ) = T(o)
Furthermore, we have for any integer m = |

nlil:pm Pil{{m+ ln.n) <0)= P,
and in particular,

r—2
ix -

Jﬁl__il:g.l P(l{2n.n) £0)=

We may now state onr main result concerning the case where
Ky = CN/lglog V.
THEOREM 5. Let Ay = CONjloglogN)™', Then
Bl (V. Ky) = {*"‘“‘ 3.0 T
N
with prebability eme.
Proof. First note., by lemma 5, that

—ac., if ¢ >T

PUIN. Kyl <aky’) = exp (-%

= eAp (ul 1+ r'.r“”l% Iup;lug.-‘\-'] ;

I {a) (1 + r,[m)

Suppose in the first place that ' <. It follows that there exists an
a > 0 guch that T <T{n) <. Wext, if Ny=-eaplh/logk), it follows
evidently that

Y PU(NeKy) Saky)) <=
k=X
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Since Ry, , — Ky, = [logk) 'Ky, = (loglog Ny} 'Ky, . standard methoeds show
that this implies that

ll'.lrultl_”i'_:,l' N EKx)>0a.s.,

which im turn implies the first half of theorem b.
For the second half, assume that &' > 1T and let §< 0 be such that
I'eTid) < €', The same arguments as above show in this case that

¥ PU(NVe,Ny,) S AN =

k:l

In a similar way as before, this enables ns to prove that in this case
liminf K3' "J(N,Kx) <0 as.,

which implies the second half of theorem 6.

The study of the limiting behaviour of J{N.Kv) when Ry = TN/loglog N
looks a challenging problem, As a special case of this problem we propeose
the following question: Does there exist a sequence (Ky) for which
minfp_ o (N Ex)=0 a.8.7

A tesult describing the npper classes of [(N. Ky ) when Ay ig big
follows:

THEOREM €. (Czdrgd-Révész 19T79) Let Ay be & nondecreasing sequence of
positive imtegers for which Ay <V, N/Ky is non-decrensing and
Kulog *N —oc.  Then

(1+){2Kulog VAL + loglog N))V2 e LUCITIN.KN)).
(1= (2K v (log NK' +loglog N P & ULL(I(N, Kv)).

In the case whem Ay =]aN] (0 <o < 1) the lower classes of [(N.Ky)
can be described by
THEOREM 7. (Ce&ki-Révész 1978) Asesume that Ky = [0 V] with 0 < <1, Then
it holds

1i\mir1_i'1'.’.."'r' leglog V) . ‘J"{.-"'-]H,-..i = —p, A.B,
whera

Ar 1] mtr=diol

- {-2r+1;-3—1}”
¥e aleo mention that Strassen's law of the iterated logarithm implies
that

limsup(2N loglog N) P NN Ky) =o' ?

W —

It seeme worth wile to mention that some resulte om the lower classes
of

PN K= max max_ |5, ., — 5
' 7 i "l"—_ﬁ_l:l-:_,f"_. ﬁ'1 H=+] HI
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are available. In fact we have
THEOREM 8. (Osdki-Révész 1979) Let Ky be a non-decreasing sequence of
positive integers satisfying the conditions of theorem 6. Then

F
(48 + <) (2K v log(1 + I—ﬁ.:._vnl Te LUCHTIN, Kx)).

2
(18" — &) (2K v log|1 + :—ﬁd_\-n' Pe LECUA (N . Kx))

where Ay = [NK7!](loglog N)~'.
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