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k-Conncelivity in Random Graphs

P. ErDOS AND J. W, KENNEDY

I. INTRODUCTION

Motivated by applications of evolving random graphs as models for phase transitions in
physical systems [1, 2, 3, 4], problems were posed 5] concerning threshold functions for the
appearance of giant k-connected subgraphs in random graphs. random f-graphs (i.e.
random graphs with maximum vertex degree /), and random lattice-graphs (i.c. random
graphs restricted to be embeddable [6] in some lattice-graph). For more details about these
classes of random graphs see [2] or [4].

We present here a solution to the problem for the first two classes of random graphs and
forall k = 1,2,... . The problem concerning random lattice-graphs remains open.

2. RANDOM GRAPHS AND RANDOM f-GRAPHS
We employ random graph in the sense of Frdas and Rényi [7]. that is a graph R, | selected
with equal probability from among the ((}3> graphs on n (labelled) points and with N

edges. It is the statistical properties as the random graph cvolves (i.c. as N increases) in the
asymptotic limit # — o0 that are of interest.

An f-graph is a graph with maximum degree < /. A random f-graph R,,,, . is delined
analogously to R, v but is subject to the constraint that no vertex has degree > f. That is.
R\~ 1s a graph selected with cqual probability from among the . {;(n. N) f-graphs on n
(labelled) points and with N edges. Since the number . 4,(n, N)is an unsolved problem (see
e.g. [8]). for practical purposes we may adapt one of the operational formulations of R, .
as a stochastic process (see e.g. [7b]) to the degree restricted case. Random f-graphs are
of interest as chemical models where degree restrictions arc imposed by bonding considera-
tions [2, 3].

It has been shown [cf. 2] that the vertex degree distribution in R,,, has probability
generating function (pgf):

/ /
F) = (1 —a+a)) = 3 ( )(| —a) a'ty, n
i\ j

that s, the probability that a random pointin R, has degree jis the coeflicient of (7 in F,(0).
where in the asymptotic imit n — o.:

2N i .
a~ e = probability of an edge in R,,,. (2)
n

Let d be the mean vertex degree in R,,,, then:

2N '
d = — ~ df. (R)}
n

In the double limit that /'~ ~« and « — 0, but such that the mean vertex degree o is
preserved, degree restrictions are removed and R, . — R, . From cqn (1) we obtain
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[cf. 2] the vertex degree pgf for R as:

I“i
Ff) = e = ety 20

i>0 1‘

4)

Quite gencrally, the degree restriction of random f-graphs can be relaxed by applying the
double limit /' — oo and a — 0 and therebye any result obtained for R, furnishes an
analogous result for R.

3. 1-CONNECTIVITY IN RANDOM GRAPHS AND RANDOM f~GRAPHS

Consider a point p picked at random in R, and let it be the root, on generation g,, of
a rooted component of R,,, whose points fall on generation g, if these points are distance
sfromp(s = 1,2,3,...). The point p has degree j with probability given by eqn (1), thus
with this probability it has j successors on generation g, . Obviously, each of these successors
has degree at least | and at most f so that the degree distribution for points on g, has pgf
Or, () where:

F@ = (1 —a+ af) "’ (5)

is the pgf for the number of successors (on g,) of a point on g;. Similarly, a point on g has
a pgf for its number of successors (on g,,,)

FO) = F@©, s>0 (6)

As R, v evolves (that is as N or as a increases) almost all components are initially trees
with the order of the largest component growing smoothly until for some value N = N,
(a = a,) the structure of R, changes abruptly and the order of the largest component
exhibits a double jump, or discontinuity, in the limit n — oo. The unique largest component
in a random graph following this abrupt change was termed the giant component by Erdos
and Rényi {7] who also discuss its properties in some detail. The phenomenon has also been
noted in the chemical and physical literature [1, 2, 3, 4] where the abrupt change has
been likened to such processes as phase transitions and polymer gelation [9]. It was shown
that 2}

¥ 1
~ 37D l)" or a,~(———~f~ 0
To prepare for what follows we sketch the cascade theory proof of this result (for details
see [2] and references therein).

Since, prior to the transition, almost all components are frees we obtain (by cascade
substitution) the pgf for the order of components in R

W@ = OF,0FWU) = Y w, ®)

jz0

N, M

where U(f)) = @F,(U). Since:

dw(@) dF,(U) F\(U)
de Ry + @ du (1 — (!(dF,/dU))’

the expected order { w) of the component (tree) of which the random point p in R, is root,
is:

(&)

(w) = Z;jw;, =

dW) _ 1= ) + F() .
0=1

do 1 —F(
where F'(1) = dF(0)/d8),_,.
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The expected order {w) diverges when:
- I = 0, (1
and it is at this stage in the evolution of a random /~graph that the giant component
suddenly appears. Since, furthermore, a maximal 1-connected subgraph of R, is just a

component of the random graph, eqn (11) gives the critical value a, at which there is an
abrupt increase in the order of the largest [-connected subgraph of R,,. From eqn (5):

Fi(l)y = (f— ha, (12)
so that the critical (or threshold) value for 1-connected subgraphs of R, is
a = H(f =D (13
If R/~ has n points and N cdges then:
N ~ fan/2. (14)

Thus. for the evolving random f-graph. the critical number of edges N, for a giant
l-connected subgraph is [cf. 2]
r
Ny~ n.
AS-
Obviously for f - o, N, ~ n/2 as obtained by Erdos and Rényi [7]. and as can be obtained
directly from egn (11) using:

(15)

L = e" ", (16)

to which eqn (5) leads in the double limit /= oo and ¢ - 0 (fa = d is fixed).

4. k-CONNECTIVITY IN RANDOM GRAPHS AND RANDOM f-GRAPHS (k = 2, 3....)

We now follow a similar construction but discount all points of degree < k. That is.
choose a random point p, from among the points in R,,, known (with probability given by
eqn (1)) to have degree > k. Next examine the degrees of the successors of p, lHrough
generations g,, g,. . . . discarding any successors on g, whose degree is less than k. By
similar arguments to those used in Section 3 for 1-connected subgraphs of R, ,,. the order
of the maximal k-connected subgraph of which a random point (of degree > k) in R, is
root, has pgf:

Wo(0) = 0H(U) = S, 00,
U0y = G, + 06, (U).

where H,(0) is the renormalised pgf for degrees of points in R, known to have degree > &
[cf. eqn (1)]. Thus:

! ) rofr
H® = Y o -ao a0 /Y )0 - a a. (18)
ik T

J=k\ f j

k2 ff -
G = Z( )(I a)y T,
A\

RIS =1 _
G = ) , (—a ' ‘a0 (19)
{

g ]

an

Also

k2l =1
I ) o — o' e,

i—0 7]
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The expected order of the maximal k-connected subgraph of which a random point (of
degree > k) in R, is root is:

O dWOY = G+ ()G
> = =g ) - I — Gi(h) ' e

which diverges when:

I — Giy(1) = 0. (21)
On substituting for G, ,(0) from eqn (19) we have proved:
TurOREM 1. In the evolution of a random f-graph R,,, , x the order of the largest k-connec-

ted (k = 1,2, .. .)subgraph increases abruptly at a critical edge probability a, given by the
root (hetween zero and unity) to

f-1 f—1 o
3 :( . )“ —a) ' =1
i J

=k~

COROLLARY |.  As is easily seen by rewriting Theorem 1, a, is also the solution to:

k2 ff—1
(f = 1N a — Z/( . )(I ~a,()’ ! laf = 1
ji=0 J

1=l j—=2 f—1
_ijk+l' & !
R ’(/—k+l>( j )”‘

THEOREM 2. The asymptotic critical size N, of a random f-graph R, , x for the appearance
of a giant k-connected subgraph is

or to

i

N, ~ fayn/2

ProOF. Obvious from eqn (2) and Theorem 1.

In the double limit f — oo and a — 0, but with fixed mean vertex degree d = af, eqn (19)
[cf. eqn (16)] becomes:

i, 22)

-i x

G.(0) = Z kz .

Thus,
THEOREM ). The asymptotic critical size of a random graph R,  for the appearance of a
giant k-connected subgraph is
N, ~ dynj2
where the critical mean vertex degree d, is the solution to

i k2 i
> —: = % or to d, —e ™™ Y —"
S L i=0 J:
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Proor.  Substitute egn (22) into egn (21). Alternatively. replace a, in Theorem | by d,  f
and then pass to the limit /' — o« with d; fixed.

5. Sreciarn Cases

The critical parameters (¢, and N,) for k-connectivity in random graphs can be obtained
¢ ‘ 3 g
explicitly from the foregoing for a few special cases. Thus:

. . /
k=1 ((l”/) a = (/ - 1) ' /VI 53 SU——” n. 23)
k= 2@ll/f): a = (f - 1) Ny o~ ——/—— n, (24)
: ’ ' AL
k = f(ll f): a = (=N "N N~ -y (25)

Forf — =

n
N, = N, ~ nj2, N, ~ (w

The cquivalence between 1-connected and 2-connected subgraphs is easily explained. As
soon as the giant component (l-connected subgraph) appears in the evolution of random
graphs, closure of many infinite cycles is possible. An infinite cycle is a giant 2-connected
subgraph.

For all fit is reasonably obvious that:

(f— ' =a = a<a<--<a ,<a = (f[—1H'""" (26)

fn

m =N = Ma<N<-- <Ny <N o= (/=1 ' "n27y
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