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Introduction

Let S be the set of n points in the plane . Let, us denote

by d l > d 2 > . . . the different distances determined by these

points, and by n ( the number of distances equal to d l , by n 2 ,

the number of distances equal to d 2 etc . Denote by G(S,ki the

graph on vertex set S obtained by joining x to y if their

distance is at least dk . We prove that if n > n o (k) then the

chromatic number X(G(S,k)) is at most 7, and give a

construction for which the equality holds for arbitrarily

large n . Obviously without the assumption n > n (k) the
0

theorem is not true, since if we take the vertices of the

regular (2k+1)-gon as our set of points then t(G(S,k)) = 2k+1 .

If we assume that S is the vertex set of a convex

polygon then we prove that for n > n 1 (k) the chromatic number

X(G(S,k)) is at most 3 . The problem of determining the

largest possible value of the chromatic number of G(S,k) for

given k (both in the convex and non-convex case) turns out

quite different and we have only a partial answer . We

conjecture that for fixed k the chromatic number of G(S,k) is

at most 2k+1, which is the best if it is true as shown by the

regular (2k+1)-gon . If it is true, this generalizes a theorem

of Altman . Erdős conjectured and Altman (1963, 1972) proved

that, the number of distances determined by the vertices of a

convex n-gon is at least Ln/2f . This in particular implies

thatt in the "convex" case G(S,k) can not contain a complete

subgraph of 2k+2 vertices . Perhaps in the convex case there
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always exists an x, such that the degree of x, is at most 2k .

We prove that for the vertex set S of a convex polygon there

exists an x, such that the degree of x, is at most 3k-1 . From

this it follows that, the number of edges in G(S,k) is at most

3kn, and that its chromatic number is at most 3k .

Frd8s and L . Moser conjectured that in a convex n-gon

every distance can occur at most on times . There is a

construction in which the same distance occurs 5n/3 times .

Hopf and Pannwitz (1934) and Sutherland (1935) proved that the

maximum distance among n points occurs at most n tines .

Vesztergombi (1985) noticed that the kth largest distance

occurs at most kn times, and in a sense described the

distribution of the number of occurences of the two largest

distances . In particular it follows that the number of edges

in G(n,2) is at most 2n . One may conjecture that the number

of edges in G(n,k) is at most kn . The result above verifies

this conjecture up to a constant) and shows that the

conjecture of Erdős and Moser is valid in the average for the

"large" distances . Let us mention the related conjecture of

Erdős that in a convex n-gon there is always a vertex x, suchi
that the number of distinct distances from

	

at least

n/2 .

If we do not restrict ourselves to the largest k

distances, we can ask the following generalization of the

Erdős-Moser conjecture : what is the maximum number of times

the k "favorite" distances can occur? Maybe for k)2 the

answer will be kn .

It would be nice if in the non-convex case the maximum

of the chromatic number of G(S,k) for fixed k would be also

equal to the largest complete graph which can be contained in

some G(S,k) . A 40 year old conjecture of Erdős (worth $500)

implies that the number of distinct distances determined by n
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points is at least cn/(logn) 1/2 (if true, this is best

possible apart from the value of c) . If this is true, then the

largest complete graph contained in G(S,k) is at most
7/2

ekf,io&k)

	

We can prove that the chromatic number is at m- -.

ek 2 . k
l+e

will nott come out easily since we can not even

prove that G(S,k) does not contain a complete graph on 3

vertices .

In the 1-dimensional case these problems are trivial .

For large n, G(S,k) is bipartite and the chromatic number of

G(S,k) can be at most k+1 which can be of course achieved .

The following problem might, be of interest . Let.

x l , . . .,x n be n points in the plane and I I are k

arbitrary distances . Two points are joined by an edge

their distance is one of the 1_ s . Denote by f(k) the maximum
i

possible chromatic number of this graph . It would be nice if

this would be again the largest complete graph contained in

cur graph .

E



1 . The "non-convex" case

We start with a simple lemma .

1 .1 .Lemma . Let C be a circle with center c and radius r, and

T, a set of points on the circle such that c is in the convex

hull of T . Then for each point p = c of the plane , there is

a point U T with d(p,t) > r .

Proof: Let L be the line through c perpendicular to the line

ep. Then clearly T contains a pointt t in the halfplane

bounded by a not containing p . Then the angle pct is at least

90 0 and hence d(t,p) > d(c,t) = r .

Now we are able to prove the main theorem of this

section .

1 .2 Theorem . If n > n 2 (k) = 18k2 then x(G(S,k)) < 7 .

Proof: Let q&S be the point of G(S,k) with largest degree .

Consider the circle C with smallest radius r containing

S'= S - (q) . If r C dk then we can cut the disc bounded by C

into 6 pieces with diameter less than dk , and this yields a
6-coloration of G(S,k) - q, and using a 7th color for q we

are done .
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So suppose that r > d k . Obviously, the convex hull of

C .- S' contains the center c of C . So we can choose a subset T

of C ::^.S' with ITI C 3 such that the convex hull of T contains

c . Hence by Lemma 1 .1, every point in S is connected to some

point in T . So T contains a point of degree more than 6k 2 ,

and hence by its choice, q has degree greater than 6k 2 . Now

among the neighbours of q, there are more than 2k 2 which are

connected to the same point tET .

But note that these points must lie on k concentrical

circles about q as well as on k concentrical circles about t .

These two families of circles have at most 2k 2 intersection

points, a contradiction .

2

Now we give a construction which shows that this upper

bound for the chromatic number is sharp .

Let us take a regular I1-gorn with vertices t , on a
i

circle of radius 1 with center O . We take a point p for which

d(O,p) = 5 holds (see Fig .1) . We draw an arc around p with

radius 5 going through O . Then on that little arc we can

place the remaining points of S . Let us consider írn this

setting the 16 largest distances . If p is in general position

then all the d(p,t
i

) distances are different, and another one

is d(p,O) = 5, and also the other points on the little arc

have the same difference from p, and the 4 largest chords in

the regular 11-gon are the 16 largest distances . All the

other distances are smaller, for arbitrarily many points . One

can easily check that the t, 's need S color and p needs the
i

7 th color, and the remaining points are connected only to p,

so one can finish by 7 color .

The threshold n 2 (k) in the theorem is sharp as far as

the order of magnitude goes . In fact, let as modify the



previous construction as follows . We construct the 11-gon an

the point p as before, but now we also add a further point p'

obtained by rotating p about 0 by 90 0 . Let us draw k-23

concentrical circles about p as well as about p' with radii

very close to 5, and let as add the (k-23) 2 intersection

points of these circles inside the 11-gon . This way we get a

set S with zk 2 points such that the chromatic number of

G(S,k) is 8 .

It would be interesting to determine the threshold for

ISl (as a function of k) where the chromatic number of G(S,k)

becomes bounded . This could be settled on the basis of the

previous arguments if we could answer the following question :

given t >_ 3, what is the largest s such that G(S,k) can

contain a complete bipartite graph Kt s . In particular, can

it contain a K 3, s with s = ck 2 . Maybe the fact that G(S,k)

consists of the largest k distances has nothing to do with

this question . So we obtain the following problem which is

quite interesting on its own right :

1 .3 Problem . Given t > 2 points q 1 , . . , q in thet
plane and k numbers r,, . . .,rk , how many points p of the plane

can exist such that each distance d(p,q,) is one of the
i

numbers r,?i

For t=2 the answer to this question is trivially 2k 2 ,

but already for t=3 we do not know if the answer is o(k 2 ) .

We remark without proof that the chromatic number of

G(S,k) is O(k 2 ) for every set S in the plane . This is quite a

weak bound in view of the remarks in the introduction, but we
2

could not prove o(k ) .



2 . The "convex" case

In this paragraph we deal with the case when S is a set

of vertices of a convex n-gon P (briefly, the "convex" case) .

The convexity of S gives a natural ordering of the points so

throughout the proofs we refer to thatt ordering . Before

stating the main results of this paragraph we make some

simple observations .

2 .1 Lemma . Suppose that x l ,x 2 ,x 3 ,x 4 & S (in this

counterclockwise order) and

d(x l ,x 2 ) > d k , d(x2,x3) > d k , d(x 3 ,x 4 ) > dk .

Then for er_ch ytS between x l and x 4 , at least one of the

distances d(x i ,y) is greater than d k .

Proof : Since the angle

	

yx

	

less than 180 0 (because S is

a convex set), at least one of the angles xiyxi+l (for

i=1,2,3) is less than 600 .Hence (xi,xi+1) cannot be the

largest side of the triangle xiyxi+l' from which the lemma

follows .

1

2 .2 Lemma . Suppose that x I' x 2' x 3' y I' y2 are five vertices

of S in this counterclockwise order, and assume that

d(x l ,x 2 ) > d k , d(x 2 ,x 3 ) > d k and d(x 1 ,y I = d(x t ,y 2 ) . Then

d(y 2 ,x 2 1 > d k .

Proof : If the semiline x 2 x 3 does not intersect, the semiline



yly2 then the assertion is obvious . So suppose that these

semilines intersect in a point z as in Figure 2 . Now the

angle x l y l x 2 is less than the angle y l x l x 2 because the

lengths of the opposite sides of the triangle y l x,x 3 are in

this order . Similarly in the triangle y l x 3z, the angle x 2 y l z

is less than the angle y l zx 2 . On the other hand, since the

angle x 2 x 3z is less than 180 0 , the sum of the other angles in

the convex quadrangle y lzx,x 4 must be more than 180 0 , which

means that the sum of the angles x 2y , x 3 and x 3 y l z is less

than 90 0 , butt this contradicts the fact that the angle

x2yly2, which is the sum of the angles x 2 y l x 3 and x 3y 1

2 .3 . Lemma . Suppose that x 1I x 2 ,x 3 ,x c S (in this

counterclockwise order) and

d(x l ,x 2 ) > dk , d(x 2 ,x 3 ) >_ dk, d(x3,x4) > dk .

E

Then the number of vertices of S between x l and x 4 is at most

12k 2 • 4k .

Proof: By Lemma 2 .1, each vertex between x l and x 4 is

connected in G(S,k) to at least one of the x,'s . By Lemma
i

2 .2, there are at most k vertices between x l and x 4 which are

connected in G(S,k) to a given x_ but no other x_e On the

other hand, all points which are connected to both x, and
i

(I < i < i M lie on k circles about x, as well as on k
i

circles about x,, so their number is at most 2k 2 . This gives
i

the bound in the Lemma .

2



2 .4 .Corollary. If n > 12k 2 + 4k then G(S,k) contains no

convex quadrilateral .

2 .5 .Theorem . If k is fixed and n ) n 1 (k) = 25000k 2 then

x(GIS,k) < 3 .

Proof : Let p = In/720j . Then p > 24k
2
+ 8k+2 (except in the

trivial case when k=1) . We can choose 2p + 1 consecutives

vertices a
0
__a

2p
such that the angle between the vectors

ao a l and a2P-la2P is less than l o . Now we do the coloring the

greedy way . We start at the point t, = a
P

. We give the color

1 to the points in 5 going counterclockwise as long as

possible, i .e . until we encounter a vertex t 2 which is

connected in G(S,k) to a vertex t l ' already colored with

color l . Now starting at t 2 go on using color 2, until it is

possible, i .e . untill we encounter a vertex t 3 connected to a

vertex t 2 ' already colored with color 2 . Going cn with color

3, we either complete a 3-coloring of G, or else we find,

similarly as before, vertices t 4 and t 3 ' connected in G(S,k) .

Now we show that we can choose x l = t l ' ' x 2 s (t 2 ,í 2 ),

X 3 ' it 3' t 3 ') and x 4 = t 4 so thatt d(x l ,x 2 ) > d k ,

d(x 2 ,x 3 ) > d k , d(x 3 ,x 4 ) > d k .If t 2 = t 2 ' and t 3 = t 3 ' then

this is obvious .

Assume that t 2 ' t 2 ' . Now in the convex quadrangle

t i lt 2 't 2 t 3 the sum of the lengths of the opposite edges

(t l ',t 2 ') and (t 2 ,í 3 ), are of length at least 2d k , so at

least one diagonal must be of length at least dk . We choose

x 2 accordingly, and similarly we choose x 3 .

So we have the same kind of configuration as in Lemma

2 .3 . Thus by Lemma 2.3 there are at most 12k 2 + 4k vertices

between x l and x 4 . This in particular implies that x l

and x 4

	

J where
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2
p - 12k - 4k < i < p < j < p + 12k + 4k + 1 .

0 ,,e of the pairs (x l ,

	

and (x 2 ,x 4 ), say the former, is also

connected in G(S,k) .

Now the angle x 2 x l a
i+l

cannot be larger than 910 , or

else the segments x
2ai+1 , x 2 a i+2 - '

x2ai+k were monotone

� .ncreasing and all grea er han d k , hich is impossible .

Similarl , he angle a _l l 3 is less han 91 0 and hence he

angle 2 l 3 is less han 2 0 . Le e .g . d( l , 2 ) < d( 1 , 3 ) .

Hence i is eas o ded ce sing he cosine heorem ha

d( l , 3 ) >_ 1 .9d
k'

Hence

d(a2P
' 3

) > sin ( 3 l a
2P

) d( 1 , 3 ) > sin 88 0

	

1 .9 dk .

> 1 .8 dk

B , hen relabelling a
2P

b 4 , e ge a con radic ion a

Lemma 2 .3 .

i

Again, one can ask if he hreshold cons k 2 is bes

possible . The so rce of his al e is Lemma 2 .3, here e se

(essen iall ) he case =2 of Problem 1 .3 . I o ld seem ha

he addi ional informa ion ha he poin s considered are he

er ices of a con e pol gon o ld e cl de mos of he

in ersec ion poin s of he o families of concen ric

circles . B his is no he case ; e can cons r c a se S,

consis ing of he er ices of a con e pol gon, s ch ha

jSj ) cons -k 2 and G(S,k) con ains a K4 (and hence i s

chroma ic n mber is larger han 3) .

Le s ske ch his cons r c ion. Le a = (0,01,

(1,0), c = (3,0) and d = (-1,0), Le CO be he circle



i h radi s 2 abo b, and le p0 be a poin on C O er close

o c . Then he angle dp 0c is 90 0 , hence he angle ap oc is

c e . Hence e can choose an in erior poin p l on he arc of

C 0 be een p 0 and c s ch ha he angle ap 0p l is ac e . We

define he poin s p 2

	

on he circle C 0 similarl so
pk-1

ha all he angles
apIpi+l

are ac e . Le D i be he circle

i h cen er a hro gh p
1

. . I follo s from he cons r c ion

hai, he circel D i con ains
pi+1

in i s in erior b he, iice

angen o D i a p i does no separa e
pi+l

from a .

Le e be a er small posi i e n mber and le C,
i

(i=0, . . .,k-1) be he circle abo b i h radi s 2-ic . Le p ._

be he in ersec ion poin of C, and D . in he pper

hal£plane . Then he poin s p,
ij, a and b form he er ices of

a con e pol gon and a, b,
po,0

and
pk-l,k-1

form a comple e

q adrila eral in G(S, 2k+2) .

Ne e deri e a bo nd on he chroma ic n mber of G(S,k)

i ho he h po hesis ha S1 is large . Firs , le s

define he follo ing. Le be an edge of G(S,k) . Le l be

he clock ise neighbor of and 1 , he co n erclock ise

neighbor of . If d( l , ) > d( , ), e sa ha he edge l

co ers he edge . Similarl if d( , I ) > d( , ), e sa

ha he edge l co ers he edge . S ar ing from an edge

, le s selec an edge ' ' co ering i , hen an edge " '

co ering ' ' e c . In a mos k-1 s eps e m s ge s ck (b

he defini ion of G(S,k)) . Le 0 0 be he edge for hich e

co ld no find an edge co ering i . We call 0 0 a majoran

of . No e ha in his case he angles formed b 0 o and

he o edges of he pol gon en ering 0 and 0 from he side

opposi e o m s be ac e . I is also clear ha he arcs

, and 0 con ain a mos k-1 sides of P oge her .



'Phe follo ing proposi ion ill no he sed direc l , b

i seems or h form la ing

2 .6 Proposi ion . Le ( l , 2 ) and ( 3 , 4 ) be o a oiding

edges of G(S,k) . Then ei her be een 2 and 3 or be een 4

and l are no more han 2k-2 sides of P (see Fig re 3) .

Proof : Ass me ha he concl sion does no hold, and le
l 2

be a majoran of l 2 and 3 4 , a majoran of 3 4 . Then

hese majoran s are also a oiding and
l , 2'

3 and 4 are

in his same c clic order on he pol gon . Moreo er, from he

remarks made concerning he majoran s i follo s ha all

angles of he con e q adrangle
l 2 3

4 are ac e . This is

clearl impossible .

i

2 .5 Theorem . The graph G(S,k) has a poin of degree a mos

3k-1,

Proof : Choose S and le and be he firs er ices of S

in he co n erclock ise and clock ise direc ions,

respec i el , ha are connec ed o . Choose so ha he

n mber of poin s be een and is ma imal (see Fig re 4) .

Le s be a majoran of . (I is possible ha = or

s

	

) . S ppose here are a poin s be een and and b

poin s be een and s, hen e kno ha a+b<k-1 holds . Then

le be he k- h poin from in he co n erclock ise

direc ion, and le be he firs er e in he

co n erclock ise direc ion connec ed o in G(S,k) . Then

beca se of he choice of , here are no more sides of P

be een and han be een and . Hence here are no

more sides of P be een and han be een and , i .e ..



no more han a+k .

Le 's' be a majoran . of o . Ob io sl , ' lies on he

arc . J s like in he proof of Proposi ion 2 .4, he edges

s and 's' canno be a oiding . Hence s m s he on he are

s' and so he n mber of sides of P on he are s is a mos

k-1 . Hence he n mber of sides of P on he aree is a mos

(a+k)+(k-1)+b < 3k-2 . Hence he degree of is a mos 3k-l .

2 .6 Corollar . The n mber of edges in G(S,k) is a mos (3k-

Moreo er, b Brooks' Theorem e ob ain :

2 .7 Corollar . The chroma ic n mber of G(S,k) is a mos 3k .

5
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