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Introduction

Let S be the set of n points in the plane. Let us denote
by dl > d2>... the different distances determined by these
points, and by nI the number of distances equal teo d‘, by nz.
the number of distances equal to dZ etc. Denote by G(35,k) the
graph on vertex set S obtained by joining x to y if their
distance is at least dk. We prove that if n > holki then the
chromatic number 1(G(S,k)) is at most 7, and give a
construction for which the equality holds for arbitrarily
large n. Obviously without the aasumption n » nolki the
theorem is not true, since if we take the vertices of the
raegular (2Zk+l)-gon as our set of points then 1(G(S,k)) = 2k+l.

If we assume that 5 is the vertex set of a convex
polygon then we prove that for n » n](k] the chromatic number
1({G(S,k})) is at most 3. The problem of determining the
largest possible value of the chromatic number of G(S,k)] for
given k {both in the convex and non-convex case) turns out
quite different and we have only a partial answer. We
conjecture that for fixed k the chromatic number of G(2,k) is
at most 2k+1, which is the best if it is true as shown by the
regular (2k+1)-gon., If it is true, this Zeneralizes a theorem
of Altman. Erd#s conjectured and Altman (1963, 1872) proved
that the number of distances determined by the vertices of a
convex n-gon is at least In/2]. This in particular implies
that in the "convex” case G(S,k) can not contain a complete

subgraph of 2k+2 vertices. Perhaps in the convex case there



always exista an xi such that the degree of x; is at most Zk.
We prove that for the vertex set S5 of a convex poly¥gon there
exists an xi such that the degree of xi is at most 3k-1. From
this it follows that the number of edges in G(S,k) is at most
3kn, and that its chromatic number is at most 3k.

Frd#is and L. Moser conjectured that in a convex n-gon
every distance can occur at most cn times. There is a
congtruction in which the same distance occcurs Sn/3 times.
#Hopf and Pannwitz (1934) and Sutherland (1935) proved that the
maximum distance among n points occurs at most n times,
Vesztergombi (1985) noticed that the kth largest distance
occurs at most kn times, and in a sense described the
distribution of the number of occurences of the two largest
distances. In particular it follows that the number of edges
in G(n,2) is at most Zn. One may conjecture that the number
of edges in G{n,k) is at most kn. The result above verifies
this ceonjecture up to a constant) and shows that the
conjecture of Erd8s and Moser is valid in the average for the
“large” distances. Let us mention the related conjecture of
Erd#s that in a convex n-gon there is always a vertex X, such
that the number of distinct distances from xi is at least
n/2.

If we do not restrict ourselves to the largest k
distances, we can ask the following generalization of the
Erd8s-Moser conjecture: what is the maximum number of times
the k "favorite" distances can occur? Maybe for k22 the
answer Wwill he kn.

It would be nice if in the non-convex case the maximum
of the chromatic number of G(S,k} for fixed k would be also
equal to the largest complete graph which can be contained in
some GIS,k). A 40 year old eonjecture of Erds (worth $500)

implies that the number of distinct distances determined by n
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1
points is at least cn/{logn} {if true, this is best
possible apart from the value of e). If this is true then the
largest complete graph contained in G(S,k) is at most
1/2

ckiloghk) . We can prove that the chromatic number is at mecz-

2 l+e .
ck . k will not come ocut easily since we can not even

prove that G(S,k) does not contain a complete graph on k1+r
vertices.

In the l-dimensional case these problems are trivial.
For large n, G(S,k) is bipartite and the chromatic number of
G(8,k) can be at most k+l which can be of course achieved.

The following problem might be of interest. Let
xl,....xn be n points in the plane and ll.....lk are k
arbitrary distances. Two points are joined by an edge i7
their distance is cne of the li's. Dencte by {lk} the maximuzs
possible chrematic number of this graph. Tt would be nice if
this would be again the largest complete graph contained in

our graph.



1. The "non-convex" case

We start with a simple lemma.

l.1.Lemma. Let C be a circle with center ¢ and radius r, and
T, a set of pointa on the cirele such that ¢ is in the convex
hull of T. Then for each point p = ¢ of the plane , there is

a point teT with d(p,t) > r.

Proof: Let t be the line through c perpendicular to the line
cp. Then clearly T contains a point t in the halfplane
bounded by ¢ not containing p. Then the angle pot is at least
90° and hence d{t,p) » d{e,t) = r.

¥ow we are mble to prove the main theorem of this

sectien.

1.2 Theorem. If n ) n,(k) = 18k° then x{G(8,k}) ¢ 7.

Proof: Let q&S be the point of G(S,k) with largest degree.
Consider the circle C with smellest radius r containing
§'=8 - {a}. If ¢ ¢ dk then we can cut the disc bounded by C
into 6 pieces with diameter less than dk' and this yields n
6-coloration of G(S,k) - q, and using a Tth color for q we

are done.



So suppose that r » dk. Obviously, the convex hull of
€"8' contains the center ¢ of C. So we can choose a subset T
of CN8' with [T| ¢ 3 such that the convex hull of T contains
o, Hence by Lemma 1.1, every point in § ig connected to scme
point in T. So T containas a point of degree more than Ekz.
and hence by its choice, q has degree greater than Skz. KNow
among the neighbours of g, there are more than 2k2 which are
connected to the same point teT. “

But note that these points must lie on k concentrical
circleas about q as well as on k concentrical circles about t.
These two families of circles have at most 2kz intersection

points, a contradiction.

Now we give a construction which shows that this upper
bound for the chromatic number is sharp.

Let us take a regular ll-gon with vertices 11. on a
circle of radius | with center O. We take a point p for which
d{O,p) = 5 holds (see Fig.l). We draw an arc around p with
radius 5 going through O, Then on that little arc we can
place the remaining points of 8. Let us consider in thi;
gsetting the 16 largest distances. If p is in general position
then all the d(p.ti} distances are different, and another one
is d{p,0) = §, and also the other points on thg little arec
have the same difference from p, and the 4 largest chords in
the regular ll-gon are the 16 largest distances . All the
other distances are smaller, for arbitrarily-nnny points. One
can easily check that the ti's need 5 color and p needs the
77" coler, and the remaining points are connected only to p,
so one can finish by 7 color.

The threshold nZ{k} in the theorem is sharp as far as

the order of magnitude goes. In fact, let as modify the



R

previous construction as follows. We construct the ll-gon an
the point p as before, but now we also add a further point p’
obtained by rotating p about 0 by 90°. Let us draw k-23
concentrical circles about p as well as about p' with radii
very close to §, and let as add the 13-23]2 intersection
points of these circles inside the ll-gon. This way we get a
get 8§ with aka pointe such that the chromatic number of
G(s,k) is B,

It would be interesting to determine the threshold for
|S| tas a function of k) where the chromatic number of G(S,k)
becomes bounded. This could be settled on the basis of the
previous arguments if we could answer the following question:
given t 2 3, what is the largest s such that G(S,k) can
contain a complete bipartite graph Kt.u' In particular, can
it contain & Ky _ with n = ck’? Maybe the fact that G(S,k)
consists of the largest k distances has nothing to do with
this gquestion. So we obtain the following problem which is
quite interesting on its own right:

1.3 Problem. Given t > 2 points ql, e in the

q
t
plane and k numbers FveesiTys how many points p of the plane
can exist such that each distance d{p,qii ig one of the

numbers ri?

For t=2 the answer to this question is trivially 2k2.
but already for t=3 we do not know if the answer is olkzl.

¥e remark without proof that the chromatic number of
Gi{s,k) is Otkzl for every set S in the plane. This is quite a
weak bound in view of the remarks in the introduction, but we

could met prove olkzj.



2. The "convex” case

In this paragraph we deal with the case when § 13 a set
of vertices of a convex n-gon P (briefly, the "convex” case}.
The convexity of S gives a natural ordering of the points so
throughout the proofs we refer to that ordering. Rﬂfﬂ;e
stating the main results of this paragraph we make some

simple observations.

2.1 Lemma. Suppose that Xp1Xga XX,
counterclockwise order) and

£ 8 (in this

d(xl,le 2 dk' d(xz.xal 2 dk' d(xa,qu 3 dk'

Then for erch yt5 between x. and x

1 4!
distances d{xi.y} is greater than dk'

at least one of the

o
Proof: Since the angle x yx, is less than 180  (becauvse 5 is
a convex s=t}, at least one of the angles xiyxi+1 {for
i=1,2,3) is less than 60°.Hence {xi,xi+1] cannot be the

largest side of the triangle X ¥X, from which the lemma

1’
follows. 8

2.2 Lemma. Suppose that X0 Xy Xga
of § in this counterclockwise order, and assume that

Yl: y, are five vertices

dlxl,le > dk' dlxz,xai 2 dk and dlx];Yll = d(xlnyzl- Then
dtyz.le b dk.

Proof: If the semiline x2x3 does not intersect the semiline



ylyz then the assertion is obvious. Sc suppose that these
semilines intersect in a point 2 as in Figure 2. Now the

angle %, ¥ % ia less than the angle le]x because the

2 2
lengths of the opposite sides of the triangle y‘xzxa aAre in
this order. Similarly in the triangle ylxsz, the angle xzylx

iz leas than the angle ylzxz. On the other hand, since the

angle x2x3z is lesz than lBﬁo, the sum of the other angles in

the convex gquadrangle y]zxaxq must be more than 1800, which

means that the sum of the angles xay,xg and x3ylz ig less
3
than 900, but this contradicts the fact that the angle
Xo¥ ¥gi which is the sum of the angles X7 (X, and X ¥ B is
acute.

2.3. Lemma. Suppose that x),xz, 3
counterclockwise order) and

.x4 £ 8 (in this

d(x].le > d

2 dn dlxa.xa) >d , d!xa.x4] > d

k k'
Then the number of vertices of S between xl and x, is at mast

‘]2!;z + k.

Proof: By Lemma 2.1, each vertex between x_ and x4 is
connected in G{3,k) to at least one of the xi's. By Lemma
2.2, there are at most k vertices between x, and Xy which are
connected in G(S,k) to a given xi but no other xJ. Oon the
other hand, all points which are connected to both x. and x_
(1 €1 ¢ j <4) lie on k eirecles about x, as well as on k
circles about xj. so their number is at most 2k2. This gives

the bound in the Lemma.



2.4.Corollary. If n » Izk2 + 4k then G(S5S,k) contains no

convex gquadrilateral.

i
2.5.Thecrem. If k is fixed and n » n]{k} = ZSBOOkz then

MGES,k) < 3

2
Proof: Let p = [n/720). Then p » 24k +8k+2 (except in the
trivial case when k=zl). We can choose 2p + 1 consecutives

vertices no,....azp such that the angle between the vectors

aon] and EZp-IBZp

greedy way, We start at the point t] = a . We give the color

I to the points in 5 going counterclockwise as long as

is lesa than lo. Now we do the colering the

possible, i.e. until we encounter a vertex t, which is
connected in G(S,k) to a vertex tl' already colored with

color 1. Now starting at t_ go on using ecolor 2, until it is

2

possible, i.e. until we encounter a vertex ‘3 connected to a

vertex tz' already colored with coler 2. Going on with coior
3, we either complete a 3-coloring of G, or else we [ind,
similarly as before, vertices t! and t_' connected in G(S,k).
Now we show that we can choose x_ = tl’. xz 4 {t2|t2]p

= l‘.4 g0 that d{x ,xz] 2 dk'

1
> d . = ’ = ' ther
43 ra, Ir tz ty and ty ts then

3

d(xz.xsj 2 dk'

this is obvious.

X, E {tn"a'] and %,

d{xs,x

Azssume that t2 = ha'. Now in the convex guadrangle

tl'tz'tzts the sum of the lengths of the opposite edges
1} r

(t] .tz ) and {tz.ta

least one diagonal must be of length at least dk' We choose

)y are of length at least zdk, g0 at

x, accordingly, and similarly we choose Xge

S50 we have the zame kind of configuration as in Lemma
2
2.3. Thus by Lemma 2.3 there are at most 12k + 4k vertices

between X, and Xy This in particular implies that X, = a;
and x. = a_ where
1 J



p- 12k - 4k € i Cp < i Cp+ 12kS + 4k + 1.

One of the pairs lxl.xal and lxz.xqi. zay the former, is alsc

connected in G(S,k).
Now the angle xleai+l cannot be larger than 910. or

else the segments xzai+1. x2“i+2""' xzai'k were monotone
increazing and all greater than dk, which iz impossible.

Similarly, the angle a, is less than 51° and hence the

1-1*123
angle xlexa ig less than 2 . Let e.g. d{xl,x2

Hence it is easy to deduce using the cosine theorem that

< dlxl.xsl.

d(xl,xa) > ]<9dk. Hence

o
' 2 si dix_,x,} » . .
d(azp xal * sin {xaxlazpl XjeXa) ¥ sin B8 1.9 dk

~
-
o
=3

But then relabelling azp by x we get a contradiction at

4.
Lemma 2.3,

Again, one can ask if the threshold conat-k2 is best
possible. The source of thia value is Lemma 2.3, where we use
(essentially) the case t=2 of Problem 1.3. It would seem that
the additional information that the points considered are the
vertices of a convex polygon would exclude most of the
intersection points of the two families of concentric
circles. But this is not the case; we can construct a set 3,
consisting of the vertices of a convex polygon, such that
18 2 ccnst-kz and G(S,k) contains a 34 ({and hence its
chrematic number is larger than 3).

Let us sketch this conatruetion., Let a = (0,0),

{1,0), ¢ = {3,0) and d = (-1,0). Let Cu be the circle



with radius 2 about b, and let pn be a point on C, very close

o
to ¢. Then the angle dpoc is 900. hence the angle ap,° is

cute. Hence we can choose an interior point p, on the are of
C0 between Py and ¢ such that the angle ap,p, is acute. We

define the points p on the cirele C  similarly se
25 e pk-l Q

that all the angles ap.p,, , are acute. Let D, be the circle
i1 1

1
with center a through pi. it followas from the construction

that the circel Di containa p,H in its interior but the iine

1

tangent to D1 at By does not separate Pit from a.

Let ¢ be a very swall positive number and let C_.l
{i=z0,...,k=1) be the circle about b with radius 2-i:. Let p.
ij
be the intersection point of Ci and Bj in the upper

halfplane. Then the points P

j:, =2 and b form the vertices of

a convex polygon and a, b, p form a complete

0,0 29 Pr_y, k-1
quadrilateral in G{S, 2Zk+2).

Next we derive a bound on the chromatic number of G(S,k)
without the hypothesis that |S8| is large. First, let us
define the following. Let xy be an edge of G(S,k). Let xl be
the clockwise neighbor of x and 7], the counterclockwise

neighbor of y. If dtxl.y) > d{x,¥), we say that the edge X7
covers the edge xy. Similarly if d{x,yl} » d(x,57}, we say
that the edge xy! covers the edge xy. Starting from any edge

xy, let us select an edge x'y' covering it, then an edge x"y"
covering x'y' etc. In at most k-1 steps we must get stuck (by
the definition of G(8,k)). Let *0%0 be the edge for which we

could not find any edge covering it. We call xuyo a majorant

of xy. Note that in this case the angles formed by xoya and

the two cdges of the polygon entering xn and yo from the side

opposite to xy must be acute., It is also clear that the arcs

xﬂx and yyu contain at most k-1 sides of P together.



The following proposition will net be used directly, but

it seems worth formulating.

2.6 Proposition. Let {xl.le and {x .14} be two avoiding

3

edges of G(S,k). Then either between xz and x3 or between xq

and x] are not more than 2k-2 sides of P (see Figure 3).

Proof: Assume that the conclusion does not hold, and let ¥: ¥y

be a majorant of xlxz and y3y4, a majorant of x3x4.

these majorants are also avoiding and Ty Yor ¥q and ¥, are

in this same cyclic order on the polygon. Morecver, from the

Then

remarks made concerning the majorants it follows that all
angles of the convex quadrangle ¥ ¥g¥,7, are acute. This is
clearly impossible.

2.5 Theorem. The graph G(S,k) has a point of degree at most
3k-1.

Proof: Chocse xeS and let y and z be the first vertices of 8
in the counterclockwise and clockwise directions,
respectively, that are connected to x. Choose x so that the
number of points between x and ¥ is maximal (see Figure 4).
Let sv be a majorant of zx. (It is possible that v = x or

8 = z). Suppose there are a points between % and v and b
points between z and s, then we know that a+b<k-1 holds. Then
let t be the k-th peoint from x in the counterclockwise
direction, and let u be the first vertex in the
counterclockwise direction connected to t in G(S,k}). Then
because of the choice of x, there are not more sides of P
between t and u than between x and y. Hence there are not

more sides of P between y and u than between x and t, i.e.,



not more than a+k.

Let v's' be a majorant of tu. Obvicusly, v' lies on the
arc vt. Just like in the proof of Proposition 2.4, the edges
sv and v's' cannot be avoiding. Hence s must be on the are
us' and go the number of sides of P on the arc us is at most
k-1. Hence the number of sides of P on the arc vz is At mest
tatk)+(k=-1)+b < 3k-2. Hence the degree of x is at most 2k-1.

2.6 Corollary. The number of edges in G{(S5,k) is at most (3k-

1in.

Moreover, by Brooks' Theorem we obtain:

2.7 Cerollary. The chromatic number of G(3,k) is at most 3k.
E
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