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Abstract. A very special case of one of the theorems of the authors states as
follows: Let 1 € a) < a, < ... be an infinite sequence of integers for which all the
sumsa, + . | < i< j,aredistinct. Then there are infinitely many integers k for which
2k can be represented in the form a, + a, but 2k + 1 cannot be represented in this
form. Several unsolved problems are stated.

1. Let A = {a,.as,...} (@) < a, < ...) be an infinite sequence of
positive integers. We denote the complement of 4 by A:

A={0,1,2,..)—A .

Put
Amy=Y1, Am=Y 1.
asn w=n
aed i A
and for n = 0,1.2,... let R (n). R:(n), R;(n) denote the number of
solutions of
a+a,=n aed aed (1)
a.+a,=n x<y acd aed 2)
and
a,+a,=n x<xy a,€d, a,eA, (3)
respectively.

In the first four parts of this series (see [3], [4]. [ 5] and [6]) we studied
the regularity properties of the functions R, (n). R;(n) and R;(n). In
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particular, in Part 1V, we studied the monotonicity properties of these
functions. We proved that the function R, (r) is monotone increasing
from a certain point on, i.e., there exists an integer n, with

Rin+1)=R (n) for n=mn

if and only if the sequence A4 contains all the integers [rom a certain
point on. i.¢., there exists an integer », with

Andfn.n+ Lo +2.. ) ={m.m+ Lo +2,...).

Furthermore, we proved that the function R,(n) can be monotone
increasing also in a nontrivial way: namely, there exists a sequence A
such that -

An)y<n—cn’
(sothat 4 (n) > c¢n'?)and R, () is monotone increasing from a certain

n
), then the
ogn

point on. Finally, we showed that if A(n):o(l

functions R, (n) and R, (n) cannot be monotone increasing. (See [1], [2]
and [7] for other related problems and results.)

The purpose of this paper is to prove a result of independent
interest on the connection between R;(2k) and R;(2k + 1) (see
Theorem 1 below) which will enable us to improve on our earlier
estimates concerning the monotonicity of Ry(n) (see Corollary 1
below).

Theorem 1. If A = {a,a,,.. .} (a, < @, < ...)isaninfinite sequence
of positive integers such that

AW iy P A

lim im + w0, 4)
ne o lOgR . logn
then we have "
lim sup Y (Ry(2k) — RyQQk+ 1)) = + oo . (5)
N—s 40 k=1

(So that, roughly speaking. &, 4 a, assumes more even values
than odd ones.) Clearly. this theorem implies that

Corollary L' If A= {a,,a:,...} (@, <ay<...) is an infinite
sequence of positive integers such that (4) holds, then the function Ry (n)

! Corollary | has been obtained independently by R. BALASUBRAMANIAN, His
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cannot be monotone increasing from a certain point on, i.e., there does
nol exist an integer ny with

Ry(n+ 1) = Ry(n) Jor nzn,.

We recall that in [6] we proved this with the much stronger

£ n
assumption A(n) =0 (] ) in place of (4). This result seems to
ogn

suggest that, contrary to our earlier conjecture, also R;(n) can be
monotone increasing only in the trivial way but unfortunately we have
not been able to prove this.

A sequence 4 = {a,.a,,...} (a) < a, <...) of positive integers is
said to be a Sidon sequence if Ry(n) < 1 for all n, ie., il

d.+a,=a,+a, xXEPHusv

implies that x = w, y = v. (We remark that very little is known on the
properties of Sidon sequences; see eg. [7].) Theorem | implies trivially
that

Corollary 2. If A is an infinite Sidon sequence, then there exisi
infinitely many integers k such that Ri(2k) =1 and R (2k + 1) =0,
i.e., 2k can be represented in the form

a+a=2k
hut
a,+a,=2k+1
is not solvabie. .

(In fact, it can be shown by analyzing the proof of Theorem I that
there exist infinitely many positive integers N such that the assertion of
Corollary 2 holds for > A (N) integers k with k < N.)

Theorem 1 is near the best possible as the following results shows:

Theorem 2. There exists a sequence A = {a,.4,,...} (@) <@, <...)
of positive integers such that for some positive real numbers ¢, ny we have

A(n) > clogn  (for n > ny) (6)

paper contains several other related results of independent interest. His paper will
appear in Acta Arithmetica.
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and
N
lim sup ¥ (Ry(2k) — Ry(2k + 1)) < + o0 . (7)
: k=

N~ =1

2. The proof of Theorem | will be based on the following idea: I 4
is a finite sequence of positive integers, and we denote the number of
even elements and odd elements of it by 4, and A,, respectively, then
the sum in (5) can be estimated in the following way:

E' (R (2k) — R 2k + 1)) = E Ri(2K) — E Ri(2k+ 1) =
k=1 k=1 k=1

= ¥ | — Y 1=1 y l+3 ¥ 1-

agd.a'ed weda'ed aed,a'ed acA
d<a’ a<i a+a'=0{mod )
a+a"=0{mod 2) a+a'=1{mod2)
— %_ Z ] =
acd,a'ed
a+a'=|(mod 2)

=‘i’(At]_AI)2+%‘(AEJ+A1)2 F(Ay+ A4)

which tends to infinity if the cardinality (= A4, + A4,) of the sequence 4
tends to infinity. However, ol course, the situation is much more
complicated for infinite sequences.

For — 1 <r< 4+ 1, put
fn=3%r
so that ==
LO=EME M= T (=3 R0
and hcncc wed a'ed aed a'ed n=1

— o
i (-
E R] {”] rt = Z pata —
=] ued a'ed
aa’

="I' Z .l"""""" g4 ‘EF Z rza = {s U'! (F’J +_f(l‘]]] .
aEd a'ed aEAd
(Note that here and in what follows all the infinite power series are
absolutely convergent trivially for — 1 <r < + 1.)
For —1<r< +1, put
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gln= Z Ry(m)r" =5 (/2 () + [(r) (8)
=1

and
+ &
h(r) =Y (Ri(2k) — R, 2k + 1)) 2+

k=1

Then for 0 < r < 1 we have

W =r T R — Y Rk + 1)r+ —
o oy

=r} s R+ (="~ _Z FR (MG —(—n") =
1

U] n=1

9)
+ 0 + oo
===y Rmr+i1+n Y Rim(—n"=
=1 n=1
=—4(l=ng+i0+nrg(—r.
To prove (5), it is enough to show that
lim suph(r) =+ o . (10)

F=1-0

In fact, if we start from the indirect assumption that (5) does not hold,
then there exists a positive real number B8 such that

N
Y (RyQ2k)— RyQk+ 1)< B for N=1.2,...,
k=1

and hence forall 0 <r< 1,

=+ +
h(r) =3 ' Y (R(2k)— Rk + 1), =
—=F i=0 k=1

+ou [lr—1)2]

-3 (Ry(2K) — RyQk + 1)) r" <
n=0 k=1
4 ot +a B

<Y Bri=BY "=
n=0 n=0 ] ===

so that
hiry< B

which contradicts (10).
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In view of (8) and (9). clearly we have
4h(i=—=2(1=rgM+2(1+rNg(—=n=
—( =0 LN+ A+ (=D +fED = (11)
=0 =nLE+2r )+ A+ (=12
— (I =nf ) +2rf(r7) .

Fork=1.2.....putr,=exp(— 12", sothatr, <r,<... < I,

W

lim r, =1,
s ix rey=r} (fork=223,..) (12)
and
: 1
2_k+iql—r,g=1—e“‘p(_l'f2k}q? for k=12..., (13)

X X -\1
—<_\'(] ——)=x——<l—e"‘c.\' for D<x<1.
5 2 2

L

For k =1.2,... we write
H(k)=h(r,) and F(k)=f(r) .
Furthermore, we put
y= lim sup (1 —r)Fk) and 4= lim inf(l —r)F(k).

k—++w k=4

3. In order to derive (10) from (11), we have to distinguish four
cases.

Case 1. Assume first that

d<1 (14)
and

y>0. (15)

O<op<l (16)
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and
e (7

d<p<y if d<yp. (18)
If (17) holds, then
lim (1 —r)F(k)=0,

kst z

hence in view of (14), for all ¢ > 0 and k > &;(¢) we have

I+ = DFk—=1)>0 (19)
and
(1 — -*‘;;]F(k) < (1 + :.')l".lg : (20)

(19) and (20) imply that
(L—r)F) < (l+8)"p < (141 —r_ ) Flk—1). (21)

I (18) holds, then by the definition of 4 and 4, there exists an
infinite sequence k, <k, < ... of positive integers such that for
i= I, 2y

(l—=ry, ) Flky, )=e>(1— "h,)F{k::) .
Then for all i, there exists an integer k with k,;, |, > k = k,, and
(I=r_)Fk—=1DZzo>(—r)F(k) (22)

so that (22) holds for infinitely many positive integers k.
Either (21) holds for k > k; () or (22) holds for infinitely many k,
there exist infinitely many positive integers & with

(I1—r)Fl)<( 4+l —r, DFk—1).
Hence, in view of (12), (1 — rp) F(k) < (1 + &) (1 — r}) F(k — 1) and
FR)<(1+e)(1 +r)F(k—1). (23)

In view of (11), (12), (20), (22) and (23), for sufTiciently large k we
have
dh(rd=4HK) = — (1 —rdf(r) + 2rf(r}) =

=—(1=r)f’(r) +2ref(re_) = — (L = r) FP(k) + 21, F(k — 1) >

30y 2r .
> —(l —r) F (k) + 7{] Tod 57 Fik) > (24)
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—(1 - rk]F(k))‘;v

) 1
= — (1 —r) F (k) + F(k}=F{k)('l

1+ 2 2e
- - 12
>F{k)(\]+2:_ (1 + #) 9).

If ¢ is sufficiently small in terms of ». then in view of (16) we have

l—p

—(1+ H}I.E{i}

14 2¢ 2 @

It follows from (24) and (23) that for infinitely many positive integers &
we have

4h(r) > l—;— F(k)

which tends to + 2 as k — + oo since clearly, for infinite sequences
A we have
lim f(r)= + o,

r—l—0
and this completes the prool of (10) in Case 1.
Cuase 2. Assume now that
d=y= lim (1 —r)F(k)=0. (26)
bt o
We are going to show that there exist infinitely many positive integers
k with
Fik)<d4F(k—1). (27)
In fact, let us start from the indirect assumption that there exists a
positive integer K such that for k = Kwe have F(k) = 4 F(k — 1) (for
k> K.
This implies by straight induction that for j = 0. 1,2,... we have
FIK+)=z4F(K). (28)

On the other hand, forall 0 < r < 1,

. ' + o l
f=Yr<y rm=

aed n={ ]l —=r

so that in view of (12).
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|
F(K+j)=f(rg- )—f(r,LJ)<l =
. § (29
I 1—r O 1 2 2

= T T p=r—

l—rh-;=u I—fﬂ,q I~r,..

Tty 11}

It follows from (28) and (29) that

i

>4 F(K)=4"f(rg)
=i

but if j is sulficiently large in terms of ry, then this inequality cannot
hold (note that 0 < r, < 1 and that f(r) > O0forall0 < r < 1), and this
contradiction proves the existence of infinitely many positive integers
k satisfying (27).

Then in view of (12) and (26), we obtain from (11) that if k satisfes
(27) and is sufficiently large,

dh(r) =4HEK) = — (L —r) P (r) + 2r /) =

= (=) () + 20 f () =
—(l—r)FP k) +2rFk—1)=
—(l—r)Fk)-4F(k—1)+2r, Flk—1)=
=Flk—=1)(—4(1 —r)Fk)+2r) >
>Fhk—D(-f+1)>3Fk—-1)

I

I

which tends to + oo as k— + o (since A is infinite) and this
completes the proof of (10) in Case 2.

4. In order to study the cases with 4 =1, we introduce the
following notation: we put

p(:)———{(:]—zr—z.r—z: (30)

=0 tE A ned
and
PRy=p(r) (k=1,2,...)
so that

lim sup(l —r)p(r) = lim sup(l — (1 —r)f(r)) =
b =t ks 4ot (31}

=1— lim inl(l —rpFk)=1—08=0 for 6=1,
Ko 4
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and in view of (4), for arbitrary large positive number L and for
r—1—0 we have

p(r)=(l—r)(i Yo )

— Fned

~a-n(¥r 5 )=(1—r)};;5(n)r">

ned

>(1 =m0+ _f: L(logn)r") =

=]
+ 90

=o(l)+ ¥ L{logn)(r"—r"t")y =
n=1
b

=o(l)+ LY (logn—log(n—1)r"=

+ @ ]
=o(l)+ L (log(] +—-))r">
=2 n—1

ni

1
>o(l)+c¢L Z —-—o(l}-i-(Llog—
r

n=1

g

(where ¢ is a positive absolute constant). This holds for all L >0
whence

1 %=
lim p(r)(logl ) + . (32)
r

r=+1=0

It follows from (13) and (32) that

. Plk) ( )—t
lim —— 2= lim p(r,)log2|log =+o. (33)

kst K s — — T

Finally, in view of (12), it follows from (11) and (30) that
AH(K) =4h(r) > — (1 —rd P () + 21/ (r}) =

1 2 SH | )
= (1 —m( ) 2 (s —p(r:))=
1 —r I —r;
1 % Zf'k
= — +2Pk)— (1 —=rP(k)+ ——2r.Plk—1)=
1—r, 1—r;

(34)
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+2P(k)— (1 — r) P2(k) —2r, Pk — 1) >

Vi
> — 1+ 2P(k)— (1 —r) PP (k) —2P(k—1).
Case 3. Assume that
a=1 (35)
and
lim sup P(k)(1 —r)"*>0. (36)

&
It follows from (13) and (36) that

0 < lim sup P(k)(1 —r)"? < lim sup P(k)2 " <

k—+ k— 4+

(37)
< lim sup P(k)e .
k4

We are going to show that there exist infinitely many integers & with
Pk)>e' Pk —1). (38)

In fact, let us start from the indirect assumption that there exists a
positive integer K such that for k = K we have

Plky<e Pk —1) (fork=K).
This implies by straight induction that for j = 0,1,2,... we have

P(K +)) <™ P(K),

1€
Ply<e ™™ pP(K) for k=K
hence
lim supP(k)e ** < lim supe " P(K)e *4 =
koo k— 4o
= lim supe " P(K)e ** =0
ka4

which cannot hold by (37) and this contradiction proves the existence
ol infinitely many integers k satisfying (38).
Then in view of (31) and (33), we obtain from (34) that if k satisfies
(38) and is sufficiently large,
dH(K)> —14+2Pk)—(1 —r) P (k) —2P(k—1)>
>—142P(k)—(Q —r) P (k) —2¢e " Pk) =
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1
=P s l] = P — 2
( }( PR + (I —r)Pk)—2e” )

I T
x P”‘"(‘;} +2-o0(l) - 29""")=

=PK)2U—e " —o(l)>(1—e ") PKk)
which, by (33) and | — ¢ "* > 0. tends to + o as k - + oo and this
completes the proof of (10) in Case 3.
Case 4. Assume [inally that 4 = | and

lim P(k)(1 —r)"=0. (39)
k= 4o
Then in view of (33), (34) and (39). for sufficiently large N we have

| N N
4N Hk) = Z(—l-i—’P{k]—[l—r;)P (ky—2P(k —1)) >
IV)(=3 .r’\‘ k=2

2 X I ¢
>—14+= Y (PR)—Pk—1)—— Y (1 —r) P (k) >
A‘ k=3 ‘M k=2

N
>—142P(NN '—2P()N '—N"! Z (PR —r)'?)* >

N

>—14+2PMNMN =L =-NO) + z

> — 1 4+2P(MN'=1-2>P(N)N~!

which. by (33). tends to + 20 as N — + oc and this proves (10) also in
Case 4 which completes the proof of Theorem 1.

5. Proof of Theorem 2. Let B= {17.64,...,4°% + 1,47*' .}
and define the sequence 4 by

A=B—{0}=1{1,23,...0...3— B

This sequence A satisfies (6) trivially. We are going to show that it
satisfies also (7).
Let us write

{I ifxeB
1 [‘) = § ;
0ilxg B
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and
Bymy= Y 1 and By(im= Y 1
henhe it hsn he
b limod 2) bm | (mod 2}
so that

By(m)+ B(m= Y 1=8(m,
£ be®
b<n
and by the construction of the sequence B,
|By(m) — B, (m)| <1 forall n. (40)

Clearly we have

Rim= Y (1—nU—yn—0)=

isn?2
a=1
=Y 1= u@=—n@2+ ¥ sdnn—i=
i€n2 = isn2
=Y 1-Bn—-D+ Y gyn—i).
1 nfl i=n2

Hence
R, (2k) — R:(2k + 1) =

=(X1- ¥ D+(BRK—BCk—1)+
izk

isk+172

+ Y qyRk—=D— Y q(qQk+1-0)=
i<k

igk—1

=n(2k) + Z :;(f);;(zk —i)— Z Dy 2k +1—1)
]

isk=- ek
so that
N
Y (R:(2k) — Ry (2k + 1) = (41)
k=1
N N N
=Y a2 +Y ¥ q@nQRk—nD-Y YaqQk+1-i=
k=1 k=1 igk—1 kwml igk

= BN+ 5 -5

I4  Monashefic fir Mathematik, Bd. 1023
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where
N N
Zy= Z z n{n(2k —i) and X, = Z Z 2k +1—1).
k=1 igk-1 k=1 i=k

Here X, is the number of solutions of

b+b <2N+ 1. b+b =0(mod2),b<b',beB, b'eB, (42)
while X, is the number of solutions of

b+b' <2N+1,b+b =1(mod2),b<b,beB heB. (43)

Let us define j by
b <IN+ 1<hy,,

and let us classify the pairs satisfying (42) according to that whether
b’ < bjor b’ = b, 1f b" < by, then the pair b, b in (42) can be chosen in
(Bn(bI - 1)

b ]

) ways from the B, (b, — 1) integers h with b = 0(mod 2).
Bi(h—1
b <b;— 1. beB, or it can be chosen in ( 1 ’2 )) ways [rom the

By (b; — 1) integers b with h = 1(mod 2), h < b, — 1, he B. Further-
more, if b'= b, then b in (42) can be any of the integers b with
b=b(mod2), h<2N+1—b,. heB, apart from the case 2b, <
< 2N + 1 when b = b, must not occur. Thus writing

L if 26, <2N +1

Oy =% . _
W if 2h>2N+1,
we have

By(h, — 1 B, (h, —
:]=( "(; })+( ‘(b’z ”)+ Y 1—0y. (44)

b=ty {mod 2)
b22N+1-b,heB

Similarly, if 5" < b, in (43), then 5,b" in (43) can be any of the
By(b; — 1) B (b, — 1) pairs b.b" with b#b'(mod2), b<b—1,
b'< b, —1,beB. b'eB. Il b’ = b, in (43), then b can be any integer
with b % b,(mod2), b < 2N + 1 — b, be B so that

Zy=By(b— DB (b — 1) — Y 1. (45)

h#hy(mod 2)
BE2N+1—hy, hel

It follows from (41), (44) and (45) that
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Y (R;(2K) — Ry (2k + 1)) =
k=1

BN+ ((Bu(b;- IJ) £ (&(b;— 1)) — Bylby— 1) By, |))+

+( z 1 — Z 1) =y <
h= b (mod 2) h#Eh (mod 2)
b=IN+1 -ﬁ_,,ﬁs.ﬂ bEIN+1—bbeR

<3 (By(h,—1)— B, (b, — D) + B2 N) — By(by—1)| +
+ 418y (b~ 1) — By (b, — 1)|

hence, in view of (40),
W
Y (Ry2k) — RyQk+ D) <b +1+4=2
k=1

which completes the proof of Theorem 2.

References

[1] ErDOs, P.: Problems and results in additive number theory. Colloque sur la
Theorie des Nombres (CBRM) (Bruxelles, 1956). 127—137.

[2] ErDOs, P., and RENYI, A.: Additive properties of random sequences of
positive integers. Acta Arith. 6, 83—110 (1960).

[3] Erpos, P, SARKOZY, A.: Problems and resulls on additive properties of
general sequences, [, Pacific J. Math. 118, 347—357 (1985).

[4] ErDoOs, P., SARkOzY, A.: Problems and results on additive properties of
general sequences, 1. Acta Math, Acad. Sci. Hung. To appear.

[5] ErpoOs, P.. SARKOZY, A., 508, V.T.: Problems and results on additive
properties of general sequences, IT1. Studia Sei. Math. Hung. To appear.,

[6] ErDis, P., SARKOZY, A, 508, V.T.: Problems and results on additive
properties of general sequences, I'V. In: Number Theory. Proc., Ootacamund, India.
Lect. Notes Math. 1122, pp. 85—104. Berlin—Heidelberg-New York: Springer. 1984.

[7] HaLBERSTAM, H., ROTH, K. F.: Sequences. Berlin-Heidelberg-New York:
Springer. 1983.

P. ErRDéS, A. SARKGZY and V. T.S0s
Mathematical Institute

Hungarian Academy of Sciences
Reiltanoda u. 13—15

Budapest, Hungary



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

