PROBLEMS AND RESULTS ON ADDITIVE PROPERTIES OF GENERAL SEQUENCES. II

P. ERDŐS, member of the Academy and A. SÁRKÖZY (Budapest)

1. Let $\mathcal{A} = \{a_1, a_2, ...\}$ $(a_1 < a_2 < ...)$ be an infinite sequence of positive integers. Denote by R(n) the number of solutions of $a_i + a_j = n$. Starting from a problem of Sidon, P. Erdős [1] proved the following theorem (by using probabilistic methods): There is a sequence \mathcal{A} so that there are two constants c_1 and c_2 for which for every n

$$c_1 \log n < R(n) < c_2 \log n.$$

On the other hand, an old conjecture of Erdős states that for no sequence A can we have

(2)
$$\frac{R(n)}{\log n} \to c \quad (0 < c < +\infty).$$

(See [2] and [4] for further related results and problems.)

These problems led us to study the question: how regular can be the behaviour of the function R(n)? In part I [3] of this paper, we proved the following results:

THEOREM 1. If F(n) is an arithmetic function such that

$$(3) F(n) \to +\infty,$$

(4)
$$F(n+1) \ge F(n) \quad \text{for} \quad n \ge n_0$$

and

(5)
$$F(n) = o\left(\frac{n}{(\log n)^2}\right),$$

and we write

$$\Delta(N) = \sum_{n=1}^{N} (R(n) - F(n))^{2},$$

then $\Delta(N) = o(NF(N))$ cannot hold.

COROLLARY 1. If F(n) is an arithmetic function satisfying (3), (4) and (5), then

(6)
$$\max_{n \le N} |R(n) - F(n)| = o((F(n))^{1/2})$$

cannot hold.

(In fact, Theorem 1 says that (6) is impossible in square mean.)

The aim of this paper is to show that the above results are nearly best possible. We will prove the following theorem:

THEOREM 2. If F(n) is an arithmetic function satisfying

(7)
$$F(n) > 36 \log n \text{ for } n > n_0$$

and there exist a real function g(x), defined for $0 < x < +\infty$, and real numbers x_0 , n_1 such that

- (i) g'(x) exists and it is continuous for $0 < x < +\infty$,
- (ii) $g'(x) \leq 0$ for $x \geq x_0$,
- (iii) 0 < g(x) < 1 for $x \ge x_0$,

(iv)
$$|F(n)-2\int_{0}^{n/2}g(x)g(n-x)dx|<(F(n)\log n)^{1/2}$$
 for $n>n_1$,

then there exists a sequence A such that

$$|R(n)-F(n)| < 8(F(n)\log n)^{1/2}$$
 for $n > n_2$.

By choosing F(n) and g(x) in Theorem 2 in an appropriate way, the following corollaries can be derived from Theorem 2:

COROLLARY 2. If β is an arbitrary real number such that $\beta > 8/\pi^{1/2}$, then there exists an infinite sequence \mathcal{A} such that (1) holds with $(0<)c_1=\beta^2\pi-8\beta\pi^{1/2}$, $c_2=\beta^2\pi+8\beta\pi^{1/2}$.

(So that, e.g., choosing $\beta = 5$, we obtain that (1) holds with $c_1 = 6 < \beta^2 \pi - 8\beta \pi^{1/2}$ and $c_2 = 151 > \beta^2 \pi + 8\beta \pi^{1/2}$.)

COROLLARY 3. If G(x) is a real function defined in $(0, +\infty)$ and such that

- (i) $\lim_{x \to +\infty} \frac{G(x)}{\log x} = +\infty,$
- (ii) G(x) = o(x),
- (iii) G'(x) exists and it is continuous for $0 < x < +\infty$,
- (iv) G'(x) > 0 for $x > x_0$

and

(v)
$$G'(x) = o\left(\frac{G(x)}{x}\right)$$
,

then there exists a sequence A such that

$$\lim_{n \to +\infty} \frac{R(n)}{G(n)} = 1.$$

(So that, e.g., there exists a sequence \mathcal{A} with $R(n) \sim \log n \log \log n$.)

COROLLARY 4. If 0< α<1, then there exists a sequence A such that

$$|R(n)-n^{\alpha}| < 8n^{\alpha/2}(\log n)^{1/2}$$
 for $n > n_0$.

In fact, in order to derive Corollaries 2, 3 and 4 from Theorem 2, we have to use Theorem 2 with $\beta \left(\frac{\log x}{x}\right)^{1/2}$, $\left(\frac{G(x)}{\pi x}\right)^{1/2}$, $cx^{(\alpha-1)/2}$ (where $c=c(\alpha)$) and $\beta^2\pi \log n$, $2\int_{-\pi/2}^{\pi/2} g(x)g(n-x)dx$, n^{α} in place of g(x) and F(n), respectively.

2. Sections 2, 3 and 4 will be devoted to the proof of Theorem 2. The proof is based on the probabilistic method of Erdős and Rényi [1], [2]. The Halberstam—Roth book [4] contains an excellent exposition of this method thus we use the terminology and notation of this book. In this section, we give a survey of those notations, facts and results connected with this probabilistic method which will be needed in the proof of Theorem 2.

Let Ω denote the set of the strictly increasing sequences of positive integers.

LEMMA 1. Let

$$(8) \alpha_1, \alpha_2, \alpha_3, \dots$$

be real numbers satisfying

(9)
$$0 < \alpha_n < 1 \quad (n = 1, 2, ...).$$

Then there exists a probability space (Ω, S, μ) with the following two properties: (i) For every natural number n, the event $B^{(n)} = \{\omega : \omega \in \Omega, n \in \omega\}$ is measurable, and $\mu(B^{(n)}) = \alpha_n$.

(ii) The events B(1), B(2), ... are independent.

This lemma is identical with Theorem 13 in [4], p. 142.

We denote by $\varrho_n(\omega)$ the characteristic function of the event $B^{(n)}$:

$$\varrho_n(\omega) = \begin{cases} 1 & \text{if} \quad n \in \omega, \\ 0 & \text{if} \quad n \notin \omega. \end{cases}$$

For some $\omega = \{a_1, a_2, ...\} \in \Omega$, we denote by $r_n = r_n(\omega)$ the number of solutions of

(10)
$$a_x + a_y = n, \quad a_x \in \omega, \quad a_y \in \omega, \quad a_x < a_y$$

so that

$$|R(n)-2r_n(\omega)| \leq 1$$

(where R(n) is the number of solutions of (10) without the restriction $a_x < a_y$) and

$$r_n(\omega) = \sum_{1 \le j < \frac{1}{n}n} \varrho_j(\omega) \varrho_{n-j}(\omega).$$

Furthermore, we put

$$\delta_n(j) = \mu(\{\omega \colon j \in \omega, \ n - j \in \omega\}) = \alpha_j \alpha_{n-j} \text{ for } j < n/2,$$
$$\lambda_n = M(r_n(\omega)) = \sum_{1 \le j < \frac{n}{2}} \delta_n(j)$$

(where $M(\xi)$ denotes the expectation of the random variable ξ),

(12)
$$P_{n}(d) = \mu(\{\omega : r_{n}(\omega) = d\}) =$$

$$= \sum_{1 \leq j_{1} < \dots < j_{d} < n/2} \delta_{n}(j_{1}) (1 - \delta_{n}(j_{1}))^{-1} \dots \delta_{n}(j_{d}) (1 - \delta_{n}(j_{d}))^{-1} \prod_{1 \leq j < n/2} (1 - \delta_{n}(j))$$
for $0 \leq d \leq n$

and

(13)
$$f(z) = \sum_{d=0}^{n} P_{n}(d) z^{d} =$$

$$= \sum_{d=0}^{n} \left(\sum_{1 \leq j_{1} < \dots < j_{d} < n/2} \delta_{n}(j_{1}) \left(1 - \delta_{n}(j_{1}) \right)^{-1} \dots \delta_{n}(j_{d}) \left(1 - \delta_{n}(j_{d}) \right)^{-1} \prod_{1 \leq j < n/2} \left(1 - \delta_{n}(j) \right) \right) z^{d} =$$

$$= \prod_{1 \leq j < n/2} \left(\left(1 - \delta_{n}(j) \right) + \delta_{n}(j) z \right)$$

(for any complex number z).

We shall also need the Borel-Cantelli lemma:

Lemma 2. Let (X, S, μ) be a probability space and let $E_1, E_2, ...$ be a sequence of measurable events. If

$$\sum_{j=1}^{+\infty}\mu(E_j)<+\infty,$$

then, with probability 1, at most a finite number of the events E; can occur.

(See [4], p. 135.)

3. The proof of Theorem 2 will be based on Lemma 3 and Theorem 3 below.

Lemma 3. If the sequence (8) satisfies (9), $n \ge 3$, and Δ is a real number satisfying

$$(14) 0 < \Delta < \lambda_n,$$

then we have

(15)
$$\mu(\{\omega: |r_n(\omega) - \lambda_n| \ge \Delta) < 2 \exp(-\Delta^2/4\lambda_n).$$

(Note that (9) implies $\lambda_n > 0$ for $n \ge 3$.)

PROOF OF LEMMA 3. First we estimate $\mu(\{\omega: r_n(\omega) \ge \lambda_n + \Delta\})$. In view of (13) and (14), for 1 < x < 2 we have

(16)
$$\mu(\{\omega: r_{n}(\omega) \geq \lambda_{n} + \Delta\}) = \sum_{d \geq \lambda_{n} + \Delta} P_{n}(d) \leq \sum_{d \geq \lambda_{n} + \Delta} P_{n}(d) x^{d - (\lambda_{n} + \Delta)} =$$

$$= x^{-(\lambda_{n} + \Delta)} \sum_{d \geq \lambda_{n} + \Delta} P_{n}(d) x^{d} \leq x^{-(\lambda_{n} + \Delta)} \sum_{d = 0}^{n} P_{n}(d) x^{d} = x^{-(\lambda_{n} + \Delta)} f(x) =$$

$$= (1 + (x - 1))^{-(\lambda_{n} + \Delta)} \prod_{1 \leq j < n/2} (1 + (x - 1) \delta_{n}(j)) <$$

$$< \exp\left(-(\lambda_{n} + \Delta) \left((x - 1) - \frac{(x - 1)^{2}}{2}\right)\right) \prod_{1 \leq j < n/2} \exp\left((x - 1) \delta_{n}(j)\right) =$$

$$= \exp\left(-(\lambda_{n} + \Delta) \left((x - 1) - \frac{(x - 1)^{2}}{2}\right) + (x - 1) \sum_{1 \leq j < n/2} \delta_{n}(j)\right) =$$

$$= \exp\left(-(\lambda_{n} + \Delta) \left((x - 1) - \frac{(x - 1)^{2}}{2}\right) + (x - 1) \lambda_{n}\right) =$$

$$= \exp\left(-\Delta(x - 1) + (\lambda_{n} + \Delta) \frac{(x - 1)^{2}}{2}\right) < \exp\left(-\Delta(x - 1) + \lambda_{n}(x - 1)^{2}\right)$$

since we have $1+u < e^u$ for u>0 and

$$1+u = \exp(\log(1+u)) = \exp\left(u - \frac{u^2}{2} + \frac{u^3}{3} - \dots\right) > \exp\left(u - \frac{u^2}{2}\right)$$
 for $0 \le u < 1$.

Writing $x=1+\Delta/2\lambda_n$ in (16) (then 1< x<2 holds by (14)), we obtain that

(17)
$$\mu(\{\omega: r_n(\omega) \ge \lambda_n + \Delta\}) < \exp(-\Delta^2/2\lambda_n + \Delta^2/4\lambda_n) = \exp(-\Delta^2/4\lambda_n)$$
. Similarly, for $0 < x < 1$ we have

(18)
$$\mu(\{\omega: \ r_n(\omega) \leq \lambda_n - \Delta\}) = \sum_{d \leq \lambda_n - \Delta} P_n(d) \leq \sum_{d \leq \lambda_n - \Delta} P_n(d) x^{d - (\lambda_n - \Delta)} =$$

$$= x^{-(\lambda_n - \Delta)} \sum_{d \leq \lambda_n - \Delta} P_n(d) x^d \leq x^{-(\lambda_n - \Delta)} \sum_{d = 0}^n P_n(d) x^d = x^{-(\lambda_n - \Delta)} f(x) =$$

$$= (1 - (1 - x))^{-(\lambda_n - \Delta)} \prod_{1 \leq j < n/2} (1 - (1 - x) \delta_n(j)) <$$

$$< \exp\left((1 - x)(\lambda_n - \Delta)\right) \prod_{1 \leq j < n/2} \exp\left(-(1 - x) \delta_n(j) + \frac{(1 - x)^2 (\delta_n(j))^2}{2}\right) =$$

$$= \exp\left((1 - x)(\lambda_n - \Delta) - (1 - x) \sum_{1 \leq j < n/2} \delta_n(j) + \frac{(1 - x)^2}{2} \sum_{1 \leq j < n/2} (\delta_n(j))^2\right) \leq$$

$$\leq \exp\left((1 - x)(\lambda_n - \Delta) - (1 - x) \sum_{1 \leq j < n/2} \delta_n(j) + \frac{(1 - x)^2}{2} \sum_{1 \leq j < n/2} \delta_n(j)\right) =$$

$$= \exp\left((1 - x)(\lambda_n - \Delta) - (1 - x) \lambda_n + \frac{(1 - x)^2}{2} \lambda_n\right) = \exp\left(-\Delta(1 - x) + \frac{(1 - x)^2}{2} \lambda_n\right)$$

since for 0 < x < 1 we have

$$\exp(-u) < 1 - u = \exp(\log(1 - u)) = \exp(-u + \frac{u^2}{2} - \frac{u^3}{3} + \dots) < \exp(-u + \frac{u^2}{2}).$$

Writing $x=1-\Delta/\lambda_n$ in (18) (then 0 < x holds by (14)), we obtain

(19)
$$\mu(\{\omega: r_n(\omega) \leq \lambda_n - \Delta\}) < \exp(-\Delta^2/\lambda_n + \Delta^2/2\lambda_n) = \exp(-\Delta^2/2\lambda_n).$$

(17) and (19) yield (15).

Theorem 3. If the sequence (8) satisfies (9), and there exists a positive integer n_0 such that

(20)
$$\lambda_n = \sum_{1 \le j < n/2} \alpha_j \alpha_{n-j} > 9 \log n \quad \text{for} \quad n \ge n_0,$$

then, with probability 1, there exists a number $n_1 = n_1(\omega)$ such that

$$|R(n)-2\lambda_n| < 7(\lambda_n \log n)^{1/2}$$
 for $n > n_1$.

PROOF. By using Lemma 3 with $\Delta = 3(\lambda_n \log n)^{1/2}$ (then (14) holds by (20)), we obtain

$$\sum_{n=1}^{+\infty} \mu(\{\omega \colon |r_n(\omega) - \lambda_n| \ge 3(\lambda_n \log n)^{1/2}\}) =$$

$$= O(1) + \sum_{n=n_0}^{+\infty} \mu(\{\omega \colon |r_n(\omega) - \lambda_n| \ge 3(\lambda_n \log n)^{1/2}\}) <$$

$$< O(1) + 2 \sum_{n=n_0}^{+\infty} \exp(-(3(\lambda_n \log n)^{1/2})^2/4\lambda_n) = O(1) + 2 \sum_{n=n_0}^{+\infty} n^{-9/4} < +\infty.$$

Thus by the Borel—Cantelli lemma (Lemma 2), with probability 1, at most a finite number of the events

$$|r_n(\omega) - \lambda_n| \ge 3(\lambda_n \log n)^{1/2}$$

can occur, i.e., with probability 1, there exists a number $n_2 = n_2(\omega)$ such that

$$|r_n(\omega)-\lambda_n|<3(\lambda_n\log n)^{1/2}$$
 for $n>n_2$.

By (11) and (20), for such a sequence ω , for large n we have

$$|R(n)-2\lambda_n| \le |R(n)-2r_n(\omega)|+2|r_n(\omega)-\lambda_n| < 1+6(\lambda_n \log n)^{1/2} < 7(\lambda_n \log n)^{1/2}$$
 which completes the proof of Theorem 3.

4. In this section, we complete the proof of Theorem 2. We put

$$\alpha_n = \begin{cases} 1/2 & \text{for } 1 \le n \le x_0, \\ g(n) & \text{for } x_0 < n < +\infty. \end{cases}$$

Defining the sequence (8) in this way, (9) holds trivially. Furthermore, in view of (iii) in Theorem 2, we have

(21)
$$\lambda_{n} = \sum_{1 \leq j < n/2} \alpha_{j} \alpha_{n-j} = \sum_{x_{n} < j \leq n/2} g(j) g(n-j) + O(1).$$

By (i) in Theorem 2, we may use the Euler—Maclaurin summation formula in order to estimate the last sum. In view of (i), (ii) and (iii), we obtain (22)

$$\sum_{x_0 < j \le n/2} g(j) g(n-j) = \int_{x_0}^{n/2} g(x) g(n-x) dx - \left[g(x) g(n-x) \left(x - [x] - \frac{1}{2} \right) \right]_{x_0}^{n/2} +$$

$$+ \int_{x_0}^{n/2} \left(g'(x) g(n-x) - g(x) g'(n-x) \right) \left(x - [x] - \frac{1}{2} \right) dx =$$

$$= \left(\int_{1}^{n/2} g(x) g(n-x) dx + O(1) \right) + O\left(\left(g(n/2) \right)^2 + g(x_0) g(n-x_0) \right) +$$

$$+ O\left(\int_{x_0}^{n/2} \left(|g'(x)| + |g'(n-x)| \right) dx \right) =$$

$$= \int_{1}^{n/2} g(x) g(n-x) dx + O(1) + O\left(\int_{x_0}^{n/2} \left(-g'(x) - g'(n-x) \right) dx \right) =$$

$$= \int_{1}^{n/2} g(x) g(n-x) dx + O(1) + O\left([-g(x) + g(n-x)]_{x_0}^{n/2} \right) = \int_{1}^{n/2} g(x) g(n-x) dx + O(1).$$

Acta Mathematica Hungarica 48, 1986

(21) and (22) yield

$$\lambda_n = \int_1^{n/2} g(x) g(n-x) dx + O(1).$$

Thus by (7) and (iv) in Theorem 2,

(23)
$$|F(n)-2\lambda_n| \le |F(n)-2\int_1^{n/2} g(x)g(n-x)dx| + 2\left|\int_1^{n/2} g(x)g(n-x)dx - \lambda_n\right| < (F(n)\log n)^{1/2} + O(1) < 2(F(n)-\log n)^{1/2}$$

for large n, hence in view of (7),

$$\lambda_n > \frac{1}{2} F(n) - \left(F(n) \log n \right)^{1/2} > \frac{1}{2} F(n) - \left(F(n) \cdot \frac{F(n)}{36} \right)^{1/2} = \frac{1}{3} F(n) > 12 \log n$$

so that also (20) holds.

Thus all the conditions in Theorem 3 hold. By using Theorem 3, we obtain that, with probability 1, for large n we have

$$|R(n) - 2\lambda_n| < 7(\lambda_n \log n)^{1/2}.$$

In view of (7), (23) and (24) yield for large n

$$|R(n) - F(n)| \le |R(n) - 2\lambda_n| + |2\lambda_n - F(n)| < 7(\lambda_n \log n)^{1/2} + |2\lambda_n - F(n)| \le$$

$$\le 7 \left[\left(\frac{1}{2} F(n) + \frac{1}{2} |2\lambda_n - F(n)| \right) \log n \right]^{1/2} + |2\lambda_n - F(n)| <$$

$$< 7 \left[\left(\frac{1}{2} F(n) + (F(n) \log n)^{1/2} \right) \log n \right]^{1/2} + 2(F(n) \log n)^{1/2} <$$

$$< 7 \left[\left(\frac{1}{2} F(n) + (F(n) \cdot \frac{F(n)}{36} \right)^{1/2} \right) \log n \right]^{1/2} + 2(F(n) \log n)^{1/2} =$$

$$= 7 \left(\frac{2}{3} F(n) \log n \right)^{1/2} + 2(F(n) \log n)^{1/2} < 8(F(n) \log n)^{1/2}$$

which completes the proof of Theorem 3.

5. So far we have estimated the probabilities $P_n(d)$ for d "far" from the expectation $\lambda_n = M(r_n(\omega))$. In [2], Erdős and Rényi gave lower and upper bounds for $P_n(d)$ for all d. These estimates give the right order of magnitude of $P_n(d)$ for d "near" λ_n , provided $\alpha_j = O(j^{-1/4})$. Furthermore, they determined the limit distribution of $r_n(\omega)$. Sharpening and generalizing these estimates, we are going to complete this paper by giving an asymptotics for $P_n(d)$ for d "near" λ_n .

THEOREM 4. If the sequence (8) satisfies (9),

$$\lim_{n\to+\infty}\alpha_n=0$$

and

(26)
$$\lambda_n = \sum_{1 \le i < n/2} \alpha_i \alpha_{n-j} > 3 \quad \text{for} \quad n \ge n_0,$$

and we put

$$\lambda_n' = \sum_{1 \le j < n/2} \alpha_j \alpha_{n-j} (1 - \alpha_j \alpha_{n-j}) = \sum_{1 \le j < n/2} \delta_n(j) (1 - \delta_n(j)),$$

then for $n > n_1$ and all d we have

$$\left| P_n(d) - \frac{1}{(2\pi\lambda_n')^{1/2}} e^{-(\lambda_n - d)^2/2\lambda_n'} \right| < 13 \frac{(\log \lambda_n)^2}{\lambda_n}$$

where $P_n(d)$ is defined by (12).

(Thus the limit distribution of the random variable $\frac{r_n(\omega) - \lambda_n}{(\lambda'_n)^{1/2}}$ is the normal distribution.)

PROOF. Throughout the proof, θ will denote a complex number with absolute value ≤ 1 . (In other words, $u = \theta v$ means that $|u| \leq |v|$.)

We denote the characteristic function of the random variable $r_n(\omega)$ by $\varphi(t)$, so that in view of (13)

$$\varphi(t) = M(e^{ir_n(\omega)t}) = f(e^{it}) = \sum_{d=0}^n P_n(d) e^{idt} = \sum_{1 \le j < n/2} ((1 - \delta_n(j)) + \delta_n(j) e^{it}).$$

Furthermore, we put

$$\eta = 2 \left(\frac{\log \lambda_n}{\lambda_n} \right)^{1/2}.$$

Then we have

(27)
$$P_{n}(d) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \varphi(t)e^{-idt}dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-(1/2)\lambda'_{n}t^{2}} e^{i(\lambda_{n}-d)t}dt - \frac{1}{2\pi} \int_{\eta \leq |t|} e^{-(1/2)\lambda'_{n}t^{2}} e^{i(\lambda_{n}-d)t}dt +$$

$$+ \frac{1}{2\pi} \int_{|t| \leq \pi} (e^{-i\lambda_{n}t}\varphi(t) - e^{-(1/2)\lambda'_{n}t^{2}}) e^{i(\lambda_{n}-d)t}dt +$$

$$+ \frac{1}{2\pi} \int_{\eta \leq |t| = \pi} \varphi(t)e^{-idt}dt = J - J_{1} + J_{2} + J_{3}.$$

First we estimate J. Substituting $t = (\lambda_n')^{-1/2}x$, we obtain

(28)
$$J = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-(1/2)\lambda'_n t^2} e^{i(\lambda_n - d)t} dt =$$

$$= \frac{1}{2\pi (\lambda'_n)^{1/2}} \int_{-\infty}^{+\infty} e^{-(1/2)x^2} e^{i(\lambda_n - d)(\lambda'_n)^{-1/2}x} dx = \frac{1}{(2\pi \lambda'_n)^{1/2}} e^{-(\lambda_n - d)^2/2\lambda'_n}$$

since it is well-known that

$$\int_{-\infty}^{+\infty} e^{iux-x^2/2} dx = (2\pi)^{1/2} e^{-u^2/2}$$

(see, e.g., [5], p. 261).

In order to estimate J_2 and J_3 , we need an estimate for $\varphi(t)$. For |z| < 1/2, we have

 $\left| e^{z} - \left(1 + z + \frac{z^{2}}{2} \right) \right| = \left| \sum_{k=1}^{+\infty} \frac{z^{k}}{k!} \right| \le \sum_{k=1}^{+\infty} \frac{|z|^{k}}{3} = \frac{|z|^{3}}{6} \frac{1}{1 - |z|} < \frac{|z|^{2}}{3}$

and

$$1 - z = \exp(\log(1 - z)) = \exp\left(-z + \frac{z^2}{2} - \frac{z^3}{3} + \dots\right) =$$

$$= \exp\left(-z + \theta\left(\frac{|z|^2}{2} + \frac{|z|^3}{3} + \dots\right)\right) = \exp\left(-z + \theta\left(\frac{|z|^2}{2} + \frac{|z|^3}{2} + \dots\right)\right) =$$

$$= \exp\left(-z + \theta\frac{|z|^2}{2} + \frac{1}{1 - |z|}\right) = \exp\left(-z + \theta|z|^2\right).$$

Thus in view of (25), for large n, $1 \le i < n/2$ and $|t| \le 1/2$ we have

$$e^{-i\delta_{n}(j)t} \left((1 - \delta_{n}(j)) + \delta_{n}(j)e^{it} \right) = e^{-i\delta_{n}(j)} \left(1 - \delta_{n}(j)(1 - e^{it}) \right) =$$

$$= \left(1 - i\delta_{n}(j) t - \frac{1}{2} \left(\delta_{n}(j) \right)^{2} t^{2} + \frac{\theta}{3} \left(\delta_{n}(j) \right)^{3} t^{3} \right) \left(1 - \delta_{n}(j) \left(-it + \frac{t^{2}}{2} + \frac{\theta}{3} t^{3} \right) \right) =$$

$$= 1 - \frac{1}{2} \left(\delta_{n}(j) - (\delta_{n}(j))^{2} \right) t^{2} + \frac{\theta}{2} \delta_{n}(j) t^{3} =$$

$$= \exp \left(-\frac{1}{2} \left(\delta_{n}(j) - (\delta_{n}(j))^{2} \right) t^{2} + \frac{\theta}{2} \delta_{n}(j) t^{3} + \theta \left(-\frac{1}{2} \left(\delta_{n}(j) - (\delta_{n}(j))^{2} \right) t^{2} + \frac{\theta}{2} \delta_{n}(j) t^{3} \right)^{2} \right) =$$

$$= \exp \left(-\frac{1}{2} \left(\delta_{n}(j) - (\delta_{n}(j))^{2} \right) t^{2} + \frac{\theta}{2} \delta_{n}(j) t^{3} + \frac{2\theta}{3} \left(\delta_{n}(j) \right)^{2} t^{4} \right) =$$

$$= \exp \left(-\frac{1}{2} \left(\delta_{n}(j) - (\delta_{n}(j))^{2} \right) t^{2} + \theta \delta_{n}(j) t^{3} \right)$$
hence

(29)
$$e^{-i\lambda_{n}t}\varphi(t) = \prod_{1 \le j < n/2} e^{-i\delta_{n}(j)t} ((1 - \delta_{n}(j)) + \delta_{n}(j)e^{it}) =$$

$$= \prod_{1 \le j < n/2} \exp\left(-\frac{1}{2} (\delta_{n}(j) - (\delta_{n}(j))^{2})t^{2} + \theta \delta_{n}(j)t^{3}\right) = e^{-(1/2)\lambda'_{n}t^{2} + \theta \lambda_{n}t^{3}}$$

(for large n and $|t| \le 1/2$).

Furthermore, in view of (25), for large n and $|t| \le \pi$ we have

$$|\varphi(t)| = \prod_{1 \le j < n/2} |1 - \delta_n(j) + \delta_n(j)e^{it}| =$$

$$= \prod_{1 \le j < n/2} \left((1 - \delta_n(j) + \delta_n(j)e^{it})(1 - \delta_n(j) + \delta_n(j)e^{-it}) \right)^{1/2} =$$

$$= \prod_{1 \le j < n/2} \left((1 - \delta_n(j))^2 + (\delta_n(j))^2 + 2\delta_n(j)(1 - \delta_n(j))\cos t \right)^{1/2} =$$

$$= \prod_{1 \le j < n/2} \left(1 + 2\delta_n(j)(1 - \delta_n(j))(\cos t - 1) \right)^{1/2} =$$

$$= \prod_{1 \le j < n/2} \left(1 - 4\delta_n(j)(1 - \delta_n(j))(\sin t/2)^2 \right)^{1/2} \le$$

$$\le \prod_{1 \le j < n/2} \left(1 - 3\delta_n(j) \left(\frac{2}{\pi} \cdot \frac{t}{2} \right)^2 \right)^{1/2} = \prod_{1 \le j < n/2} \left(1 - \frac{3}{\pi^2} \delta_n(j) t^2 \right)^{1/2} \le$$

$$\le \prod_{1 \le j < n/2} \left(1 - \frac{1}{4} \delta_n(j) t^2 \right)^{1/2} < \prod_{1 \le j < n/2} \left(1 - \frac{1}{8} \delta_n(j) t^2 \right) <$$

$$< \prod_{1 \le j < n/2} e^{-(1/8) \delta_n(j) t^2} = e^{-(1/8) \delta_n t^2}$$

(for large n and $|t| \le \pi$), since

$$|\sin x| \ge \frac{2}{\pi} |x|$$
 for $|x| \le \pi/2$,
 $(1-u)^{1/2} < 1 - \frac{u}{2}$ for $0 \le u < 1$

and

$$(0 <) 1-x < e^{-x}$$
 for $0 \le x < 1$.

By (25), (29) and (30), for large n we have

$$|J_{1}| + |J_{3}| \leq \frac{1}{2\pi} \int_{\eta \leq |t|} e^{-(1/2)\lambda'_{n}t^{2}} dt + \frac{1}{2\pi} \int_{\eta \leq |t| \leq \pi} |\varphi(t)| dt \leq$$

$$\leq \frac{1}{2\pi} \left(\int_{\eta \leq |t|} e^{-(1/2)\lambda'_{n}t^{2}} dt + \int_{\eta \leq |t| \leq \pi} e^{-(1/8)\lambda_{n}t^{2}} dt \right) \leq$$

$$\leq \frac{1}{2\pi} \left(\int_{\eta \leq |t|} e^{-(1/8)\lambda_{n}t^{2}} dt + \int_{\eta \leq |t|} e^{-(1/8)\lambda_{n}t^{2}} dt \right) = \frac{1}{\pi} \int_{\eta \leq |t|} e^{-(1/8)\lambda_{n}t^{2}} dt =$$

$$= \frac{2}{\pi} \int_{\eta}^{+\infty} e^{-(1/8)\lambda_{n}t^{2}} dt \leq \frac{2}{\pi} \int_{\eta}^{+\infty} \frac{t}{\eta} e^{-(1/8)\lambda_{n}t^{2}} dt =$$

$$= -\frac{8}{\pi\eta\lambda_{n}} \left[e^{-(1/8)\lambda_{n}t^{2}} \right]_{\eta}^{+\infty} = \frac{8}{\pi\eta\lambda_{n}} e^{-(1/8)\lambda_{n}\eta^{2}} =$$

$$= \frac{4}{\pi(\lambda_{n}\log\lambda_{n})^{1/2}} e^{-(1/2)\log\lambda_{n}} < \frac{2}{\lambda_{n}(\log\lambda_{n})^{1/2}}$$

and

$$\begin{aligned} |J_{2}| &\leq \frac{1}{2\pi} \int_{|t| \leq \eta} |e^{-i\lambda_{n}t} \varphi(t) - e^{-(1/2)\lambda'_{n}t^{2}}| dt = \frac{1}{2\pi} \int_{|t| \leq \eta} e^{-(1/2)\lambda'_{n}t^{2}} |e^{\theta(t)\lambda_{n}t^{3}} - 1| dt \leq \\ &\leq \frac{1}{2\pi} \int_{|t| \leq \eta} 2\lambda_{n} |t|^{3} dt \leq \frac{1}{\pi} \lambda_{n} \int_{|t| \leq \eta} \eta^{3} dt = \frac{2}{\pi} \lambda_{n} \eta^{4} < 11 \frac{(\log \lambda_{n})^{2}}{\lambda_{n}} \end{aligned}$$

since

$$|e^z - 1| = \left|z + \frac{z^2}{2!} + \frac{z_3}{3!} + \dots\right| \le |z| + |z|^2 + |z|^3 + \dots = \frac{|z|}{1 - |z|} \le 2|z|.$$

In view of (26), (27), (28), (31) and (32) yield for large n that

$$\begin{aligned} |P_n(d) - J| &= \left| P_n(d) - \frac{1}{(2\pi\lambda_n')^{1/2}} e^{-(\lambda_n - d)^2/2\lambda_n'} \right| \leq \\ &\leq |J_1| + |J_2| + |J_3| < \frac{2}{\lambda_n (\log n)^{1/2}} + 11 \frac{(\log \lambda_n)^2}{\lambda_n} < 13 \frac{(\log \lambda_n)^2}{\lambda_n} \end{aligned}$$

which completes the proof of Theorem 4.

References

- [1] P. Erdős, Problems and results in additive number theory, Colloque sur la Théorie des Nombres (CBRM) (Bruxelles, 1956), 127—137.
- [2] P. Erdős and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica, 6 (1960), pp. 83—110.
- [3] P. Erdős and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific Journal, 118 (1985), 347—357.
- [4] H. Halberstam and K. F. Roth, Sequences, Springer-Verlag, 1983.
- [5] A. Rényi, Wahrscheinlichkeitsrechnung, VEB Deutscher Verlag der Wissenschaften (Berlin, 1962).

(Received October 17, 1984)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REÁLTANODA U. 13—15 H-1053