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PROBLEMS AND RESULTS ON ADDITIVE
PROPERTIES OF GENERAL SEQUENCES. II

P. ERDOS, member of the Academy and A. SARKOZY (Budapest)

1. Let &/={ay, a,, ...} (a,<=a,=...) be an infinite sequence of positive integers.
Denote by R(n) the number of solutions of g;+a;=n. Starting from a problem of
Sidon, P. Erdds [1] proved the following theorem (by using probabilistic methods):
There is a sequence & so that there are two constants ¢, and ¢, for which for every n

(n c;logn = R(n) < ¢, log n.
On the other hand, an old conjecture of Erdds states that for no sequence < can we
have
R(n)
@ logn

(See [2] and [4] for further related results and problems. )
These problems led us to study the question: how regular can be the behaviour
of the function R(n)? In part I [3] of this paper, we proved the following results:

-¢ (0=<c=<+=)

THEOREM 1. If F(n) is an arithmetic function such that

3) F(n) - 4=,
) F(n+1) = F(n) for n = n,
and
n
(5) F(n)=o0 (m].
and we write
N

4(N) = 2 (R(n)—F(n)),

n=1

then A(N)=0o(NF(N)) cannot hold.

COROLLARY 1. If F(n) is an arithmetic function satisfying (3), (4) and (5), then
(6) max [R(n) — F(n)| = o((F(m)"*)
cannot hold.

(In fact, Theorem 1 says that (6) is impossible in square mean.)
The aim of this paper is to show that the above results are nearly best possible.
We will prove the following theorem:
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202 P. ERDOS and A. SARKOZY

Tueorem 2. If F(n) is an arithmetic function satisfving
()] F(n) = 36logn for n=> n,.

and there exist a real function g(x). defined for 0<x<=+ <, and real numbers x,, n,
such that
(1) g'(x) exists and it is continuous for 0=x<= + e,
(i) g (x)=0 for x=x,,
(iii) 0=g(x)=<1 for x=x,,

nl2

(iv) |F(n)—2f g(x)g(n—x)dx|<(F(n) log n)""* for n=>n,,
0
then there exists a sequence </ such that
|R(n)—F(n)| < 8(F(n) log n)’* for n > n,.

By choosing F(n) and g(x) in Theorem 2 in an appropriate way, the following
corollaries can be derived from Theorem 2:

COROLLARY 2. [f B is an arbitrary real number such that P=8/nV'2, then there
exists an infinite sequence < such that (1) holds with (0<)e,=f*n—8fn'2, c,=
=pn+8fnl/2,

(So that, e.g., choosing =5, we obtain that (1) holds with ¢, =6<p*n —8fx/2
and c,=151>f2r +8pn'2.)

COROLLARY 3. If G(x) is a real function defined in (0, + =) and such that

G(x)

@ ,.l.le logx TR

(ii) G(x)=o0(x),
(iii) G’(x) exists and it is continuous for O0<x—<= + oo,
(iv) G’ (x)=0 for x>x,

and
V) ¢'(x)= 4@]
then there exists a sequence . such that

. R(n) _
TG -

(So that, e.g., there exists a sequence s/ with R(n)~log nlog log n.)

1.

COROLLARY 4. If O<a=1. then there exists a sequence of such that
|R(n)—n®| < 8n*%(log )2 for n=>n,.
In fact, in order to derive Corollaries 2, 3 and 4 from Theorem 2, we have to use
: log x)2 (G(X)Y*  (—np
Theorem 2 with f v E vk ex*~V”  (where c=c(a)) and f*rlogn,
nf2
2 f( g(x)g(n—x)dx, n* in place of g(x) and F(n), respectively.
1
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2. Sections 2, 3 and 4 will be devoted to the proof of Theorem 2. The proof is
based on the probabilistic method of Erdds and Rényi [1], [2]. The Halberstam—Roth
book [4] contains an excellent exposition of this method thus we use the terminology
and notation of this book. In this section, we give a survey of those notations, facts
and results connected with this probabilistic method which will be needed in the
proof of Theorem 2.

Let @ denote the set of the strictly increasing sequences of positive integers.

LEMMA 1. Let
(8) Oy, O, Olgsy -..
be real numbers satisfying
9) O<ea, <1 (n=1,2..).

Then there exists a probability space (2, S, p) with the following two properties:
(i) For every natural number n, the event B™ ={w: w€Q, ncw)} is measurable,
and u(B")=a,.
(ii) The events BV, B®, .. are independent.

This lemma is identical with Theorem 13 in [4], p. 142.
We denote by ¢,(w) the characteristic function of the event B™:

1 if néw,
2(@) ={0 if néo.
For some w={a,, a,, ...}¢Q, we denote by r,=r,(w) the number of solutions of
(10) a,+a,=n, afw, a0, 4,<a,
so that
(11 [R(n)—2r,(w)| = |

(where R(n) is the number of solutions of (10) without the restriction a,<a,) and
ra(@) = 21 0;(@) - j(@).

lﬁj-:—’—n
Furthermore, we put
3,(j) = n{o: j€w, n—jcw}) = a;a,_; for j < nf2,
=M, @)= 23 8,0
l§j¢%
(where M (&) denotes the expectation of the random variable &),
2) P,(d) = u(fo: ry@) = d)) =

= Z 6n(jl)(l _5n(jl))_l sen 6n(jd)(l _5s(jd))_1 li!—-:];:.fs (1 _6n(j))

1=j<...<jg=<n|2
for O=d=n
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and

(13) flz)= 2 P,(d)z* =

=20, 3 aG-6G) " -8 G)0-0.00) T (1-6,0)2=
= I (1-6,()))+8,())2)

1= j-:n

(for any complex number z).
We shall also need the Borel—Cantelli lemma:

LemMA 2. Let (X, S, p) be a probability space and let E,. E,, ... be a sequence of
measurable events. If

2 nE) <+,
then, with probability 1, at most a finite number of the events E; can occur.
(See [4], p. 135.)
3. The proof of Theorem 2 will be based on Lemma 3 and Theorem 3 below.
LEMMA 3. If the sequence (8) satisfies (9), n=3, and A is a real number satisfying

(14) [ Y
then we have
(15) p({w: |ry(@)—2,] = 4) < 2 exp (—4%42,).

(Note that (9) implies 4,>0 for n=3.)
PrOOF OF LEMMA 3. First we estimate u({w: r,(w)=2,+4}). In view of (13)
and (14), for 1<x<2 we have

(16)  p({o: r(w) =2,+4)) = Pd)= 3 P,(d)xi—Ga+d =

_;. +4 dz=i 44

= X~k 3 P d)xt = xmlntD 3Py (d)xt = x~Gut 0f(x) =
d=i +4

= (1+x=1)"Gta [T (1+(x—1)8,())) <

1=j=n|2

<exp[~Gura) (@-0-85Y)| 11 e (@-15,0) =

1=j<nf2

"ea-n 3 60)=
1) ] _

] <exp(—d4(x—1)+4,(x—1)?%)

= exp [—(J.,.+A) (:r—l)—(x_l

—exp[ (4, +A)[(x
(x—1)
2

= exp[~A(x— D+(4,+4)
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since we have 1 +u=e* for u=0 and

wou? u?
14+u = exp (log (1+u)) = exp U—ztz—..|=explu—z) for 0=u<l.

Writing x=1+4/24, in (16) (then 1<=x<2 holds by (14)), we obtain that
(17) p({m: ra(@) = i,+4}) < exp (—4%2,+ 4%44,) = exp (—4%42,).
Similarly, for O<=x<=I we have
(18)  p({w: ry(@) =1,—4}) = mg_d P,(d) = ﬁé’_d P, (d)xi=tin=) =
=x~4=0 2 P(d)x!=x"UD dz',:; P,(d)x* = x4 f(x) =

d=i —4
=(1-(=x)"G-2 [T (1-(1-x)8,())) <
1=j=n/2

< exp ((1 —x)(4,—4)) 15;{1;;; exp[-—(l —x)au(j)-i.%j‘i-m,)_!)

—ep(0-0G-0-0-0 3 a()+5E 3 GoY)=
1=j<nf2 1=j=<n/2

=ep(0-00-0-0-0 3 a0+ 3 5,0))=
1=j<n/2 1=j=<nf2

— exp [(1 —X) (A= A)—(1 ﬂﬂﬁgl.] = exp[ﬂd“_xn(i -zx)s j“]

since for O0<=x<1 we have
w Ul u
exp(—u) < 1 —u = exp (log (1 —u)) = exp —utz -t <exp|-utz].

Writing x=1-4/4, in (18) (then O<x holds by (14)), we obtain
(19 alfo: r(@) = 1,—4}) < exp (= 4%1,+4%21,) = exp (—4%22,).
(17) and (19) yield (15).

THEOREM 3. If the sequence (8) satisfies (9), and there exists a positive integer n,
such that

(20) iw= 2 o, ;>9logn for n=n,,

1=j<nl2
then, with probability 1, there exists a number ny=n,(w) such that
|R(n)—24,| < 7(4,log n)'/* for n > n,.
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ProOF. By using Lemma 3 with 4=3(%,log n)'/* (then (14) holds by (20)),
we obtain

g;u Au'({w. lf'n(w)_}-"{ = 3{/1" log ﬂ)‘uz}) -

=0+ ?u({w: ra(@) — 2| = 3(4,log n)1/2}) <

+e + o
<0()+2 3 exp(—(3(%,log m)2R/4i,) = O(1)+2 3 n— <4 oo,

Thus by the Borel —Cantelli lemma (Lemma 2), with probability 1, at most a finite
number of the events
|r(w)—4,] = 3(4, log m)'/?

can occur, i.e., with probability 1, there exists a number n,=n,(w) such that
lr (@) —A4,] = 3(4, log n)'2 for n > n,.
By (11) and (20), for such a sequence w, for large n we have
|R(n)—24,| = |R(n)=2r,(@)|+2[r,(@) =4, = 1+6(2, log n)'* < (A, log n)'/2
which completes the proof of Theorem 3.

4. In this section, we complete the proof of Theorem 2. We put
_[1)2 for 1=n=ux,
n— | g(n) for x,<=n<=+ce
Defining the sequence (8) in this way, (9) holds trivially. Furthermore, in view of (iii)
in Theorem 2, we have
(21) = 2 ;= 3 g(j)g(n—j)+O0(D).
1=j=nf2 Xg=j=n2
By (i) in Theorem 2, we may use the Euler—Maclaurin summation formula in order
to estimate the last sum. In view of (i), (i) and (iii), we obtain
(22)

nf2 ni2
28080 = [ ggn—nix=[zwgt—n (x-t-g])] "+
nf2 1
+ [ (¢ @en-9— @ (n—x) (x—1x1—) dx =
0
nl2
= ([ g@)gn—x)dx+0(1)+0((g(n/2)+g(xo) g(n—x0)+
g nf2
+0( [ (1g@|+1g (n—x)l)dx) =
a2 gl 2
= [ 2@er-xdx+0M)+0( [ (¢ () —g (n—x)dx) =
nf2 ; Yo nf2

= [ gWer—x)dx+0()+0([(-g(®)+gn—01g) = [ g(x)g(n—x)dx+0(D).
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(21) and (22) yield

nf2

W= [ g)gn—x)dx+0(1).
Thus by (7) and (iv) in Theorem 2,
nj2 nj2
(23) |F(m)—24,| = |F(n)—2 § g(x}g(u—x)dxl-i—Zlf g(x)g(n~x)dx—).,,| <
1 1

< (F(n)log n)'*4+0(1) < 2(F(n)—log n)*/*
for large n, hence in view of (7),

F(n))”z 1

1. }%F(n)—*(F(H)IOgN)UZ >T;-F(n) [F( ). E—F(n) > 12logn

so that also (20) holds.
Thus all the conditions in Theorem 3 hold. By using Theorem 3, we obtain that,
with probability 1, for large n we have

(24) [R(n)—24,| = 7(4,log n)'/2
In view of (7), (23) and (24) yield for large n
|R(")_F(")| = 'R(n)_z’lnl'[' Iz‘ln'—F(")l = 7('{n IOg ﬂ)”2+122”—F(H)I =

1/2

=7 [[-} F(n) +5l b F(n)l] log n] +|24,— F(n)| <

1/2
<17 [[Zi F(n)+ (F(n)log ")”2] log "] +2(F(n)log n)* <

F(n) e

[[— F(n)+[F( n).—= ]log n] s!+2(F(1'a) log n)/2 =

1/2
= [% F(n)log "] +2(F(n) log n)* < 8(F(n) log n)\*

which completes the proof of Theorem 3.

5. So far we have estimated the probabilities P,(d) for d “far” from the expec-
tanon In=M(r,(@)). In [2], Erdds and Rényi gave lower and upper bounds for
P,(d) for all d. These estimates give the right order of magnitude of P,(d) for d
“near” A,, provided a«;=0(j~'/*). Furthermore, they determined the limit distri-
bution of r,(w). Sharpening and generalizing these estimates, we are going to com-
plete this paper by giving an asymptotics for P,(d) for d “near” A,.

THEOREM 4. If the sequence (8) satisfies (9),
(25) lim o, =0
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and

(26) b= 2 o, ;=3 for n=n,,
1=j=nf2

and we put

by = Z ajan—j(l_ajan—j)= Z;zﬁn(j)(l~5,,(j)),

1=j=nf2 1=j<=mn,

then for n=n, and all d we have

. ! —(a,,—u;!;zz.j,- . (log 4,)°
P,(d)— GriE e 13 —l,,
where P,(d) is defined by (12).
ru(w)_‘q’u

(Thus the limit distribution of the random variable is the normal

(2;)1[2
distribution.)
Proor. Throughout the proof, 8 will denote a complex number with absolute
value =1. (In other words, u=0v means that |u|=|v].)
We denote the characteristic function of the random variable r,(w) by o(t),
so that in view of (13)

@) = M(e™©") = f(e") = ‘g: P, (d)e'* = . 2 ((1=0,())+8.())e")-

=j=n/2

Furthermore, we put

Then we have
+x

@7) P = [ pWe i =

-

s s 1 i g
_ f e~ WD At i —d)e gy f e~ (U2 At i, — Dt gy 4

2n _ T

1 —idt o =(12) A%t (A, —d)t
+2ﬂ f(e p()—e )e dit+

ltl=n

1
g [ o@e®dt = J—Jy+ o+ ;.
n=ltl=n

First we estimate J. Substituting =(4.)"Y2x, we obtain

+ e
28) J=o [ etmEe gy
iy 1 jme—(us) x? ei(i-..—d)(a:.)—lf”x dx = I e—(:.,,—d)',rel,',
. 2m (A2 ok . (2ri,)u2
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since it is well-known that

+ oo

f elux=x2dx = (2m)\/2e—'2

(see, e.g., [5], p. 261)
In order to estimate J, and J;, we need an estimate for ¢(t). For |z]<1/2,
we have

Tl _ 2P| |zf*

= —_— T —— —_—

400
; gg‘; 3 6 1—|z| 3

(1+z+

and

2
1 —z=-exp(log(l—2)) = exp[—z+%—-?+ ] =

=exp[—z+6(—|-%|-2+|-‘¥+...]]=exp[ z+9[1zl= |22|s+...]]=

IZI’

—exp[ 240 — IIZI) =exp(—z+0|z%.

Thus in view of (25), for large n, 1=j<n/2 and |t|=1/2 we have
e D((1=5,(})+,()e") = e~ (1 -3, (j) (1 —e") =

[I —id (;)r——(é (_;))=r“+ (5 (;))"t“] [l -4, (J)[ ”+£..+ g :8]] =
= 13 (DG +5 3, () =
- l i i1)2) 2 0 i) 3 l i 2) 2 6 i :
= exp| — 5 (D=t + 53, (D E+0( — 5 (3, -GN+ 8,0)) | =
1
= exp (3 ()~ (6.0)) A +5-8,() P+ (o1t =

1
= exp (5 6,() -G, #+05,())

hence
(29) e~atep(l) = fl e~ (1 -38,())+0,(j)e*) =

=f=nl2

= I exp[—21(6..(1)-(6..0))=)r*+oé,u)r=] e it

1=j=nj2

(for large n and |t|=1/2).
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210 P. ERDOS and A. SARKOZY

Furthermore, in view of (25), for large n and |{|=7n we have
(30) lo(n)] = : Il 3il—5..(1')+t:‘3,.(j)~s'"| =

=j<n/

JH n,'((l —8,(J)+6,())e")(1—=6,(j)+6,(j)e" ™) =
11

1=j=n
1=j=nj2

= JT (1+25,())(1 —8.()(cos t— D)* =

((1=8,())*+ (3, (J))* +26,(j) (1 —8,(j)) cos 1)/2 =

1=j<n/2
= T (1-45,()(1 =8,(i))(sin 1/27)* =
{2 P 3 i
= 1511-:11"13 [I —36,(J) {;.5] ] = I‘E,‘g‘m (l -—Fén(nﬁ] =

= I [l——}é,u)r*]m{ /i [1-%5,(;);=]{

1=j=<n/2 1=j=<n/2

- ” e— 183, (N — p—(1/8) 4,1
1=j=<=n/2

(for large n and |t|=nr), since

; 2
[sin x| = = |x] for |x|=m/2,

(l—u)”*<|—-;- for O0=u<1l

and
0<) l—x<e™ for 0=x=<1.

By (25), (29) and (30). for large n we have

- ! —(1/2) i 12 _I__ I =
31) il + o] = - rrf:{:le i+ I]:;lﬂ[_“.w(r)|dr =
= ZL( f e~ U At e 4 f e—““‘“r-"df) =
% n=tf n=t|=n

= _I( f e~ (18 A ey 1 f"'_“"'”n"'d:) . l f e~ df ==

2% 2y n=ld ™ nsl
2 ] o B el ¢
=2 f e—Um A,y = = f e Aty =
i n i n n

8 8
—(1B) A, N+ — - (UUB) A, =
gy LT = e
4 2
= U, <
Tl'().“ IOg 'ln)' An(IOg ‘;"n)

Acta Mathematica Hungarica 48, 1956



ADDITIVE PROPERTIES OF GENERAL SEQUENCES. 11 211

and
(32)
| = _l_ ]e—”u‘ (r)_e-(ua} .i,,',l’J dt = L e—(lf2) J.:‘lxlea{r}i,,ra_lldf =
| 2! ) @ B)
“T 1 =n “T o=y
_ | gry o | 3gr— 29 04 _ 11 (logi)?
=Ei‘:f2,1,,|:; dt=—4, fn dt = =21 “—f‘_
tl=n HEL] n
since
| = et B B | = el el 2P = 2 = 2
- T T Tol—z] T
In view of (26), (27), (28), (31) and (32) yield for large n that
l - .
= ] = e a—(a, A
|Pn(d} J| Pn(d) (27[11;)”2 € =
_ 2 (log 4,)° (log 4,)*
= [Nl + [Jof + 5] = 7. (log " +11 i 13 7
which completes the proof of Theorem 4.
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