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Let x	x„ be n distinct points in the plane . Denote by D(x	xn ) the minimum
number of distinct distances determined by x	x,, . Put

f (n) = min D(x	xX") .

An old and probably very difficult conjecture of mine states that

fin) > cn/(log n)l .

f(5)=2 and the only way we can get f(5)=2 is if the points form a regular pentagon . Are
there other values of n for which there is a unique configuration of points for which the
minimal value of f(n) is assumed? Is it true that the set of points which implements f(n) has
lattice structure? Many related questions are discussed .

I have published many papers on this and related topics [1] . Important progress
has been made over the last few years on many of these problems and I will give a
short review of some of these at the end of this paper and also state there some of
the remaining problems, but first of all I will state some new problems . Usually
we will restrict ourselves to the plane though many interesting questions can be
posed in higher dimensions and even on the line (though the problems on the line
are almost entirely of number theoretic and combinatorial character) ; also I
almost entirely ignore our numerous problems and results with George Purdy
since we plan to write both a survey paper and a book on these questions, but
enough of idle talk and let us see some action .

Let x 1 , x z , . . . , x„ be n distinct points in the plane, denote by D(x 1 , . . . , x„)
the number of distinct distances determined by x 1 , . . . , x n . Put

f (n) = min D(x 1 , . . . , X„)'

	

( 1)

where in (1) the minimum is to be taken for all possible choices of x	x,, .
Denote by d(xi , x;) the distance from x i to x;, and denote by g(n) the largest
number of pairs x i , x; for which d(xi , x;) = 1. The determination of f (n) or g (n)
are probably hopeless, and to get good upper and lower bounds for these
functions is also very difficult . As far as I know these problems were first stated
by me in 1946 [2] and as I stated recently, important progress has been made on
them. The strongest conjectures are [2]

f (n) > c l n/(log n) 1/2 (perhaps f (n) _ (1 + o(1))cn/(log n) 1/2

	

(2)
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and
g(n) < n(exp C z log n/log log n) .

	

(3)

It was already shown in [2] that if (2) and (3) are true they are best possible . I
offered (and offer) 500 dollars for a proof or disproof of (2) and (3) and 250
dollars for g(m) < n' + £. (Szemerédi considers this perhaps attackable .) I have
made no progress on these problems since [2] . Quoting from an old paper of E .
Landau, so far my remarks do not justify writing a new paper, but now it is time
to state some new problems .

Let x,, . . . , x„ be a set which implements f(n) (i .e ., D(x i , . . . , xn) = f(n)) . Is
it true that x i , . . . , x„ has lattice structure?

I really have no idea and the problem is perhaps too vaguely stated . The first
step would be to decide if there always is a line which contains Cn= of the x, (and
in fact n E instead of n would already be interesting) . A stronger result would be
that there are cn= (or n' - `) lines which contain all the x; . The only result in this
direction, due to Szemerédi [1], states that if D(x i , x	x„) in o(n) and
n > n„(k) then there always is a line which contains at least k of our points . In
fact Szemerédi's result gives that such a line can be chosen as the perpendicular
bisector of two of our points, and also that there are o(n) lines which contain all
our points . The first new problem I want to state is the following . Assume

D(x,, . . . , xJ = o(n) .

	

(4)

Is it then true that (4) implies that there are always four x,'s which determine less
than four distinct distances? I would expect that the answer is negative, i .e ., I
think one can find, for every E > 0 and n > nJE), n points for which
D(x,, . . . , xn) < En but any four of our x's determine at least four distinct
distances. I got nowhere with this simple and I hope attractive problem, but
perhaps I overlook a trivial point .
Denote by Dk(xI, . . . , xJ the smallest value of D(x	xJ for any choice

of k of our points xi, . . . , x,, . Trivially, if (4) holds then

Dk(x i , . . . , x .,) 5 (z) - k + 2.

	

(5)

This is really obvious since (4) implies that every x ; is the center of a circle which
contains many of our x;'s . It is conceivable that for every k and n > ni ( k) there
are points for which (4) holds and for every l--k, (5) is best possible, i .e .,
D(x,, . . . , xn ) < En for every n > n o (E, k) and for every l , k, D,(x,, . . . , xJ _
(2) - l + 2 . If the answer to this question is affirmative then try to determine or
estimate the smallest k = k(n) for which (4) implies Dk(x,, . . . , xn) < (z) - k + 2 .
Clearly many related questions can be asked, but since I have no nontrivial
results at the moment we leave the formulation of these to the reader .

Perhaps it is more interesting to ask the inverse problem . The simplest
interesting cases probably are the following . Assume

D3(x,, . . , x„)=3,

	

(6)
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i.e ., our set contains no isosceles triangles . How small can D(x	x„) be?
Clearly (6) implies D(x,, . . . , x .) -n -1 and I believe that (6) implies

D(x	x„)ln ~ -

	

(7)

If (7) is true, then it is fairly close to being best possible . To see this let
a, < a2 < • • • < a„ be a sequence of integers which contains no three terms in an
arithmetic progression and for which a„ is minimal . By a well known result of
Behrend [3] mina„<n(exp(c(log n))) . Thus there are n points on the line for
which (6) holds and

D„(x,, . . , x„) < n exp(c(log n)2) .

Assume next

D,,(x,,

	

, xa) = 5, (8)

i .e ., every set of four points determines at least five distinct distances . How small
can D(x	x„) be? I cannot decide whether (8) implies D(x,, . . . , x„) > cn' .
Also, if (8) holds what is the largest h(n) so that we must have a subset of h(n)
points all of whose distances are distinct? If the x i are on a line then it is easy to
see that h(n) -_ [2(n + 1)] . In fact it is easy to see that the hypergraph formed by
the four-tuples (x i ,, x,z , xi„ xi,) with d(x i„ x iz , xt„ xi,) = 5 is two chromatic if the x t

are on a line . If the x i are not all on a line then (8) very likely permits this
hypergraph to have arbitrarily large chromatic number . Clearly here too many
further problems can be formulated; many of them will have a Ramsey-like flavor
but I expect that geometric methods will give better results . Here I state only : It
is immediate that if D6 (x,, . . , x„) =14, then D(x,, . . , x„) , z(1") since the
same distance can occur only twice . I have not been able to show that
Ds (x,, . . . , x„) =9 implies D(x	x„) > cn 2 : perhaps here too I overlook a
trivial point . Assume next that x,, x	x„ is such that every set of 5 points
contains four points for which all the distances are different? What is the largest m
so that our set contains m points for which all distances are different . The fact
that m tends to infinity with n is of course a consequence of Ramsey's theorem
but geometric considerations no doubt will give very much better estimates . Let
me remind the reader that the following problem is still far from solved :

Let h k (n) be the largest integer so that if x,, . . . , x n is any set of n distinct
points in k dimensional space one can always find a subset of hk (n) points for
which all distances are different . It is easy to see that hk (n) > n k but the best
possible value of e k is not known . E, =-'2 follows from a result of Ajtai, Komlós,
Sulyok and Szemerédi [12] . h,(7) = 3 is the only exact result . Here I just want to
remark that infinite problems are often (of course not always) easier than finite
ones ; e .g . I proved [4] that if S is any set of power m (m >K) in k-dimensional
euclidean space then one can always find a subset S, c S, IS, I = m for which all
distances are distinct . The proof uses the axiom of choice but not the continuum
hypothesis .
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The fact that infinite problems are often simpler than finite ones led Ulam and
me to make the following somewhat impudent and conceited joke : "The infinite
we do right away, the finite takes somewhat longer ." This was stolen from the
U.S. Navy where they said during World War 11 : "The difficult we do right away,
the impossible takes somewhat longer ."

Let us now return to our original problem . Assume that x,, . . . , x„ implements
f (n), i .e .,

D(x,, . . . , x„) =f(n) .

	

(9)

Is it then true that for every k if n > n o (k) there is a subset x;,, . . . , x,, satisfying

Dk (xi,, . . . , x„) =f (k)?

	

(10)

The answer may very well be different for different values of k . For example, it
is not at all clear if (9) implies (10) for k = 3, i .e., is it true that if x,	x„
implements f(n) then our set must contain an equilateral triangle . I expect that
the answer is yes . Assuming that I am right, then the following problem must be
faced . Assume that x,, . . . , x„ contains no equilateral triangle ; how small can
D(x,, . . . , x„) be? It can certainly be less than cnl(log n)2' since the square lattice
does not contain an equilateral triangle, but I think that D(x,, . . . , x„) >
(1 + c)f (n) in this case . On the other hand I believe that if x, , . . . , x, contains
neither squares nor equilateral triangles then

D(x,, . . . , xn)
/dtog

n - -

	

(11)

I do not see how to attack (11) . If we assume D4 (x,, . . . , x„)=4, then I
strongly believe that (11) holds, but I can certainly not justify my belief .

Observe that f (5) = 2 is only possible for the regular pentagon . I believe that
(9) may very well hold without our set containing a regular pentagon and in fact
perhaps if x,, . . . , x„ contains a regular pentagon then (9) cannot hold . This is
the reason for my belief that (9) may imply (10) for some, but not all, values of k.
How many choices of x,, . . . , x, are there which satisfy (9)? Denote this

number by r(n) . Two implementations are considered different if there is no
similarity transformation which passes one onto the other . Of course r(3) _
r(5) =1, while r(4) = 3 (the square, the equilateral triangle with its center and
two equilateral triangles having a common side) . Perhaps for every large n there
are two implementations of (9) which have only two points in common . This
certainly is the case for n = 4. it would be of interest to find all ways of satisfying
(9) for some n -- 6 for large n ; this probably will not be easy . Also ; can one
implement f (n) and g(n) at the same time for all n? For small values of n this is
certainly possible .

The general problem which faces us can perhaps be stated as follows . Let us
assume that D(x,, . . . , x„) is given, and is of course %f (n) . What is the range of
Dk (x,, . . . , x„)? Or, if D&I , . . . , x„) is given what can be said about the range
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of D(x,, . . . , x")? These problems are perhaps too general to lead to any
interesting results .

To end this somewhat confused chapter, I would like to mention a special
problem which intrigued me for some time . Let x,, . . . , x„ be n points in general
position, i .e ., no three on a line and no four on a circle . Is it prossible
D(x i , . . . , x") = n - 1, so that the ith distance occurs i times 1-- i , n? (The
distances are not ordered by size or in any other way .) This is trivially possible for
n = 3 and n = 4, and Pomerance showed an example for n = 5 while two
Hungarian students found an example for n = 6 . (Unfortunately I have forgotten
both the examples and their names .) Palásthy and Liu independently found such
a construction for n = 7 . Palásthy's proof will appear in : Stud . Sci . Math . Hungar .

Perhaps no such examples exist for n > 6 or at least for sufficiently large n .
Denote by h(n) the minimum value of D(x,, . . . , x„) if the x, are in general
position . Perhaps for n > n o, h(n) -- n, but I cannot even prove h(n) > 2'(l + E)n .
I hope in fact that

h(n)

	

but h(n) _ 0

	

(12)
n

	

n

Another old conjecture of mine states that if x,, . . . , x„ are n points in the
plane then there is always one of them which has at most exp(c log n/log log n)
other points equidistant from it . This is easy with cn1 and Beck proved it recently
with o(W) . The proof is not published and is surprisingly complicated . The square
(or triangular) lattice shows that exp(c log n/log log n) if true is best possible . If
the n points form a convex n-gon I conjectured that there is a vertex which has no
three other vertices equidistant from it . This was disproved by Danzer (unpub-
lished), but I hope it holds with 4 instead of 3 even though I could not even prove
it with n ` instead of 4 . Perhaps here too I may overlook a simple argument .

I conjectured and Altman [5] proved that for a convex n-gon D(x l , . . . , x,)
[in], equality e .g ., for the regular polygon . I further conjectured that in a convex
n-gon there is always a vertex x, so that there are at least [;n] distinct numbers
among the number d(x,, x ;), 2 ~, i , n. This conjecture is still open .

Moser and I conjectured nearly 30 years ago that in a convex n-gon the same
distance can occur at most cn times, the best example we had is 3n + 1 points for
which d(x,, x,) = 1 has 5n solutions . I hoped that convexity can be weakened by
assuming only that no three of the points are on a line . Purdy and I have an
example [11] of n points no 3 on a line with n2" -1 pairs of points at unit distance .
Is it true that if x 1	x" are n points no three (or more generally : no k) on a
line then the number of pairs x ;, x; with d(x,, x,) = 1 is <Ck n log n?

Let there be given n points no four on a line . Denote by 1(n) the largest integer
so that one can always select l(n) points, no three on a line . It is easy to see that

1(n)+(l(2)) n or l(n)_1/2n-1 .

	

(13)

I could not improve (13) but could not disprove l(n) > cn.
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Now I give a short outline of some of the recent progress of my old problems .
The first progress on g(n) was due to Beck and Spencer [6] who proved
g(n)<n"-'for some E >0 , this result has been improved and the proof simplified
by various authors but at the moment g(n) < n"' still seems out of reach .
In 1952 Moser proved f(n) > cn3 and recently Fan Chung [7] improved this to

f (n) > n ; . This has since been improved by her and various other authors, but
f (n) > n' still seems out of reach . Beck, Szemerédi and Trotter [6] solved
several of my problems on lines but the following old problem is still open : Let
there be given n points no five on a line, denote by L(n) the largest number of
lines which contain four of our points . Is it true that L(n) = o(n') .

Kárteszi proved more than 20 years ago that L(n) > cn log n and Grunbaum [8]
improved this to L(n) > n1 which could very well be best possible .

More than 50 years ago Esther Klein (Mrs . Szekeres) asked : Is it true that for
every n there is an f (n) so that if f (n) points are given in the plane no three on a
line, then one can always find n of them which form the vertices of a convex
n-gon. She observed that f (4) = 5 and Szekeres conjectured f (n) = 2"-2 + l .
Makai and Turán confirmed this for n = 5 and Szekeres and I proved [9] :

'
2"- + 1 _ f (n)

	

2n - 4 (

	

) .

	

(14)
n-2

As far as I know this is all that is known about f (n) . In 1976 I asked : Is it true
that there is an F(n) so that if F(n) points are given in the plane then there are
always n of them which form a convex n-gon and no other point is in the interior
of this convex polygon. Trivially F(4) = 5 and Harborth proved F(5) = 10 and
thought that F(n) does not exist for n ; 7. He was not sure about n = 6, n = 6 is
still open but Horton proved Harborth's conjecture [10] .

To end this paper let me state a graph theoretial conjecture of Szemerédi : Is it
true that for every E > 0 and k there exists n o so that for every n > n o(E, k) every
G(n; c) (G(n ; c) is a graph of n vertices and c edges) c > n ` ' contains two sets of
vertices S, and Sz , IS, I = IS2 1 = k, s, f1 Sz = o so that if A c Ss , B c S,, JA I _ JBI _

[ k] are arbitrary subsets of S, and S2 , then there is at least one edge joining a
vertex of A and a vertex of B . Szemeredt showed that this remarkable conjecture
would imply f(n)<n"' (it seems though that this conjecture has been
disproved) .
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