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Let G be a graph, m > r ,1 integers . Suppose that it has a good-coloring with m colors
which uses at most r colors in the neighborhood of every vertex . We investigate these so-called
local r-colorings . One of our results (Theorem 2 .4) states : The chromatic number of G,
Chr(G) -- r2' 1092109 2 m (and this value is the best possible in a certain sense) . We consider
infinite graphs as well .

Introduction

Assume that a graph G has a good-coloring which uses at most r colors in the
neighborhood of every vertex. We call this kind of coloring a local r-coloring . Is it
true that the chromatic number of G is bounded? For r = 1 the answer is easy, G
is bipartite, as it cannot have an odd circuit . For r = 2, however, the situation is
completely different. A graph can be given with arbitrarily large (infinite)
chromatic number: The vertex set is the set of all triples fx 0 , xl , x 2 } with
xO , xl, x2 c X, here X is an arbitrary ordered set . If x o < x l < x2 and YO < yl < y2i
x, = yo , x2 = y l , then fxo, x t , x 2 } and f yo , yl , y2} are joined. If the cardinality of
X is large enough then this graph has large chromatic number (by Ramsey's or
the Erdös-Rado Theorem, in the finite or in the infinite case, respectively) . But
MX0,fxo, x t , x2)) = xt (where x o < x l < x 2 ) is a good coloring, and the neighbors of
fx o , xl, x 2} are colored with x o, x 2 .

In this paper we investigate the most general problems of this kind :
(*) Assume that G is a graph which has a good coloring with m colors which

uses at most r colors for the neighborhood of every point (for a technical reason
we count the point itself as an element of its neighborhood) ; is it true that the
chromatic number of G is at most n?

In the discussion we get sharp or almost sharp answers in both the finite and
infinite cases . If n, r are finite, the smallest m with a negative answer is something
about 2 T (2 T (n/2')) . We have exact result for r -- V, the weakest estimates are
in the interval log n < r < NFn . If n is infinite, the threshold m is 22 " . Under the
generalized continuum hypothesis we have a full answer to the main problem .

We also investigate the problem whether a (finite) graph with large girth and
large local chromatic number can be found (this generalizes an old result of



22

	

P. Erdős et al.

Erdős) and the problem that in infinite graphs establishing a negative answer to
(*) which finite subgraphs must occur . We also find analogous results for
k-neighborhoods in place of neighborhoods .

The organization of the paper is as follows . In Section 1 the basic definitions, a
universal graph and a very useful matrix-equivalent form of the problem are
given . The basic results for the finite and infinite cases are given in Sections 2 and
3 respectively . Section 4 gives the results for k-neighborhoods .

In this paper we adapt the usual set theory notation, i .e ., a cardinal is the set of
smaller ordinals, ~ denotes the functions from x to ~,, ~ is the cardinal E a<X "
f"A is {f(x) :x EA} . If A is a set, [A]' is the system of r-element subsets, P(A) is
the system of all subsets of A. A graph G is a pair (V, E) with E [V]2. A good
coloring for G is a function f from V into a cardinal with f(x) + f(y) if x, y are
joined. The chromatic number of G, in short, Chr(G) is the smallest cardinal x
such that a good coloring into x exists .

1. Definition and preliminary results

In this Section m, n, r all can be both finite and infinite cardinals . If G = (V, E)
is a graph, put dG (x, y) for the distance of x, y E V. Let us define T(x) _
{y E V : dG(x, y) , 1} for x c- V. As we have already mentioned in the introduc-
tion, a cardinal is the smallest ordinal of this cardinality, thus every finite n equals
to10,1, . . .,n-1} .

Definition 1.1 . A function f: V m is a local (m, r)-coloring (a local (m, <r)-
coloring) of the graph G = (V, E) if it is a good coloring (i .e ., f(x) ~ f(y)
whenever x and y are joined) and I If(y) : y ET(x)II ,r (I If(y) : y ET(x)II <r)
holds for every x c V.

Notice that the concept of (m, <r)-coloring is slightly more general as gives
some new cases if r is a limit cardinal . We shall, however, mostly deal with local
(m, r)-colorings and leave the generalizations for (m, <r) to the reader .

Definition 1.2 . P(m, n, r) abbreviates the following statement : there exists a
graph G = (V, E) with f: V - m, a local (m, r)-coloring, and Chr(G) > n .

Some easy remarks are in order . P(m, n, r) always holds if n < r. If P(m, n, r)
holds, then P(m', n', r') also holds if m -_ m', n' , n and r , r' .

As one can observe there exists a universal graph among those with local
(m, r)-coloring .
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Definition 1 .3 . U(m, r) is the following graph (V, E) :

V={(cr,A) :cr<m, A (-- m, a~A, J{a}UA l _-r}, and

E={{(a,A), (Q, B)} : aEB and PeA} .

Lemma 1.1 . P(m, n, r) holds if and only if Chr(U(m, r)) > n .

Proof. Clearly the° function f: V m, f(a, A) = a is a local (m, r)-coloring, so
one direction is clear . Suppose, on the other hand, Chr(U(m, r)) _- n and let
G = (VG , EG) be an arbitrary graph with f : VC m, a local (m, r)-coloring . We
need to show that Chr(G) , n . For X E VG put g(x) _ (f (x), (f"r(x)) - { f(X)}) E
VU( ,,,, r) . Obviously, {x, y} E EG implies {g(x), g(y)} E EU(11 , r) , so g is a graph
homomorphism. Now, the composition of g with a good coloring of U(m, r) with
n colors also colors G. 0

Definition 1 .4 . The system {A,,p : a < p < m} c P(n) is (m, n, r)-independent if
and only if the following holds :
for every B E [m]r and every a E B the set

is non-empty .

Lemma 1.2 . P(m, n, r) holds if and only if (m, n, r)-independent systems do not
exist.

Proof. Assume that {A,,p : a< 0 < m} c P(n) is an independent system . We are
going to show that Chr(U(m, r)) , n . For (a, A) E V U(m,r) Put

[n{Apa :o<a,PeB}] -[U{Aa,,,:

	

a<y,ycB }]

This function g: V U(m,r) - n is a good coloring of U(m, r) since
{ (a, A), (p, B) } E EU(r,,, r) , a < P imply g(p, B) E Aa,p, g(a, A) ~ A a,p .
For the reverse implication assume that g : VU(m , r) -n witnesses

Chr(U(m, r)) -_ n . Put Aa,p = {g (0, B): a c B} for a < 0 < m, we show that this
system is (m, n, r)-independent. If not, there is a set A E [m] r and an a E A with
[n{Ap,a : P < a, P E A}] - [U{Aa ,,, : a < y, y E A}] _ 0. Put ~ = g(a, A\ {a}),

then ~ E n{Ap,a : 0 < a, 0 E A} by the choice of the system . Hence there exists a
y E A with a<y satisfying ~EAa ,,, i .e ., ~=g(y, C) for some (y, C) 6V U(r,,, r)
with a e C. But then g assigns ~ to ( a, A - {a)) and (y, C ) and they are joined,
a contradiction . El

g(a, A) = min{n{Ap, a : p < a, P E A} - U{A,,,, : y E A, a < y}} .
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2. Finite graphs

In this section m, n, r are finite cardinals, i .e ., natrual numbers . As we already
mentioned non-P(m, 2, 2) holds for every m, hence the first problem is finding
the smallest m with P(m, n, 3) .

Definition 2.1 . S c P(n) is an intersecting Sperner family if A, B E S, A # B
implies A ~ B, A n B # 0. S(n) denotes the number of intersecting Sperner
families on n points .

Theorem 2 .1 . P(S(n) + 1, n, 3) holds .

Proof. By Lemma 1.2 it is enough to show that no (S(n) + 1, n, 3)-independent
systems exist . Assume, on the contrary, that .0 _ {Aij : 0 -- i < j -- S(n)} is such a
system . Let 9 be the system of those sets in {Ai,;: i < j) which are minimal
under inclusion, i .e ., for which Az-,; ~ Aij does not hold if i' < j. Clearly, 9'; is a
Sperner family. It is also intersecting, for J is (S(n) + 1, n, 3)-independent . To
reach a contradiction we only need to show 9i * 9 for i + j . Assume, therefore,
Yz = Y; and i < j. By the definition of Yj, there exists a B E Yj with B c Az,; . As
Yz = Y, there is a k < i satisfying B = Akj . Now, Akj -Aij _ 0 contradicting the
(S(n) + 1, n, 3)-independence of .0 . F

By a recent result of Erdős and Hindman ([5]) S(n) = 2 T (,,Z;2~ )(2 + 0(1))) . On
the other hand, we prove

Theorem 2.2 . Non-P(2 T ([(n2/2]), n, 3) holds for all n .

Proof. First notice that k = ( tin2)/2]) = á([ni21)(1 + 0(1)) . We are going to con-
struct a (2k , n, 3)-independent system . Enumerate the subsets of [n - 2][(n-2)11 as
{Xi : 0 -- i < 2k} and put Y = {A U {n - l) : A E Xi } . We can assume l Y l, IY l
when i < j. By this, we can also choose Aij E Y - Y. We claim that the system
J _ {Ai, ; : 0 < i < j < 2k } is (2 k , n, 3)-independent. To this end, let {i, j, 1) E [2 k]3

Then n - 1 E Ai,i n A;,,, n - 2 E n - (A i,; U A j, z), and also Az , ; - A;,, + 0 as Az, ; -
{n - 1} and A;, 1 - {n - 1} are different [(n - 2)/2]-element sets . El

Although the next theorem is true for all values of n and r, it gives useful
estimates only in case r = O(log n) .

Theorem 2.3 . P(2 T (2n + 2 T (n/2r-3)), n, r) holds .

Proof . By induction on n . The case n = 3 is trivial if r > 3 and P(214, 3, 3) holds
by Theorem 2 .1 . Assume our theorem is true for every n' < n and an
(m, n, r)-independent system J _ {A i , ; : 0 < i < j < m} is given . As Theorem 2 .1
treats the case r = 3, we can assume r > 3 . We call j < n of type A, where
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A E [n]'[n/21 , if either there is an i < j with A,,, = A or there exists l > j with
A;,, = n - A . If i <j < m, then either i is of type n \A t , ; or j is of type Ai, ;
depending whether IA, . i J -- [n/2] holds or not . This argument shows that all but
possibly one j < m is of type A for some A E [n]'[n/2] . There exist on M m
with m' _ IMI > (m - 1)/2n and a fixed A such that every i E M is of type A. We
claim that {A j,, nA : 0 , i < j < m, i EM, j E M} is an (m', JAI, r - I)-
independent system . If not, assume that X E [M]r-1 , j E X, and

[n{Ai, ; nA :iEX, i<j}]-[U{A ;,,nA :1EX, j<l}]=0.

As j is of type A, either there is a k < j with Ak = A or else there is a k > j with
A j , k = n - A, hence choosing X'= X U {k} and j the (m, n, r)-independence of J
is refuted. By the induction hypothesis m' < 2 T (2 JA I + 2 T (JA 1 /2r-4)) -- 2 T (n +
2T (n/2r-3)), m' • 2n < 2T (2n + 2T (n/2r -3)) . On the other hand, m - 1 < m'2 n, so
m _- m'2n, and we are done .

Theorem 2.4 . Non-P(2 T (2 T (n/((r -1)2r-1))), n, r) .

Proof. Let k = 2 T (nl ((r - 1)2r-1)) and JBI = k, B c P(n) be an (r - I)-
independent system, i .e .,

B,nB2 n . . .nBs n(n-BS+1)n . . .n(n-Br-1)#0,

whenever B1 , B2 , . . . , Br- 1 are different members of and 1-- s , r - 1 . The
existence of such a family was proved by leitman and Spencer [9] . Let
{Y: 0, i < 2k} be an enumeration of P( 393) with JYj_- jYJ for i <j. Put

.0 _ {A,, j : i < j < 2k}, where Ai ,; E Y - Y. J is (2k , n, r)-independent, as, if
A E [2k ]' and j E A, for i < j < l, A i, ; * A;,, holds by the construction of 9, and so
[n {A,, ; : i < j, i E A}] - [U {A;,, : j < l, l E A}] is non-empty by the r-1-
independence of A . El

The next Theorem gives lower estimates in case log n < r <Vn-. We don't have
useful upper estimates in this interval .

Theorem 2 .5 . (a) non - P((1 + 1/4r 2)n-1 n, r) ;
(b) non - P((~ln - 1) [

	

rj, n, r) .

Proof. Let f(n, r) be the maximum size of a system 9c P(n) such that no
member is covered by r - 1 other members . If {S, : 0 --i <f(n, r)} enumerates 9,
put 9 _ {A i , ; : 0 -- i <j < f (n, r)), A i ,; = S; . Obviously, J is (f(n, r), n + 1, r + I)-
independent. The estimates f (n - 1, r - 1) > (1 + 1/4r2)n-1 and f (n - 1, r - 1) >
(~/n - 1)[\1n-1/r] by Erdös, Frankl and Füredi [2], finish the proof . El

Theorem 2.6 . For every n, k, P(n + k + 1, n, [nl (k + 1)] + k + 1) holds .

Proof. Suppose, on the contrary, that {A ;,j : 0 _- i <j < n + k + 1 } is an
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(n + k + 1, n, [n 1(k + 1)] + k + 1)-independent system, and put Ih = [ni<, A iJ -
[U<,A;,i] . As for i < j, ni nAi , ; _ 0 and Ih c Ai,;, these Hi's are pairwise
disjoint. Hence, there exists an X E [n + k + 1]k+l with II, 0 for j E X. Put

iii, =[n{Ai,;:i<j, icX}]- [U{A;,t:j<1, 1EX}] for jEX. Again, IIInH;=
0, whenever i # j. Therefore, there exists an l E X with IHI l , [n/(k + 1)] . As
nt = 0, for every j E 171 , there is a g; < n + k + 1 with either g, < l and j E A,,,, or
g; > l and j E A l ,,, . Then Y = X U {g, : j c III l and l E Y witnesses that our system
is not (n + k + 1, n, [nl(k + 1)] + k + 1)-independent, a contradiction . El

This theorem is surprisingly sharp, when k is small, i.e ., r is relatively large
compared to n .

Theorem 2.7 . Non - P(n + k + 1, n, [nl(k + 1)] + k) holds for n , k2 + k .

Proof . We are going to construct an (n + k + 1, n, [nl (k + 1)] + k)-independent
system. PutAij ={j} for 0--i<j<nandA ;, h =n-{j} forj<n-h<n+k+1 .
We have to define An+p,n+q~ with 0 --p < q < k + 1 . Put Xh = { i : h[nl (k + 1)]
i < (h + 1)[nl(k + 1)]} for 0 _- h < k + 1 and pick k different elements, {Xh, l : l <
k + 1, l ~ h } from Xh (possible, as n , k2+ k). Put An+p,n+q = Xq U {Xh , q : h # p} .
We claim that our system is (n + k + 1, n, [nl(n + k)] + k)-independent . Assume
that A E [n + k + 1][nl(k+l)]+k j E A. We have to showy = [n {Ai,j : i < j, i E A} -
[U {A;,1: j < l E A}] +0. If j < n, then j E Y. If j = n + p with 0--p, define
X = XP U {Xh ,p : 0 -_ h < k + 1} . Clearly, ~xJ _ [nl (k + 1)] + k, JA i , ; n Xi -- 1Xi - 1
for all i < j and IX -A;,11 _ ~ XJ - 1 if l >j, hence x n Y + o . Ej

Our next topic is how large the girth of a graph with local coloring can be . Let
us notice, that by a well-known result of Erdős ([1]), for given g and 8 < 1/g and
n large enough there exists a graph G on n point, with girth at least g, and
Chr(G) , n s. By Theorem 2 .4 this graph has no local (n, r)-coloring if n is large
enough, depending on r . On the contrary, we show

Theorem 2.8. Given n, g there exists a graph G with a local (m, 3)-coloring for a
certain m, Chr(G) ; n, the girth of G is at least g .

Our graph will be a random subgraph of the shift graph on [m] 3 with m large
enough . It has a local (m, 3)-coloring, anyway . First we need a lemma .

Lemma 2.9 . For every n there exists a c(n) > 0, such that for every m, if
f: [m] 3 --> n is a coloring, there exist c(n)m 2 pairs {a, b} such that there are X, Y
with JXJ, I YJ > c(n)m, X < a < b < Y and a color x < n, such that f (x, a, b) _
f(a,b,y)=xifxEX,yEY.
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Proof. For every pair i < j < m define Ai; as the set of those x < n for which

{k<i :f(k, i, j)=X}I >Em,

where E > 0 will be chosen later . The number of triples with a color not counted

is at most (2)Emn < (3)4En .
As Ai; c n, by the Erdös-Szekeres theorem ([6]) on every

22n
+ 1 points there

is a triple k < i < j, with Aki = A i; . By a result of atona-Nemetz-Simonovits

([8]) the number of these triples is at least (3)/( 2 T (2 3n) +1) Summing up, there are
at least 1/( 2 T (2 3n) + 1 ) - 4En)(3) triples k < i < j with f (k, i, j) E Akf = A,j . If E is

small enough this is at least c(3) with c > 0. Counting again, there are at least
CM 2 pairs {a, b} such that for each pair a < b there are at least cm • y > b with

{a, b, y} as described above, with a certain c > 0 . For every such {a, b} there is a

set Y with AQb = Aby f (a, b, y) E AQb . Thinning again, there is an Y' c Y, such

that I Y'l > c'm and f(a, b, y) = x with a certain x E AQb for y E Y, Y % cm . By the
definition of AQb we can also choose X c a ~XJ , cm with f (x, a, b) = x for

x E X. 0

Proof of Theorem 2.8. Fix n, g . Let G be the random graph on [m]3 , choosing

the edge {{a, b, c}, {b, c, d}} into G with probability p, independently of each
other . m will grow to infinity with pm < m h where 6 > 0 is small enough. If
{X, X2 , . . . , XI) is a circuit of length l in the shift-graph on [m]3 , then
IU {Xi : 1, i -- 111 , l + 2 (by an easy induction) . The number of circuits with

length l is therefore O(m`+2) . The average number of circuits of length l in our

random graph is O(ml+2pl) = O(m 2(mp) t), the average number of circuits of

length at most g is O(m2(mp)g) . Remove the edges of these circuits . The
remaining graphs has girth at least g + 1 . Assume that almost all of these graphs
have chromatic number at most n . By Lemma 2 .9 in each of these graphs we can
exhibit cm2 pairwise edge-disjoint bipartite graphs (X*, Y*), where X* =X x
{a, b}, Y* _ {a, b} x Y, where X < a < b < Y. For every graph of the above kind

there are X < a < b < Y with the property that only O((mp)g) of the edges from

(X*, Y*) were omitted . As f is supposed to be a good coloring, no edge can go
between X* and Y* in the graph . This means that almost every graph has
X < a < b < Y, JXJ, I YJ > cm such that the number of edges between X* and Y*
is O((mp)g) . But the probability of this event is o(e-'2pm2+Am) = 0(1) if 8 <

1/g . 0

3. Infinite graphs

In this Section , A, p, i denote infinite cardinals . First we restate a result
mentioned in the Introduction .

Theorem 3.1 . For x a CO, P((22 ) + , x, 3) holds .

Proof. This is given by the shift graph on [(22 ) + ] 3 0
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Theorem 3 .2 . For .,, p--(o non-P(2 T (2 T P), ),e, <p) holds .

Proof. By a theorem of Hausdorff ([7]) there exists a <p-independent system
Y c P(AP) with 9'1 = 2~' i . There exists a system of 2' sets Y c 9' with Y J Y,
(i # j) . Now choose Aij E Y - Y, the system {Aij : i < j < 2z } is (2T, AP, <p)-
independent, similarly to the proof in Theorem 2.4 . 0

Theorem 3 .3 . Assume )L > cf(,,) and that for i < a,, 22 `< x = cf (x) holds, then
P(x, X, cf(),)) is true .

Proof. Put i = cf (X) and choose a sequence ( : ~ <r) converging to ~ . Assume
that {Aa,,g : a < P < x} is a (x, A, t)-independent family . For ~ <'r put

Sg = f CV < x: there are no y < cr < b with A,,,, n A,= Aa , b n .~,} .
Now for a E S~, f(ce) _ {A,,,, n íl, : y < a} is a function from S~ into P(P(.,~)), If
JS~ J > 2 T (2 T ),~ ), there are a < b in S~ with f(a) = f(b), so, by the definition of f
there is a y < cr with A,,,, n x, = A a, s n X7 , a contradiction. As ISg I , 2T (2 T X)
for ~ < i, there is an a < x such that a ~ U {S~ : ~ < i}, so A,,,,, fl A, = A,, s, fl x,
with 7~ < cr < b~ (~ < i) . But then [n {A,,,,a : ~ < ,r)] - [U {Aa , 6S : ~ < i}] _

0 . El

Theorem 3.4 . For x , CO, P(x+ , x, x) holds .

Proof. We invole a construction of Erdős-Hajnal ([3]) . Let G = (V, E) be the
following graph : V = {( a, 0) : a < P < x+}, (cr, P) and ( cr', P') are joined for
cr < cr' < 0 < P' . It is shown in [3] that Chr(G) = x+, and the function f (CV, 0) _
cr is obviously a local (x + , x) - coloring : f"F((a, /3)) c P .
Assuming GCH these last three results give that P(x, A, p) holds if and only if

p % 3, % A. . . or p % cf(,~), 1-:X+. 0

4. k-neighborhoods

In this section we generalize our original problem : How is the chromatic
number of G affected by the existence of a good coloring which uses few colors
for the k-neighborhood of every vertex?

Let us start with some notation . In the following discussion k is always a
natural number, m, n, r denote cardinals (both finite and infinite), x, ',, p are
infinite cardinals . If G = (V, E) is a graph, x E V, then 1 ` (xc) _ {y E

V : dG(x, y) < k} . expk(m) is defined by induction : expo(m) = m, expk+I(m) _
2eXPk(m)

Definition 4 .1 . A function f: V m is a local (m, r)k-coloring of G = (V, E) if it
is a good coloring and If"F* (x) I , r for every x E V.
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Definition 4.2. p k(m, n, r) stands for the following statement : There exists a
graph G = (V, E) with a local (m, r)k-coloring, but Chr(G) > n .

The immediate generalizations of the facts mentioned in the introduction are
true .

Theorem 4.1. pk ((exp2k(x))+ , x, 2k + 1) holds for every x , w.

Theorem 4.2 . non -pk(x, 2 (2k)k , 2k) for every x .

Definition 4.3 . The k-shift graphs on X has the vertex-set f (xo , x l , . . . ,

xk-i) : xi ~ xi+ 1 (0 , i < k - 1)} . (xo , x l, . . . . xk- 1 ) and (Yo, . . . , Yk- 1 ) are
joined if and only if x i = Yi+ l (0 , i < k - 1) or vice versa .

Proof of Theorem 4.1 . On the (2k + 1)-shift graph G on (exp2k (x))+
f (xo, X11 . . . , x 2k ) = x k is a local ((exp2k(x))+, 2k + 1) k-coloring and Chr(G) > x
by a result of Erdös and Hajnal ([4]) . El

Proof of Theorem 4.2. Assume that f: V x is a local ( , 2k) k-coloring of
G = (V, E) . Consider all walks (paths with not necessarily distinct vertices) of
length k starting in a fixed vertex x E V. As f is sufficiently local, it colors all
points in these walks by at most 2k colors . As these colors are ordinals, they are
ordered by the usual ordering between ordinals, so, we can re-number them increas-
ingly by 0, 1, . . . , l (<2k). By this, each walk mentioned above gives a mapping
from k to 2k. Summing up, we can define g(x) c k (2k) as the set of these maps .
For Chr(G) -- 2 (2k)k it suffices to show that f is a good coloring of G. Suppose,
in order to reach a contradiction that g(x) = g(y) and (x, y) E E. Put f"T k (x) _
fa0i . . . , CO, ao < al < . . . < ar, .f"I'(Y) _ {Í3o, . . . , Í3r}, Í30 < . . . < Í3r, .f (x) _
cvi, f (y) = Pi . . As f is a good coloring, cv i, + Nio, assume aio < 0i, There are
i 1 < io < i t such that Pi, = ail, aio= P i-, There is a walk starting from x with the
first two vertices colored aio , ai ,, so, as g(x) = g(y), there is a corresponding walk
from y with Pi ., Í3 i, as the first two colors . As, by assumption, (x, y) c E there is a
walk from x with the respective colors ai,,, ai, = Pi, Í3i, so there is an i2 > ü with
p i , = ail . Similarly, ai , = Í3i _2 for some i- 2 < i- 1 . Continuing this process we
obtain 2k + 1 different indices i_ k < i-k+i < • . • < i o < • • • < ik so that ay = Í3i;_,
for -(k - 1) j , k, f air : -k _- j _- k) c f'Tk(x), a contradiction . El

A universal graph like the one in Section 1 can also be defined .

Definition 4 .4 . Uk (m, r) is the following graph : The vertex-set is the set of all
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(k + 1)-sequences (AO , A,, . . , Ak) satisfying
(i) A t c m ;
(ü) 1A 0 1 = 1 ;
(iii) Ao c AZ c AQ c

	

;
(iv) A l c A3 c As c ;
(v) Ao c Ai ;
(vi) 1A o U Al U . . . U Ak 1 -- r.
(AO , . . . . Ak ) and (Bo , . . . , Bk ) are joined iff Ai c B;+, and B; (--AÍ+, for all

i < k .

Lemma 4.3 . Pk(m, n, r) holds if and only if Chr(Uk (m, r)) > n .

Proof. If Chr(Uk(m, r)) > n, then the graph G = Uk(m, r) witnesses Pk (m, n, r) :
put f((Ao , . . . , A k )) = UAo, i.e ., a where AO = { cr} . If (Bo, • • • , Bk) 1-k((Ao,
. . . . A k ) ), then Bo AO U . . . U Ak , so f ((Bo , . . . , Bk )) has r possible values .
For the other direction, assume that Chr(U k (m, r)) -_ n and G = (V, E) is a graph
with f: V m, a local (m, r)'-coloring . Put A'j = f" y E V: there is an (x, y)-walk
of length i in G} for x E V, i _- k . The mapping g(x) _
(A', . . . , Ak) is a graph homomorphism from G to Uk (m, r) . Composing g with

independent if and only if the following holds: For every {AO, . . . , Ak_ 1 ) E

V(Uk-1(m, r)) and Ak_ 2 c X c m if IX U Ak_ 1 1
, r, then

[I {A(Bo, . . .,B,_,), (Ao, . . .,Ak-0 : {(BO, . . . , Bk-1), (Ao ) . . . . Ak_ 1
)I

E E(Uk-1(m, r)), U Bo < U Ao, Bk_ 1 c X}]

- [U {A{A a_ _ Ak-1 ), (CO, .,

	

ck-1 ) : {(Ao , . . . , Ak-1), (CO, . . . , Ck_ 1 )I

E E(Uk-1(m, r)), UAo < U Co, Q-1 c X}]

is non-empty .

Lemma 4.4 . Pk(m, n, r) holds if and only if no (m, n, r) k-independent set exists .

Proof . Assume that {Ax : X E E(Uk-1 (m, r))) c P(n) is (m, n, r)k-independent .

We have to show that Chr(Uk (m, r)) , n . Whenever (Ao , . . . , Ak ) E

V (Uk (m, r)), choose g((Ao , . . . , Ak )) as the minimal element in

[I {A(Bo, . ,Bk-1), (AO,...'Ak_,)
: {(BO , . . . , Bk_,), (A0, . . . , Ak-1) I

E E(Uk-1(m, r)), U Bo < UAo, Bk-1 c Ak)]

[U {A(Ao, . . .,Ak-i), ( CO, . . .,Ck-1) : {(Ao, . . . , Ak-1), (CO, . . . , Ck-1) I

E E(Uk-1(m, r)), U Ao < U Co, Ck-1 c Ak }],

the n-coloring of Uk (m, r) we get a good coloring of G with n colors . 0

Definition 4.5 . The system {Ax : X c E(Uk-1 (m, r))} c P(n) is (m, n, r)k -
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which is non-empty by Definition 4 .5 withAk in place of X. We have to show that
g : V(U'(m, r))-n is a good coloring. If {(Ao , . . . , A k ), (Bo , . . . , Bk )} E

E(Uk(m, r)), Ao <UBO then g(( Bo, . . . , Bk)) EA(A,,_ .,Ak-,), (Bo, . . .,Bk-1) and

g((Ao, . . . , Ak)) ~ A(A O , . . . , A k -1), (Bp, . . . , Bk ,) so they are different .
For the other implication assume that g : V(U k(m, r)) --> n is a good coloring .

Put A(AO, . . .,Ak-,),(Bo, . . .,Bk,)_{g((Bo, . . .,Bk)) :Ak-icBk} for {(A o , . . .,

Ak-1), (Bo, . . . , Bk-1)} E E(Uk-1(m, r)), UAo < U Bo . We only need to show
that the system just defined is (m, n, r)k-independent. If not, there are an
(AO , . . . , A k- 1 ) E V (Uk-1(m, r)) and an X A k-2 with IX U Ak-1 I ,1 and the
difference in Definition 4 .5 empty. Put ~ = g((A o , . . . , A k-1, X)) . Clearly,

E

	

I {A(B,,, . . . , Bk-,), (Ao, . , Ak 1) : Bk-1 C X, U BO < U Ao}

by the above definition . By the indirect assumption, there is a (CO , . . . , Ck - 1 )
with ~ EA(Ao, . . .,Ak ,), (CO, . . ., Ck 01 {(Ao , . . . , Ak-1), (C0, . . . , Ck-1)} E
E(Uk-1(m, r)), Ck-1 c X, UAO < U Co . By the choice of the system, there is a
Ck with Ak-1 c Ck, ~ = g((CO) . . . , Ck-1 ) ), so the color ~ is assigned to
(Ao, . . . , A k-1 ) X) and (Co , C1 , . . . , Ck-1 i Ck ) and they are joined, a
contradiction . 7

Theorem 4 .5 . If > > cf(A),

	

is a strong limit cardinal, then P k ( , 7 , cf(X))
holds .

Proof. By induction on k . Put i = cf(,,) and choose a sequence (),~ : ~ < r )
converging to A . The case k = 1 is Theorem 3.3 . Assume that Pk-1 ( , X, cf(X))
holds, i .e ., Chr(Uk-1 ( , i)) > X and let {AX: X E E(Uk-1 ( , i))} c P(X) be a
( , )., r)k-independent system . For ~ < i put

S~ _ {(Ao , . . . , A k _ 1 ) E V(Uk-1 ( , i)) : there are no

(BO, . . . , Bk-1), (C0, . . . , Ck-1) E V(U
k-1 ( , i)) with

U BO < UAo < U Co and A (B., —, Bk -,) (Ao, . . . . Ak-1) n 4 =
A(Ap, . . . . Ak-1), (C0, . . .,Ck_,) I A,} .

If there is an (Ao, . . . , Ak-1) ~ U {S~ : ~ < i} then for ~ < i there are
(Bo, . . . , Bk-1 ), (Co, . . . , Ck_1) E V(Uk-1 ( , i)) such that

A(Bp, . . . , Bj_,), (A,, .

	

Ak 1) ÍÍ í~, - A(Ao, . . . , Ak-1), (Có, . . . , Ck-,) n ~ '

UBo<UAo <UCo.

Now the choice of this (Ao , . . . , A k_ 1 ) and X = U {Bk-1 U Ck_ 1 : ~ < i}
disproves ( , / , r) k-independence of our system. Hence we assume that
f ((A o , . . . , A k- 1 )) = min{ < is (Ao , . . . , A k-1 ) E S~} is well defined on
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V(Uk-1( , T)) . Put

g((AO, . . . . Ak-1)) = (f«AO,

	

, Ak_1)) ,

{A(&, . .-,Bk ,),(Ao, . . . .Ak_1) n'~f((Ao, . . .,Ak_1)) :

UBO <UA 0 } ) .

g constitutes a coloring of V(Uk-1 ( , i)) with E f2T(2TX) : ~ < i} _ X colors, so
by our inductive assumption there exists an

f AO, . . . , Ak-1), (Co, . . . , Ck-1)} c E(U
k-1 ( , Z)),

with g((Ao, . . . , Ak-1)) = g((CO, . . . , Ck_1)) and UA 0 < U Co . Put = f((Ao,
. . . . A k - 1 )) = f((C0i . . . , Ck- 1 )) and we know that

JA(B,) . . . , Bk-1 ), (Ao, . . . , Ak_1) Íl %~ : U BO < UA 0}

fA(Ba, . . . , Bk-1>, (co_ .' ck_,) f1 íá, g : U B0 < UCO}

so there exists a (Bo	Bk -1) c V(U k-1 ( , i)) with

A(Bp, . . .,Bk-1),(A0, . . .,Ak_1)I -" =A(A0, . . .,Ak-1),(c0, . . .,ck-1)I I .~,

which contradicts (A 0 , . . . , A k 1 ) c S~- 0

Theorem 4 .6 . P k ( + , , ) holds for , co .

Proof. Our graph is the direct generalization of the one described in Theorem
3.4 . Put V = f ( CVO, . . . , CO : (e0 < CVJ < . . . G 0.'k < +}, f a0, . . . , ak},
00, . . . , Pk) are joined if cro < Í3o < a 1 < Pj < . . . < ak < Irk . Chr(G) = + (see
[3]) and G has a local ( + , )k-coloring since fTk((cr 0i . . . , ce,)) if f is chosen as
f (( a0 , . . . , cvn)) = cr 0 . 0

In the next part we investigate the finite subgraphs of large local chormatic
graphs .

Lemma 4.7 . A graph on JV(G)J = + has a local ( + , )k-coloring if and only if
Chr(T k (x)) ~-- for every x c V(G).

Proof . One direction is trivial . For the other assume that V(G) = +,

fa : Fk(a) witnesses Chr(I k(ce)) , x, for a < x+ . Whenever < x put
y(~) = min f cr < + : cr * ~ and ~ c T k(a)} and take g(~) _ (y(~), f «)( ) ) . We
show that g is a local ( + , )k-coloring . If a is fixed, g'Tk(a) fg(a)} U
J (P, i) : 0 - 0.', i < } which is of size- . Assume that ~ ~'q and g(~) =g(ri) .
Then y(~) = y(q) = y, so ~, q c- Tk(y), fy ( ) = fy (,q), ~, q are not joined . El

Corollary 4 .8 . (a) Let H be a finite graph with a vertex x such that Chr(H -
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fx}) _- 2 (e.g . any circuit) . If G is a graph, ~V(G)J= x+, G has no local
( + , )-coloring, then G contains a copy of H.

(b) If H is a finite graph such that for every x E V (H) Chr(H - Ix}) , 3, then

there is a graph G on + with no local ( + , )-coloring and with no H as

subgraph .
(c) If G is a graph on x+ and G does not contain odd circuits of length

--2k + 1, then G has a local ( + , )k-coloring .

Proof. (a) By Lemma 4.7 there is an cr < + with Chr(F(ce)) = + and an old

theorem of Erdös-Hajnal ([3]) states that F(cr) must contain every finite bipartite

graph .
(b) Let s be so large that for every x E V (H), H - fx } contains odd circuits

of length --2s + 1 . By another theorem of Erdös-Hajnal ([3]), there is a graph

with Chr( ) _ I V ( ) I = + and without odd circuits of length =2s + 1. Join a

point y ~ V ( ) to every point of V ( ) . The resulting graph on f y } U V ( ) has

no local ( + , )-coloring and does not contain H, either .

(c) In this case Chr(F k(ce)) , 2 for cr < + , so we are done by Lemma 4.7 . 0

For larger cardinals the situation is different .

Theorem 4 .9 . For j < cu , x there is a graph on x ++ with no local ( ++ , )-
coloring and without odd circuits, of length --2j + 1 .

Proof. Our graph will be the Specker graph : V(G) _ [
++]22

+' and x o < . . . <

x 2;2 is joined to yo< . . . < y212 if x;+i < yi < xi+i+l for every 0 , i , 2j 2 -j . This

graph has no odd circuits of length --2j + 1 (see [3]), we show that it has no local
( ++, )-coloring, either . Assume that f: [ ++]22+1 ++ is one. Let r , 2j2 - j

and fix a sequence a o < a l < • • • < Q'r < x++ . Put

A = f f Í1o, . . . , 0212} : cr, +i < 0, < cr,+i+l for t , r} .

We show that If"AI ~-- . Once this is proved for r = 0, we get that the graph on
[ ++ - crJ 2J2+1 is -chromatic, a contradiction to [3] . Also, the claim is true for

r = 2j2 +j, by the properties of local coloring . For general r we prove the

assertion by reverse induction, assume it is true for r + 1. Put

A = f f g o , . . . , p 2j 2} : a t+i < P, < a,+i+l for t < r and cei+ ,. < Or < CO*

f"A~l ~-- by hypothesis, and A is the increasing union of IA. : ce < x++ } . If

V"A l ~-:- + , there is a P< ++ with If"Ap I, +, a contradiction . 0
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