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Let €7 be a graph, m>r>=1 integers. ‘Suppose that it has a poed-coloring with m colors
which uses at most r colors-in the neighborhood of every vertex. We investigate these so-called
local r-colorings, Ome of our resully (Theorem 2.4) states: The chromatic number of G,
Chr{(7) =r2" loglog, m (and this value i the best possible in-a certain sense). We consider
infimite graphs as well.

Introduction

Assume that a graph G has a good-coloring which uses at most r colors in the
neighborhood of every vertex. We call this kind of coloring a local r-coloring. Is it
true that the chromatic number of G is bounded? For r =1 the answer is easy, &
is bipartite, as it cannot have an odd circuit. For r = 2, however, the situation is
completely different. A graph can be given with arbitrarily large (infinite)
chromatic number: The vertex set is the set of all triples {x, x;, x;} with
Xps Xy, X2 € X, here X is an arbitrary ordered set. If xg<<x;<x; and yy, <y <y,
X, =Y, X2=¥, then {x,, x;, x2} and {y, ¥, ¥-} are joined. 1f the cardinality of
X is large enough then this graph has large chromatic number (by Ramsey's or
the Erdis—Rado Theorem, in the finite or in the infinite case, respectively). But
fll{xg, x, x3}) =x, (where x;<x;<x) is a good coloring, and the neighbors of
{xg, X7, X2} are colored with xj, X1,

In this paper we investigate the most general problems of this kind:

(#) Assume that & is a graph which has a good coloring with m colors which
uses at most r colors for the neighborhood of every point (for a technical reason
we count the point itself as an element of its neighborhood); is it true that the
chromatic number of & is at most n?

In the discussion we get sharp or almost sharp answers in both the finite and
infinite cases. If n, r are finite, the smallest m with a negative answer is something
about 21 (27(n/27)). We have exact result for r=1\/n, the weakest estimates are
in the interval logn <r<3/n. If n is infinite, the threshold m is 2%. Under the
generalized continuum hypothesis we have a full answer to the main problem.

We also investigate the problem whether a (finite) graph with large girth and
large local chromatic number can be found (this generalizes an old result of
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Erdds) and the problem that in infinite praphs establishing a negative answer to
{+) which finite subgraphs must occur. We also find analogous results for
k-neighborhoods in place of neighborhoods.

The organization of the paper is as follows. In Section 1 the basic definitions, a
universal graph and a very useful matrix-equivalent form of the problem are
given. The basic results for the finite and infinite cases are given in Sections 2 and
3 respectively. Section 4 gives the results for k-neighborhoods.

In this paper we adapt the usual set theory notation, i.e., a cardinal is the set of
smaller ordinals, *A denotes the functions from x to A, &% is the cardinal ¥, _; &
f'Ais {f(x):xeA). If A is a set, [A]" is the system of r-element subsets, P(A) is
the system of all subsets of A. A graph G is a pair (V, E) with Ec [V]. A good
coloring for G is a function f from V into a cardinal with f(x)+ f(y) if x, y are
joined. The chromatic number of G, in short, Chr{() is the smallest cardinal &
such that a good coloring into Kk exists.

1. Definition and preliminary resulis

In this Section m, », rall can be both finite and infinite cardinals: If G =(V, E)
is a graph, put dgix, v) for the distance of x, y eV, Let us define INx)=
{yeV:idslx, v)=1} for x e V. As we have already mentioned in the introduc-
tion, a cardinal is the smallest ordinal of this cardinality, thus every finite n equals
tor {0, L0y n—1j.

Definition 1.1. A function f: V—m is a local (m, r)-coloring (a local (m, <r)-
coloring) of the graph G=(V, E) if it is a good coloring (i.e., f(x)£f(y)
whenever x and y are joined) and |{f(y):ye M)} =r ({fly):velx)} <r)
holds for every x e V.

Notice that the concept of (m, <r)-coloring is slightly more general as gives
some new cases if r is a limit cardinal. We shall, however, mostly deal with local
(m, r)-colorings and leave the generalizations for (m, <<r) to the reader.

Definition 1.2. P(m, n, r) abbreviates the following statement: there exists a
graph G = (V, E) with f: V—m, a local (m, r)-coloring, and Chr(G) = n.

Some easy remarks are in order. P{m, n, r) always holds if n <r. If P(m, n, 1)
holds, then P{m', n', r') also holds if m=m', n' =n and r=r'

As one can observe there exists a universal graph among those with local
(m, r)-coloring.
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Definition 1.3. U(m, r) is the following graph (V, E):

V={{a, A):ao<m, Acm, aéAd, |[{a) JA|=r), and
E={{{a, A), (B, B)):aecBand fie A}

Lemma 1.1. P(m, n, r) holds if and only if Che{U(m, r)) > n.

Proof. Clearly the function [: V—=m, f(a, A)=a is a local (m, r)-coloring, so
one direction is clear. Suppose, on the other hand, Chr(U{m, r))=n and let
G =(Vg, E;) be an arbitrary graph with f: Vo—m, a local (m, r)-coloring. We
need to show that Chr(G) = n. For x € V; put g(x) = (f(x), (f'INx)) — {f(x}}) €
Vl'.-'!n.rl' vaiuusly, {xr J"} € Eﬁ i.mp]iﬂﬁ {S{I}. KUH E El.'(n.rll 50 8 5 a g[‘ﬂj’lh
homomorphism. Now, the composition of g with a good coloring of U(m, r) with
n colors also colors G, O

Definition 1.4. The system (A, :a<p<m}< P(n) is (m, n, r)-independent if
and only if the following holds:
for every B € [m] and every a € B the set

[M{Apa: B<a, feB}]=[U{Asia<y yEB)]

is non-empty.

Lemma 1.2. P(m, n, r) holds if and only if (m, n, r)-independent systems do not
exist,

Proof. Assume that {A, ,: a < <m) < P(n) is an independent system. We are
going to show that Chr(U(m, r))=n. For (a, A) €V, put

K(W;A:lzmi“{ﬁ{ﬂu.ni .s{d’,ﬁEA]r e U{An.r: yed, a< Y}]

This function g:Vy.—n is a pgood coloring of U(m,r) since
{{(a,A), (B. B)) € Eym,ry, a<p imply g(B, B)EA, 5, g(a, A) ¢ Auy.

For the reverse implication assume that g: V.., ,,—*n wilnesses
Chr{U(m, r))=n. Put A,, = (g(P, B): a € B} for a < fi <m, we show that this
system is (m, n, r)-independent. If not, there is a set A € [m] and an & e A with
[MApa: <o, BeA)]-[UfA,,;a<y yeAd]]=0. Put E=g(a, A\{a}),
then £ e {Ap.: B<a, f e A} by the choice of the system. Hence there exists a
yeA with a <y satisfying E€ A, ., i.e., E=g(y, C) for some (v, C) € Vyimn
with a € C. But then g assigns £ to (a, A — {a}) and (y, C) and they are joined,
a contradiction. O
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2. Finite graphs

In this section m, n, r are finite cardinals, i.e., natrual numbers. As we already
mentioned non-P(m, 2, 2) holds for every m, hence the first problem is finding
the smallest m with P(m, n, 3).

Definition 2.1. 5§ < P(n) is an intersecting Sperner family if A, BeS§, A+ B
impliecs A¢ B, ANB+M S(n) denotes the number of intersecting Sperner
families on »n points.

Theorem 2.1. P(S(n) + 1, n, 3) holds.

Proof. By Lemma 1.2 it is enough to show that no (§(n)+ 1, n, 3)-independent
systems exist. Assume. on the contrary, that J = {A;: 0=i<j=S(n)} is such a
system. Let ¥ be the system of those sets in {4, ;:i<j} which are minimal
under inclusion, i.e., for which A, & A, doés not hold if i’ <j. Clearly, ¥, is a
Sperner family. It is also intersecting. for ¥ is (S{n) + 1, n, 3)-independent. To
reach a contradiction we only need to show % + %, for i #j. Assume, therefore,
F;=19; and i <j. By the definition of ¥, there exists a Be ¥, with Bc A, . As
;=4 there is a k <i satisfying B =A, ;. Now, A, ,— A;; = contradicting the
(S(n)+1, n, 3)-independence of 4. O

By a recent result of Erdds and Hindman ([5]) S(n) =21 (%) + 0(1))). On
the other hand, we prove

Theorem 2.2. Non-P(21 (" 25a1), 1, 3) holds for all n.

Proof. First notice that k = (" 22)) = 1.7 )(1 + o(1)). We are going to con-
struct a (2%, n, 3)-independent system. Enumerate the subsets of [n — 2]~ a5
(X:0=i<2") and put ¥, ={AU{n—1}: AeX}. We can assume |Y|=|Y]
when i <j. By this, we can also choose A,; € ¥,— ¥, We claim that the system
F={A;:0=i<j<2*}is (2", n, 3)-independent. To this end, let {4, j, [} € [2*].
Then n—1€A,;NA, n—2en—(A, UA,,), and also A,,~A,, 40 as A, —
tn—1}and A, — {n — 1} are different [(n —2)/2)-clement sets. O

Although the next theorem is true for all values of n and r, it gives useful
estimates only in case r = O(log n).

Theorem 2.3. P(21(2n+21(ni277), n, r) holds.

Proof. By induction on n. The case n =3 is trivial if » =3 and P(2", 3, 3) holds
by Theorem 2.1. Assume our theorem is true for every n'<n and an
(m, n, r)-independent system # = {A, :0=i<j<m} is given. As Theorem 2,1
treats the case r=3, we can assume r >3 We call j<n of type A, where
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A€ [n]""% if either there is an i<j with A, ;=A or there exists [>] with
Ay y=n—-A, Hi<j<m, then either i is of type n\A,, or j is of type A,
depending whether |A, ;| = [n/2] holds or not. This argument shows that all but
possibly one j<m is of type A for some A E[n]""""u, There exist on M cm
with m' = |[M|={m—1)/2" and a fixed A such that every i e M is of type A. We
claim that {A, ,NA:0=i<j<m, ieM, jeM)} is an (m’', |A| r—1)
independent system. If not, assume that X € [M]|™', je X, and

[N{a nAieX i<jl]-[UfA NnA:leX, j<l)]=6

As j is of type A, either there is a k <j with A, ;= A or else there is a k > j with
A, =n—A, hence choosing X' = X U {k} and j the (m, n, r)-independence of #
is refuted. By the induction hypothesis m' <21 (2 |A| +21(|Al227"))=21(n +
21 (2, m -2 <21 (2n + 21 (n/27)). On the other hand, m — 1 <m'2", so
m=m'2", and we are done, [

Theorem 2.4. Non-P(21(21(n/((r—1)2'))), n, r).

Prool. Let k=21(n/((r—1)2""")) and |B|=k, BcP(n) be an (r—1)-
independent system, i.c.,
B;ﬁﬂzﬂ--*ﬁﬂ,r‘l(n—.ﬂ”,}ﬂ---ﬁ[n-.ﬂ,_,]%ﬁ.

whenever By, B, ..., B,_, are different members of # and 1=s=r~1. The
existence of such a family was proved by Kleitman and Spencer [9). Let
{Y:0=i<2'} be an enumeration of P{®) with |Y;|=|Y}| for i<j Put
F=(Ai<j<2*}, where A eY,—Y. J is (2, n, r)-independent, as, if
Ae[2*) andjeA, fori<j<l, A, ;% A, holds by the construction of #, and so
M{Aci<jieA}]l-U{Anj<lleA}] s non-empty by the r—1-
independence of 3. [

The next Theorem gives lower estimates in case log n < r <\/n. We don't have
useful upper estimates in this interval.

Theorem 2.5. (a) non — P((1+ 1/4r )", n, r);
(b) non — P((Wm— 1)V . r).

Prool. Let f(n, r) be the maximum size of a system 7<= P(n) such that no
member is covered by r — | other members, If {§:0=i<f(n.r)} enumerates ¥,
put # = (A, :0=i<j<f(n, r)). A, =8. Obviously, #is (f(n, r), n+1, r+1)
independent. The estimates f(n—1, r—1)>(1 4+ 1arty™ and f(n=1,r—1)>
(V= 1)V*=¥ by Erdds, Frankl and Firedi [2], finish the proof. [

Theorem 2.6. For every n, k, P(n +k+1, m. [n/(k + 1)] + k+ 1) holds.

Prool. Suppose, on the contrary, that (A, ;0=i<j<na+k+1} is an
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(n+k+1,n, [n/(k+1)]+ k + 1)-independent system, and put II,=[".A,,]—
Ui Ay) As for i<j, IENA,; =9 and I, c A, these [I's are pairwise
disjoint. Hence, there exists an X e[n+k +1]*"" with [T, =49 for je X. Put
m=[N{Ai<j, ie X} = (U4, j<I, [ X)}] for jeX. Again, IT, N IT, =
@, whenever i+ j. Therefore, there exists an [e X with [IT}|=[n/(k +1)]. As
I, =9, for every jeIl;, there is a g;<<n +k + 1 with either gy;<l/and je A, ; or
gi=land je A, Then ¥=XU{g;:jell} and I € Y witnesses that our system
isnot (n+k+1,n [n/(k+1)] + &+ 1)-independent, a contradiction. O

This theorem is surprisingly sharp, when & is small, i.e., r is relatively large
compared to n.

Theorem 2.7. Non — P(n+k + 1, n, [n/(k + 1)]+ k) holds for n=k* + k.

Prool. We are going to construct an (n+k+1, n, [n/(k +1)] + k)-independent
system. Put A ;= {j} forO0=i<j<nand A, =n—{j} forj<mn=h<n+k+1L
We have to define A, pniq With 0=p<g<k+1. Put X, ={i: h[n/(k +1)]=
i<(h+1)[n/(k+1)]} for 0=h <k + 1 and pick k different elements. {X), ;:{<
k+1,1#h) from X, (possible, asn =k + k). Put A, ., ni, =X, U (X, i h#p).
We claim that our system is (n + k + 1, n, [n/(n + k)] + k)-independent. Assume
that A € [n + k + 1JWETDIFE G e 4, We have to show Y =[N {A,:i<j, ied)—
{4, :j<leA)]+0 If j<n, then jeY. If j=n+p with O=p, define
X=X, U{X,,:0=sh<k+1}. Clearly, |x|=[ni(k+1)]+k, |A,;0X|=|X]—1
foralli<jand |X —A4,,|=|X|-1if 1>}, hence XNY¥Y+0. O

Our next topic is how large the girth of a graph with local coloring can be. Let
us notice, that by a well-known result of Erdds ([1]), for given g and 6 < 1/g and
n large enough there exists a graph  on n point, with girth at least g, and
Chr(G)=n". By Theorem 2.4 this graph has no local (n, r)-coloring if n is large
enough, depending on r. On the contrary, we show

Theorem 2.8. Given n, g there exists a graph G with a local (m, 3)-coloring for a
certaire m, Chr{G) =n, the girth of G is at least g,

Our graph will be a random subgraph of the shift graph on [m]’ with m large
enough. It has a local (m, 3}-coloring. anyway. First we nced a lemma,

Lemma 2.9. For every n there exists a c(n) =0, such that for every m, if
fi|mP—n is a coloring, there exist c(n)m® pairs {a, b} such that there are X, Y
with |X|, |¥I=c(n)m, X <a<b<Y and a color y<n, such that f(x, a, b)=
Ha, b,y)=xifzxeX ye¥.
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Proof. For every pair i <j<m define A; as the set of those y <n for which
[k <i:f(k, i, ))=x}| = em,

where £ >0 will be chosen later. The number of triples with a color not counted
i5 at most (3 )emn < (5 )den.

As A, n, by the Erdis—Szekeres theorem ([6]) on every 2% + 1 points there
is a triple k<i<j, with A,;=A; By a result of Katona-Nemetz—Simonovits
([8]) the number of these triples is at least (3)/(*T#4*" '), Summing up, there are
at least 1/(7TEEM ) —den)(T) triples k <i<j with f(k, i, jle A=Ay Ifeis
small enough this is at least ¢('y) with ¢ > (. Counting again, there are at least
cm® pairs {a, b} such that for each pair a <b there are at least cm - y = b with
{a, b, v} as described above, with a certain ¢ = (). For every such {a, b} thereisa
set Y with A, =A,, f(a, b, y) € A,,. Thinning again, there is an Y' = ¥, such
that |Y'|=c'm and f(a, b, v} = x with a certain x € A, for y € Y, ¥ = cm. By the
definition of A, we can also choose X ca |X|=cm with f(x,a b)=x for
xeX. O

Proof of Theorem 2.8. Fix n, g. Let G be the random graph on [m]’, choosing
the edge {{a. b, c}, {b. ¢, d}} into G with probability p, independently of each
other. m will grow to infimity with pm <m® where & >0 is small enough. If
(X, Xz, ..., X;) is a circuit of length ! in the shift-graph on [m]’, then
\J{X:1=i=[}|=!+2 (by an easy induction). The number of circuits with
length [ is therefore O(m'*?). The average number of circuits of length [ in our
random graph is O(m'"“p") =O(m*(mp)'), the average number of circuits of
length at most g is O(m*(mp)*). Remove the edges of these circuits. The
remaining graphs has girth at least g + 1. Assume that almost all of these graphs
have chromatic number at most n, By Lemma 2.9 in each of these graphs we can
exhibit ¢m® pairwise edge-disjoint bipartite graphs (X*, ¥*), where X* =X x
{a, b}, Y*={a, b} x ¥, where X <a<b <Y. For every graph of the above kind
there are X <a <h <Y with the property that only O((mp)*) of the edges from
(X*, Y*) were omitted. As f is supposed to be a good coloring, no edge can go
bétween X* and ¥ in the graph. This means that almost every graph has
X<a=b<Y, |X|, |¥Y|=om such that the number of edges between X* and ¥*
is ((mp)*). But the probability of this event is o(e="PrHAM) = o(1) if §<
Iig. O

3. Infinite graphs

In this Section &, A, p, T denote infinite cardinals. First we restate a result
mentioned in the Introduction.

Theorem 3.1. For k =w, P((2*")", &, 3) holds.
Proof. This is given by the shift graph on [(2*)"]. O
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Theorem 3.2. For A, p= o non-P(21(21428), A8, <p) holds.

Proof. By a theorem of Hausdorff ([7]) there exists a <p-independent system
¥ < P(A") with |#] =2" = r. There exists a system of 2" sets ¥, ¥ with ¥, ¢ ¥,
(i #j). Now choose A, €Y, —Y, the system {4, ;i<j<2} is (2°, % <p)-
independent, similarly to the proof in Theorem 2.4. O

Theorem 3.3. Assume A>cf(1) and that for v<A, 2*'< k =¢f(x) holds, then
P(x, A, ¢f(A)) is true.

Proof. Put t=cf(4) and choose a sequence (A.: £ < 1) converging to 4. Assume
that {A, 5: @ < f <k} is a (x, A, 7)-independent family. For § < r put

S;={a<k:thereareno y<a<dwithA, Nl =A,,MNA:}.

Now for a € §;, fa)= (A, , NA;: y<a} is a function from §; into P(P(4;)), If
|$:1=21(214;), there are a < & in 5 with f(a) = f(8), so, by the definition of f
there is a y<a with A, , NA; =A, , N, acontradiction. As |S:|=21(214;)
for§<v, thereisana<xsuchthata gl {S::5<r), 504, . NA:=A, 4 N
with y:<a<d8 (§<r) But then [M{A,.:E<r}]-[U(A,s:E<t}]=
g 0O

Theorem 3.4. For k = w, Plx", x, k) holds,

Proof. We invole a construction of Erdos—Hajnal ([3]). Let G =(V, E) be the
following graph: V = {{a, f):a<f<x*}, (a,f) and (a', §') are joined for
a<a'<f<f" Itisshown in [3] that Chr(G) =", and the function f(a, §) =
o is obviously a local (x*, k) — coloring: f"I{{a, B)) < f.

Assuming GCH these last three results give that P(x, A, p) bolds if and only if
p=3 k=" orpegf(d), x=4". I

4. k-neighborhoods

In this section we generalize our original problem: How is the chromutic
number of & affected by the existence of a good coloring which uses few colors
for the k-neighborhood of every vertex?

Let us start with some notation. In the following discussion k is always a
natural number, m, n, r denote cardinals (both finite and infinite), x, &, p are
infinite cardinals, I G=(V,E) is a graph, xeV, then Mixc)={ye
Vidglx, y)=k}. expi(m) is defined by induction: expy(m)=m, exp,.,(m)=

zmluj_

Definition 4.1. A function f: V— m is a local (m, r)*-coloring of G =(V, E) if it
is a good coloring and |f"I"(x)| =r for every x e V.
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Definition 4.2. P*(m, n, r) stands for the following statement: There exists a
graph G =(V, E)} with a local (m, r)*-coloring, but Chr(G) = n.

The immediate generalizations of the facts mentioned in the introduction are
true.

Theorem 4.1, P*((exp.,(x))", k, 2k + 1) holds for every k= w.

Theorem 4.2, non-P*(k, 2% 2k) for every k.

Definition 4.3. The k-shift graphs on X has the vertex-set {{x,, x,,...,
.rp‘_]:]':xf%x;_p] {ﬂii{k_l)}. {'J:;-_.,x,......h-.} and {_1-',;},..‘.,_}'*_;} are
joined if and only if x; =y, (0=i<k—1) or vice versa.

Proof of Theorem 4.1. On the (2k+1)shift graph G on (expun(x))”,
flxg, X1, ..oy X0 ) =x; i5 & local ((expa(K))", 2k + 1)*~coloring and Chr(G) >«
by a result of Erdis and Hajnal ([4])., O

Proof of Theorem 4.2. Assume that f: V—x is a local (k, 2k)*-coloring of
G =(V, E). Consider all walks (paths with not necessarily distinct vertices) of
length & starting in a fixed vertex x € V. As f is sufficiently local, it colors all
points in these walks by at most 2k colors. As these colors are erdinals, they are
ordered by the usual ordering between ordinals, so, we can re-number them increas-
ingly by 0,1, . .., [ (<2k). By this, each walk mentioned above gives a mapping
from k to 2k. Summing up, we can define g(x) c “(2k) as the set of these maps.
For Chr(G) =2™"" it suffices to show that f is a good coloring of G. Suppose,
in order to reach a contradiction that g(x)=g(y) and (x, y)e E. Put f'I'*(x)=
| I ), ap<ay<---<ay, fT0)={Bo ... B} Bo< <Py flx)=
&, fly)=F,. As f is a good coloring, a, + 8, assume «, <p,. There are
iy =<ig<tiy such that B, = ay, o, = f; ,. There is a walk starting from x with the
first two vertices colored a;,, a;,, so, as g(x)= g(v), there is a corresponding walk
from y with B, B, as the first two colors. As, by assumption, (x, v) € E there is a
walk from x with the respective colors ay,, a;, = 8, B, so there is an i.>i; with
Bi, = o, Similarly, a; =g, , for some i_,<i_;. Continuing this process we
obtain 2k + 1 different indices i _; <i i, <---<tip<<-.-<<i; so that a; =f
for =(k—1)=j=k, {a;: —k=j=k}cf'T"(x), a contradiction, [

by

A universal graph like the one in Section 1 can also be defined.

Definition 4.4. U*(m, r) is the following graph: The vertex-set is the set of all
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(k + 1)-sequences (Ag, Ay, ..., A,) satisfying

(i) A;c=m;

(ii) lf’lnlzli

(iii) AycAs=Ay=-v

(iv] AicAscAse-~

(V) Aot Ay;

f._\"i] jAuUA| lee 'UAJJ&!.

{Ay, ..., Ax)and {(B,,..., B} are joined iff A, B,,, and B,c A,,, for all
i<k

Lemma 4.3. P*(m, n, r) holds if and only if Che(U*(m, r)) = n.

Proof. If Chr{U*(m, r)) = n, then the graph G = U*(m, r) witnesses P*(m, n, r):
put f{{-‘qur Lo IA&H = UA{'H i.e., @ where Ay= {d} If {Bn- HaERL Ek}r*({fd[li
cvenAg)), then By AgU---UAg, so f({By, ..., By)) has r possible values.
For the other direction, assume that Che(U*(m, r))=n and G = (V, E) is a graph
with i V' — m, alocal (m, r)"-coloring. Put A} =f"{y € V: there is an (x, y)-walk
of length ¢ in G} for xeV, i=k The mapping g(t)=
(Ad, ..., A}) is a graph homomorphism from G to U*(m, r). Composing g with
the n-coloring of U*(m, r) we get a pood coloring of G with n colors. [

Definition 4.5. The system (A XeE(UYm, r))tcP(n) is (m,n r)*-
independent if and only if the following holds: For every {dg, ..., A;_,) €
V(U (m, r))and 4, s Xcmif [XUA,_|=r, then
FAs, .. B Y e P o {{Ba, - o0 Bri)s $AG e -0 Arai}}
e E(U* ' (m, r)), U Bo<\U Ao, Bi_, = X}]
=T, i capt {04a 4 A1) (G- Ci-1))
= E{Uk_]{mr r}}. UAII = L_.-I Gl' Ck—l EX}]

is non-empty.

Lemma 4.4. P*(m, n, r) holds if and only if no (m, n, r)*-independent set exists.

Proof. Assume that {Ay: X € E(U* Y(m, r))} = P(n) is (m, n, r)*-independent.
We have to show that Chr(U"m, r))=n. Whenever (A, ..., d;)¢

V(U*(m; r)), choose g({Aq, ..., Ay )) as the minimal element in
T 07 NP N nr el P 4 g . et Bi_i), {Ag, - . Ay}
€ E(U*(m, r)), \U By <l Ay, Be_y = Ay}]
~ DA s s Al i s gl i o i ) RIGRS < o Ci1)}

€ E(U*Y(m, r)), UAs <l G, Cuoi e Ay},
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which is non-empty by Definition 4.5 with A4, in place of X. We have to show that
g V(U (m, r))—n is a pood coloring. If ({4, ..., 4;), (By, ..., Bi)}e
E(U*(m, 1)), Ao<\UJ By then g((By, ... B))€Agay . ap, it .. 50 ANd
gl{AG -« - A EALL L Aess (B By SO they are different.

For the other implication assume that g: V(U*(m, r))—n is a good coloring.
Pt b Ao B By =18 By oo oy B} )i Ay =By} for {{Ag,...,
Aioih (Buyoooy Beoy} e (U Y (m, 1)), |UA<|J B,. We only need to show
that the system just defined is (m, n, r)*-independent. If not, there are an
(Aoyeo-y Ay ) eV(U*Ym, r)) and an X 5 A,_, with |[XU A, ;|=1 and the
difference in Definition 4.5 empty. Put £ =g({A4,, ..., A;_;, X)). Clearly,

EEM{A(E}.....H*_]}.{A“ ..... 4,,..1}5Bir—|'=X-UBﬂ{UAu}

by the above definition. By the indirect assumption, there is a (G, ..., Ciy)

with  EEAoisaiite s oeM {05 TIERET TR 18 { P Ce-11} €
E(U Y {m, r)), CGioy= X, | A= G, By the choice of the system, there is a
G with Ay el E=wl{C, .., Ci—1)), so the color & is assigned to
{Agy v, Ap_1, X) and (5, G,..., Ci_y, C.) and they are joined, a

contradiction. 0O

Theorem 4.5. [f k> A>cf(A), A is a strong limit cardinal, then P*(x, A, cf(1))
holds,

Proof. By induction on k. Put r=c¢f(4) and choose a sequence {(A::&<1)
converging to A. The case k=1 is Theorem 3.3. Assume that P*"'(k, 4, ¢f(1))
holds, i.e., Chr(U* (&, 7)) =>4 and let {Ay: X e E(U* Y(x, 1))} = P(4) be a
(K, A, 7)*-independent system. For £ < 1 put
5 ={{Ag, ..., Ay_y) € V(U (x, 1)): there are no

{'Bﬂ’ P 'B#—I:" {Gg, e CR—1} E V(Uk_l{x, T}} with

UBU{UAU{UG}ED{] A‘fﬁm-- co Biegy A - Al) ﬂ‘lf ="

At oAbt ey Maa)s

If there is an (A, ..., Ay #l{S:E<rt} then for <1t there are
(B, . ..o Bi-a)y (€5, . oo\ Cioy) € V(U Y(x, 7)) such that
Aol 880 A Ay A=A, e, (6 e M A
U Bf <A< UGS

Now the choice of this (Ag, ..., Ap-y) and X=\J{BI_ UCi_:E<7}
disproves (k, 4, r)*-independence of our system. Hence we assume that
f{{Aﬂ,...,A&_,”=Tﬂin{§ﬁr: {Au,... |4‘1.J.-_|}ES_5]' 15 well defined on
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V(U*'{(x, 1)). Put

gf{ﬂf}! BB Aﬁ:—l}}= {f{{:Aﬂr 0L IAk—I}}I
{A U RPN R ML, PR Agy) f A’ﬁfJa.. oy I}}:
UB <UA}).

g constitutes a coloring of V{(U*"'(k, 1)) with £ {21(214:): £ < 1) = 4 colors, so
by our inductive assumption there exists an

{lAns o s ApiBifGhy by Cioi))} € E(US Yk, 1)),

with g{{(Ay, ..., A1 })=g({ Gy, .. ., G- )) and L Ao <) G. Put &=f{{A,,
sl V=F0LE s Cr_,)) and we know that

{A{ﬂu--- v Bpad Afdpe o =0 Agea) HAE:UBU{UAu}
={Ag ... 56 ey N U B <UG)
so there exists a (B, ..., Be_y) e V(U '(k, 7)) with

A'-'Bv.l ----- B gk, {Am----ﬂx.J}n‘lE:A{-"u ----- r‘lu—:}-{ﬂl—--uﬁ-l?ﬂj‘ﬁ
which contradiets (A,,..., 4, ) 8. O

Theorem 4.6. P*(x", k, x) holds for x = w.

Proof. Our graph is the direct generalization of the one described in Theorem

34 Pmt V={(a,...,0) ay<oy<-+==<m=x'), {ag..., o),
{Bos « . .\ By} are joined if ay<fi<a; <P, < <a,<fi. Chr(G)=x" (sce
[3]) and ( has a local (7, k)*-coloring since f"I"({ &y, .. ., &, )) if fis chosen as
fllag oo o)) =a. O

In the next part we investigate the finite subgraphs of large local chormatic
graphs.

Lemma 4.7. A graph on |V(G)| =&~ has a local (¢, x)}*-coloring if and only if
Chr(I'(x)) = k for every x € V(G).

Proof. One direction is trivial. For the other assume that V(G)=«k",
fo: (@)= k witnesses Chr(I'(a)) =k, for a<x*. Whenever E<x*, put
y(E)=min{a<x":a+ & and Eel(a)} and take g(&) = (y(E), fim(5)). We
show that g is a local (x*, x)*~coloring. If & is fixed, g"T*(a) {g(a)} U
{(B, ): f=a, v<k)} which is of size = k. Assume that £% n and g(&)=g(7).
Then y(8)=v(n) =¥, so & n e I'(y), f,(E)=Ff(n), & n are not joined. O

Corollary 4.8. (a) Let H be a finite graph with a vertex x such that Chr(H —
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[x})=2 (e.g. any circuit). If G is a graph, |V(G)|=k", G has no local
(k™ &)-colaring, then G contains a copy of H.

{b) If H is a finite graph such that for every x € V(H) Chr(H — {x})=3, then
there is a graph G on k' with no local (x*, k)-coloring and with no H as
subgraph.

(¢) If G is a graph on &' and G does not contain odd circuits of length
=2k + 1, then G has a local (x*, x)*-coloring.

Proof. (a) By Lemma 4.7 there is an @ <x" with Chr(/{a))=&" and an old
theorem of Erddés—Hajnal ([3]) states that I'( @) must contain every finite bipartite
graph.

(b) Let 5 be so large that for every x € V(H), H — {x} contains odd circuits
of length =25 + 1. By another theorem of Erdiis—Hajnal ([3]), there is a graph K
with Chr(K)=|V(K)| =" and without odd circuits of length =25+ 1. Join a
point y ¢ V(K) to every point of V(K). The resulting graph on {y} UV(K) has
no local (x*, x)-coloring and does not contain H, either.

(c) In this case Chr(I"(a)) =2 for a <", s0 we are done by Lemma 4.7. [

For larger cardinals the situation is different.

Theorem 4.9, For j<w =k there is a graph on &~ with no local ("', x)-
coloring and without odd circuits, of length =2j + 1,

Prool. Our graph will be the Specker graph: V(G) =[x *"*! and xp<+-- <
x5 is joined to yy <+ <ypp if X <YW < Xjy4y for every 0=i = 2j*—j. This
graph has no odd circuits of length =2j + 1 (see [3]), we show that it has no local
(k" *, k)-coloring, either. Assume that f: [k " '—= k" " is one. Let r=2j*—j
and fix a sequence ay<a;<---<a, <k . Put

L H.ﬁ:h i ﬁzf}: LY {ﬁr{‘: Irrla,m-l for '“Er}-

We show that |/"A| = k. Once this is proved for r =0, we get that the graph on
[k — &]**" is k-chromatic, a contradiction to [3]. Also, the claim is true for
r=2j"+j, by the properties of local coloring. For general r we prove the
assertion by reverse induction, assume it is true for r + 1. Put

A=HPo .-, Bapt o <P < @iy for t<rand g, < B, < a}.

[f"A.| =& by hypothesis, and A is the increasing union of {A,:a<x""}. If
If'A| =x*, there is a f < & ™" with |f"A,| = x*, a contradiction. [
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