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1 have published during my very long life many papers with similar titles. In this
note, I report on progress made on some of the old problems and discuss also some
ncw ones, and 1 repeat some old problems which seem to have been forgotien by
everybody (sometimes incloding mysell). First, o very incomplete list is given of
some papers dealing with these and related questions.

I have published three survey papers on this subject [1-3].

I want to call attention to the excellent book of Hadwiger and Debrunner which
arigmally appeared in German and French. This book was translated by Klee who
also added much original material and brought the book up-to-date (op to about
1964) [4]. This book contains a great deal of interesting material and can be used as
a textbook to learn the subject, but contains few unsolved problems, (Unfortunately,
it is out ol print.)

A very fruitful source of problems and results is the much expanded 1981 edition
of W. Mosers collection, “Research Problems in Discrete Geometry™ (MeGill
Universityl. The nucleus of this collection was the old problems of the late Leo
Muoser.

In Elemence der Mathematik there is 4 section entitled “Ungealdste Probleme™
which was edited by Hadwiger and in the American Mathematical Monthiy there is a
stmilar section edited by Guy; both often contain geometrical problems. See also the
papers by Fejes-Toth, Grimbaum, and Klee that are guoted in [17],

. Purdy and [ plan to wrile a book on various problems in combinatorial
geometry. We hope the book will appear in this decade.

1

Let there be given a distinct points x, ..., %, in k-dimensional Euclidean space
E;. 'Denote by dix,, x,) the distance between x; and x;. Dyx;, ..., x,) denotes the
number of distinet distances among the x's. Put

Jdm = min Dyfx, . .... %)
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Denote further by Pyin) the largest integer for which there are Pyin) pairs x, and
%, for which dix,, x)) = |. Both these functions have been extensively studied in [1]
{with many references).

The best results until recently were

Py = oln??),  fulm) > en??3: (1)

" Diedicited to the memory of my friend Hugo Hadwiger,
1
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The first result in (1) is due to Szemerédi, the second to L. Moser. Recently, J. ,
Beck and 1. Spencer proved
Psln) = ni2-e for some ¢ =0 {2)
and Fan Chung proved
Sl = en™, (3 1
I'still believe that my old conjectures
Saln) = enfllog mjt2,  Pyln) < plrelaions (4) ‘

are true and 1 offer $500 for & proof or disproof. | offer $250 for Pu(n) < n' ",

Observe that L. Moser™ prool in fact gives that there is & point x; 0 that the
number of distinct distances d{x;, x;L i =j < mn, j # i, is greater than en*. The proof
of Fan Chung does not seem to give en™7, but perhaps it is true, In fact, perhaps
there' always is a point x, so that the number of distinet distances dix,, x,),
2 <i=n is greater than en/(log m)'?. This and several other conjectures are dis-
cussed m [ 1]

For k =4, Pyn) is much easier to handle than itis for k =2

Let ¥y ..., ¥; be n points on the surface of a two-dimensional sphere, Denote by
Piy{n) the largest integer for which there are Pi(n) pairs =, x, for which all the
distances dix;, x;) are the same, | could not prove that

lim Pi(nln = oo,

Ulam recently asked me the following question: Let x,, ..., x, be » points in the n
plane. Does one get interesting combinatorial and geometric questions il one modi-
fies the metricand asks how often we can have d(x;, x) = 1? Eg. he asked: What
il we define the distance of two points as the sum of the absolute values of the
differences of their coordinates? In this case I proved that if # >4, n =0 (mod 4),
then Fyn) = (n® + njd. 1 hope to return to these questions later,

Reference for Section 1 [5].

1l

Let there be given » points in the plane not all on a line. Join every two of them.
Sylvester conjectured and Gallai proved in 1933 that there always is a line that
passes through precisely two of these points, This problem and various extensions
and generalizations are of course discussed in [1]. Motzkin conjectured that for
> 13, the number of ordinary lines (e, the number of lines going throuph pre-
cisely two of the poinls) is =n/2. Motzkin observed that for every even n, this
conjecture—il true—is besi possible. Hansen recently proved this conjecture; his
proof, which is not yet published, is quiteé complicated [6],

Denote by Ly, ..., L, the lines determined by our points x,, ..., %,. Denote by
[ Ly | the number of points on L;. Pat [Lj| = v, ¥y =+ - = ¥, It-easily follows from
Gallai’s theorem and also from a theorem of de Bruijn and mysell that it m > 1. then
m = n, Griinbaum asked, What are the possible values of m? I showed that for
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m > cn?? all possible values of m can occur except (3) — 1 and () — 3. The analo-
gous problems in higher dimensions can probably be settled without great dificulty
{lines are replaced by hyperplanes).

The following problem is probably quite dificult: Denote by Fin) the number of

possible choices of the set {y,, ..., ¥, We must of course have
"
¥i ft
£()-() ®
{5) is by no means sufficient for the existence of a set x;, ..., x, for which

| L] = y; and perhaps it is not reasonable to expect a good necessary and sufficient
condition. I conjectured several years ago that

Fin) < exp en'2, (6)

It is easy to see that (6) if true is best possible, but | do not believe that to decide
i6) will be casy and T offer 250 for a proof or disproof of (6).

Denote by hyx,, ..., x,} the number of indices [ for which | L,| = &. What is the
possible range of values of fydx,, ..., x,)7 As far as | know, this question has not yet
been investigated,

Gallai’s theorem can be stated as follows: Unless all the x; are on a line,
halxy, oo x,) = | Hansen's theorem states that forn > 13, haix,, ..., %) = n/2. Put

max  hglxy, o X = tdmd
L Tr—
Trivially t5(n} = (5} t5(n) was first studied by Sylvester and was investigated in a
very nice paper by Burr, Grinbaum, and Sloane [T].
~ Croft and 1 observed that for every k and n > ny(k), tn) > clkn®. We could not
determine the largest possible value of ok), Put

lim tyfnyin® = .
Trivially o, = 1/&(k — 1) and for & = 2 and 3, equality is possible. Croft and [ conjec-
tured that

lim k% =0, (M
W=
but we could not even prove ¢, < Lkik — 1) for &k = 3. (Recently, Szemerédi and
Trotter proved o, < (log k' /k?, where ¢ is an absolute constant.) Put

Hiny= max ¥ hdxpo.oox)
L YRR S ]

In other words, Hin) is the largest number of lines that contain at least ﬁ poinits. 1
conjectured that Hin) < en'®, but could not even prove Hin) = o{n). Recently,
Szemerédi and Trotter proved Hin) < en'', This result has not yet been published.

| thought that perhaps H{n") = 2n 4 2, but Szemerédi informed me that recently
somepne showed Hin) = 3n'?,

Purdy and T conjectured that

s E | L. < en*?, (8}
i=1



- Annals New York Academy of Sciences

The lattice points show that (8) if true is best possible. It is possible that the
method of Szemerédi and Trotter will give (8). More generally, perhaps the number
of indices i for which | L;| = n"227% s less than ¢2*a'® and if true the lattice points
show that it is best possible. Szemerédi and Trotter have proven

mux Z | Li| = ey n*Plog n?,
=1

Croft and I conjectured that to every >0 there iz a k, = ki(s) so that il

| L | = e for all § then
)<
< & i
ILllz'*h (2 2

In other words, the number of pairs of points situated on “large lines” is small

Assume that x,, ..., x, is such that |L;| < &; ie, no line contains more than &
points. Denote by Tin} the maximum number of lines that contain &k points, |
conjectured that for k = 3

Tin) = oln®). 9

For k =3, Sylvester and Burr, Griinbaum, and Sloane [7] proved that Ti{n) = (1
+ o 1))n?/¢), but the exact value of Tyin)is not yet known,
Griinbaum proved

Tum) = entt k.

perhaps the exponent I+ 1/k &5 best possilile.
Purdy observed that

I m
— ¥ |Lj]=3
m s

and that 3 is best possible,
Additional references for Section I1: [8, 9]-

I

Hadwiger and MNelson posed the following problem: Let G, be a graph whose
vertices are the points of F, (the k-dimensional Eucliean spaceh Two points are
joined if their distance is 1. Determine or estimate the chromatic number hik) of G,
It is known that 4 < h(2) = 7. | am almost sure that hi2) = 4. In this connection, L.
Muoser asked the following interesting question: Let R be large and § a measurable
sel in the circle of radius R so that no two points of § have distance 1. Denole by
mi8) the measure of 8. Determine

lim max m{S)/R>. {10
R+
It seems very likely that the limit in (10} is less than &
I asked the following question: Let § beu subset of the plane. Join two points of
§ if their distance is 1. This gives the graph Gi5). Assume thatl the girth (shortest
gircuit) of G{S) is k. Can its chromatic number be greater than 37 Wormald proved
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that such a graph exists for & < 5. The problem is open for k > 5, Wormald sug-
gested that his method may work for k= 6, but probably a new idea would be
needed for k = 6.

A related (perhaps identical) question is: Does G{S) have a subgraph that has
girth k and chromatic number 47

LetD<r, = - <r. Gry oo, 1) is the graph whose vertices are the points of
the plane and two points are joined if their distance is one of the numbers ry ., ..., #,.
Put (h{(r) is the chromatic number of )

h(2) = max MGalry, ..., rdh
TR v Pl

It Is easy to see that lim . _ hi2)r = o0, but I do not know il B(2) grows

polynomially.

Larman and Rogers proved
ck* < hik) < (3 + of L))",

I conjectured that k) = (1 + ¢* This conjecture was recently proved by Frankl
and Wilson. The valuc of lim, . Mk}'™ is not known and in fact it is not even
known if the limit exists,

Y. T. Sosand I proved that if there are n + 1 triples in a set 8§ of n elements. then
there are always two of them whese intersection is a singleton, The proof is simple.
We conjeclured that TS| =nmn>ngkyand A, =5 |4 | =k I <i<t,>0"0
isd family of distinet subsets of 8, then there are always two A% whose inlersection
is a singleton. It was immediate that if true, this conjecture is best possible.

Katona proved the conjecture for k = 4 and Frankl proved it in the general case,

1 further conjectured: Let |S§]=n0<ny<% 4, =8 1<i=<T, . Assume that
for some ¢,

m<r<id—nn, (dnAdjFrloreveryl Si<j=<T, .
Then
T <{2—8" E=ghn) (1)

It is easy to sco that (11) implics hk) < (1 + ¢}, (11) is still open; the proof of
Frankl and Wilson did not use (11} [June 25, 1982—1I just had & letter [rom Frankl:
He and Fiiredi have proved (11).]

In @ recent paper Simonovits and | investigated h*(k), the so-called essential
chromatic number of E,. h*(k) is the largest integer for which there is a finite x,, ...,
x, in E, s0 that if we omit o(n®] edges of G, in all possible ways, we are always left
with a praph of chromatic number = h*{k). We prove that k*4) = 2 and conjecture
that K*(k) tends to infinity exponentially. In fact, we only proved h*(k) =k — 2.
Several further problems (which 1 think are interesting and challenging) are dis-
ciissed in our paper.

A well-known theorem of de Bruijn and mysell states that every k-chromatic
“graph contuins a finite subgraph of chromatic number k. Thus all the problems
considered in this section are problems about finite sets and finite graphs,

Perhaps the following modification of the Hadwiger—Nelson problem is of some
interest: Join two points in E; if their distance is between ¢ and ff, 2 <1 < f.
Determine or estimate the chromatic number K2, &, /1) of this graph,

References for Section T111: [10-16].
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An old problem of Heilbronn states as follows: Let.zy, ..., z, be n points in the
unit circle: Denote by Az, ..., 2} the smallest area of all polygons [z, ... 2.}
S0 < =iy n Put

dyn) = max Az, 2k

Heilbronn asked for the determination or estimation of galn). He of course
observed that trivially g.in) < ¢/n and suspected that the order of magnitude of g;(n)
is 1/n?, 1 obscrved that indeed g.(n} = c/n®. The first nontrivial result was due ta
K. F. Roth who proved g5in) < 1/n(log log n)*. This was improved by W. Schmidt
to ¢/nilog m)** and later by Roth to 1/n' 71,

In a recent paper, Komlds, Pintz, and Szemerédi [17] improved the value of ¢, ,
but their really surprising resull was their proof of

o
dalm) = = :f’ i (12

The proof of (12) uses a novel combination of combinatorial and probabilistic
arguments, which will have many further applications. Szemerédi believes that (12)
perhaps is best possible.

As far as I know, the first nontrivial results for &k = 3 are due to Schmidt. He
proved

.
) >~ (13)

1
galn) = o (E) (14)

presents considerable diliculties. As far as [ know (14) is still open and seems fo be a
fundamental problem.

Szemerédi and I posed the following problem: Denote by Diz;, ..., =) the smal-
lest distance between two of our z's and afz,; ..., =,) 15 the smallest angle deter-
mined by three of our points (if three ='s are on a line, then afz;, ..., 2) =0} Is it
true that

and observed that the proof of

DAz s ooy YTy 5o )= o 1) 2 (15)

It is almost trivial that {15) holds if ¢/w*'® replaces of1/w*?). Perhaps in fact
ol 1%} can be replaced by o/n®. This conjecture is perhaps too optimistic, The
regular polygon shows that if true, it is best possible, (15) if true may throw some
light on Heilbronn's problem.

V. T. Sos; E. Straus, and I shghtly modified Heilbronn’s problem as follows:
Denote by Liz, , ..., 5,) the largest integer for which there are Iz, ..., 5} 2% ona
line. Assume Lizy, ..., 2,) = o{n'?}. Is it then true that there are three 2's,2, 2.0 %,
not on a line for which the area of the triangle (z; | =, 2,,) is o{1/n)? Perhaps this
conjecture 18 too optimistic, Pintz proved that if we assume Liz;, ..., g0 <en® for
some fixed positive @ then the conjecture indeed holds, The lattice points show that
o(n''*} can certainly not be replaced by O(n'™),
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v
EucLinpEaN RaMsey PROBLEMS

A finite subset C of E,_ is called r-Ramsey for E_ if for any partition of E, into r
sets 8, | )i, 8= E,.some 8§, always contains a subset €' which is congruent to C.
If € is r-Ramsey for every r for some E_, then it is called Ramsey.

The study of these problems was started by “us” (Graham, Montgomery, Roths-
child, Spencer, Straus, and myself) a few years ago. Many very interesting and
challenging problems remain on this subject. We prove that if C is Ramsey, then C
must lie on the surface of some sphere. Further, we prove that any subset of the
vertices of a rectangular parallelepiped is Ramsey. We do not know which (if any) of
these allernatives characterize Ramsey sets, and | offer 5500 for an answer to this
guestion.

I5 it true that every nonequilateral triangle 18 2-Ramsey in the plane? 1 offer 5250
for a proof or disproof. L. Shader proved that all right triangles are 2-Ramsey (in
Ejl

Gurevich asked: Put E, = | {_, 8,. Is it then true that at least one §; contains
the vertices of a k-dimensional simplex of volume 1?7 Graham proved and gener-
alized this. His paper refers to nearly all the relevant literature on Euclidean Ramsey
problems. {See Graham's paper in this volume,)

We posed the following problem: Let § = E; be such that no two points of §
have distance 1. Is it then true that § (the complement of §) contains the vertices of a
url square? We could not settle this problem. Juhisz proved that the answer is
affirmative. In fact, she proved that our theorem remains true il “unit square” is
replaced by “arbitrary four point configuration.” She further proved that the
thearem certainly fails if four is replaced by 12. Many lurther problems and conjec-
tures are discussed in our papers.

References for Section Vi [18 19].

Ly |

In this final section. | discuss miscellaneous problems.

1. Let %,,..., %, be n points in the plane not all on a line: Denote by Alxy . ...
b and alx, , ..., x,) the area of the largest and the smallest nonzero, respectively,
of the triangles {x;. x;, %), | =i <j <1< n Purdy, Straus, and | proved that

Alxy ooy X el %) = TeiZ] i16)

and we determined all cases when there is equality in (16). Straus extended (16) to
higher dimensions, In (16), one could perhaps replace triangles by polygons with r
vertices; but as far as'1 know, this has not vet been investigated.

Our paper on this subject will soon appear in Discrete Mathematics.

2. Corradi. Hajnal, and [ asked: Ts it troe that n points in the plane not all on a
line determine at least n — 2 different angles? This is trivial if ne three of the points
are on a ling, but seems to present curious difficulties in the general case and all we
proved was that the number of distinet angles is = en''2,
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A related guestion is: Is it true that the smallest (nonzero) angle determined by
our points is. <x/n? We have equality for the regular polygon, This is again trivial if
no three of the points are on a line, but in the general case we only get ¢/n''?,

An old problem of G. Dirac states: Is it true that il we join any two of our
paints, then thers always is a point that is joined o at least n/2 — ¢ distinet lines? As
fir a3 [ know, here also only en' has been proved 5o far,

[Editors’ note: A version of this problem has recently been solved by Szemerédi and
Trotter. and independently by Beck.]

Scott asked: Is it true that our points defermine at least 2[in/2] distinet direc-
tions? We have equality for the regular polygon. Scott proved en'?. Here the
problem was completely solved, First Burton and Purdy [20] proved n/2 and
recently P. Ungir has proven 2[n/2], thus brilliantly settling the conjecture of Scott.
It does nol happen too often that a problem in this subject gets a complete solution.
[Editors' note: Ungar's paper has appeared in the Jowrnal of Combinatorial Theory,
Serfes A 33: 343-347 (1982); see Jamigon's paper in this volume for a summary of
Ungér's prool as well as a history of the problem.]

The three problems discussed here are really unrelated.

3. A [ew years ago, [ asked the following question: Let f(n) be the largest integer

for which there are n points x;, ..., x, in E; so that there should be f{n) distinct
circles of unit radius passing through three of them. [ observed
In/2 < fin) =< mn— 1) (17)

I belicve that f{mj/in— oo but f(n)/n®— 0, but have made no progress on this
probiem.

It might be difficult to give an exact (or even an asymptotic) formula for [{n)
Several related questions can be posed.

Straus and T observed that if m, = &k + 2(*3'%*3") and x,, ..., x,, arc in general
position {i.e,, no three on a line and no four on a circlel, then there are always k of
them so that the (%) radil of the circumscribed circles are all different. Probably our
estimate for m, is far from being best possible. See [21],

4. Denote by n, the smallest integer (il it exists) for which every set of n, points
{no three on o ling) contains k, which form 4 convex polygon that containg none
of the otheér points in its interior. It is-easy to see that m, — 5. Ehrenfeucht and
Harborth proved that n, is finite. Harborth in fact proved n; = 10 [22]. It is not yet
known il n. exists. 1. . Horton just informed me that he showed that n, does not
exist. His proof will be published in the Canadian Mathematical Bulletin.

I raised this problem as a sharpening of an old problem of E. Klein (Mrs.
Szekeres): Let f(k) be the smallest interior for which every set of f(k) points, no three
on a line, contains the vertices of a convex k-gon. Klein observed 50 years ago that
f14) = 5 and Szckeres conjectured (k) = 272 + 1. Makai and Turin proved this lor
k = 5. Srekeresand I proved

£ L 2k —a
ol 2+|5'“H5(keﬂj

This problem is discussed and referenced in[1].
5, Let x;, ..., x, be n points in k-dimensional space. Assume that dx;, x;) = 1
and that either two distances are equal or they differ by at least 1, Le.,

dix;, %) = dixg, %) or |, x)/=dix,, %) = 1. (18)
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Din)= min Dix;, ... x).
where D{x,, ..., x.) is the diameter of x,, ..., x, and the minimum is to be taken
over all sets x,, ..., x, in E, satisfying (18). Trivially D,{n)=n — 1 1 expect that
D.(n) = en, but | am very far from being able to prove this, Kanold proved D,(n) =
e (Elemente der Mathemarik, 1982, Manh) and the conjecture (4) would imply
Dyin) = enf{log n)'2: 1 find the conjecture Dy(n) > en a challenging and interesting
problem and offer $100 for a proof or disproof.
The lattice points in Ey (respectively, E,) easily show that

Dyin) < exm*?,  Dyn) < g™ M (19)

I would expect (without any real evidence) that the order of magnitude in (19) is
best possible.

6. Let x,, ..., x, be n points in E,, at most k on a linc, It is casy to see that if
k(5} = n, then there are always r of them no three of which are on a line; ie., there
are (1 + o1 2n/k)"? points no three of them on a line. Probahly this can be very
much improved, but T have no further results on this problem. The best upper
bound is the trivial 2n/k.

7. It is not difficult to prove that if § is a set in the plane of infinite two-
dimensional measure, then it contains for every ¢ the vertices of a triangle of area c.
I could never prove that there is an absolute constant o so that every planar set i?_l'
measure > contains the vertices of a triangle of area 1. In fact, perhaps = = n/,/3
{the equilateral triangle inscribed in the circle of area nfﬁ has area 1), This conjec-
ture is perhaps again a bit too optimistic,

Let B be large and § a set of plane measure =eR? in a circle of radius R. Is it
true that 5 contains the vertices of an eguilateral triangle of side =17 Straus
thought that this result perhaps already holds if we only assume that the area of § is
greater than C, where C is a sufficiently large absolute constant.

#An old conjecture of mine states: Let E be an infinite set of real numbers; then
there always is a set § of positive linear measure that containsg no subset similar (in
the sense of elementary geometry) to E. | offer 5100 for a proof or disproof.

8. Two-distance sets and pomnts in general position.

Denote by g,(n) the smallest integer for which every set of gn) points in E,
determines at least k + 1 distinct distances. Trivially gy(n) =n + 2 and Blockhuis
recently proved (sharpening a previous resolt of Delsarte, Goedels, and Seidel) that

(m+1)n+2)
TR &

Denote by Giin) the smallest integer for which every set of Gyin) points in E|
contains 1 subset of k + 1 points any two distances of which ars distinct; i.2.. any set
of Gyn) points contains a subset of k + 1 points that determines (*3') distinct
distances, [ proved long ago that G,(2) = 7 and Croft proved G,{3) = 9. Birany and
Fiiredi proved

aain) =

Gylm) < o,
Recently Blockhuis proved

Galnt) =< ¢y 02,



10 Annals New York Academy of Sciences

It would be interesting to determine the exact values of g;(n) and G,in) and more
generally g(m) and Gyin), for & = 2. This is nol easy even for E;,

The 2" vertices of an r-dimensional cube determine n + 1 distinct distances. Isit
true that every set of 2" points in E, determines at least en distinet distances, where ¢
15 an absolute constant independent of n?

9. Te end the paper, | state two problems from the collection of W. Moser,
Problem 6l {due to Sierpinski) states: Do there exist two point sets in the plane such
that no matter how they are placed in the plane, their intersection contains exactly
one point? I proved the existence of two such sets by transfinite induction.

Problem 59 due to Steinhaus siates: Does there exist a point set (in the plane)
such that no matter how it is placed on the plane, it covers exactly one lattice paint?
I found this old problem of Steinhaus very challenging and got nowhere with it,
More generally, let § be a set of positive numbers. 1s there a set Pin the plane such
that no two points of P have distance in § and no matter how P is placed in the
plane it covers exactly one lattice point? In the problem of Steinhaus, § is the set of
numbers {u’ + o),
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