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I have published during my very long life many papers with similar titles . In this
note, I report on progress made on some of the old problems and discuss also some
new ones, and I repeat some old problems which seem to have been forgotten by
everybody (sometimes including myself) . First, a very incomplete list is given of
some papers dealing with these and related questions .

I have published three survey papers on this subject [1-3] .
I want to call attention to the excellent book of Hadwiger and Debrunner which

originally appeared in German and French . This book was translated by Klee who
also added much original material and brought the book up-to-date (up to about
1964) [4] . This book contains a great deal of interesting material and can be used as
a textbook to learn the subject, but contains few unsolved problems . (Unfortunately,
it is out of print .)

A very fruitful source of problems and results is the much expanded 1981 edition
of W. Moser's collection, "Research Problems in Discrete Geometry" (McGill
University) . The nucleus of this collection was the old problems of the late Leo
Moser .

In Elemente der Mathematik there is a section entitled "Ungelőste Probleme"
which was edited by Hadwiger and in the American Mathematical Monthly there is a
similar section edited by Guy ; both often contain geometrical problems . See also the
papers by Fejes-Toth, Grünbaum, and Klee that are quoted in [1] .

G. Purdy and I plan to write a book on various problems in combinatorial
geometry . We hope the book will appear in this decade .

I

Let there be given n distinct points x I , . . . , x n in k-dimensional Euclidean space
Ek . Denote by d(x i , x) the distance between x i and x1 . DA I , . . ., xn) denotes the
number of distinct distances among the xi's . Put

fk(n) = min Dk(x I , . . . , xn ).

Denote further by P,(n) the largest integer for which there are P k (n) pairs x i and
xj for which d(x i , x) = 1 . Both these functions have been extensively studied in [I]
(with many references) .

The best results until recently were

P2(n) = o(n 3/2 ),

	

f2(n) > cn 2 / 3 .

	

(1)

° Dedicated to the memory of my friend Hugo Hadwiger .
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The first result in (1) is due to Szemerédi, the second to L . Moser . Recently, J .
Beck and J . Spencer proved

are true and I offer $500 for a proof or disproof. I offer $250 for P 2(n) < n' +`
Observe that L . Moser's proof in fact gives that there is a point x i so that the

number of distinct distances d(x i , x), i < j < n, j i, is greater than cn 2 /3 . The proof
of Fan Chung does not seem to give cn s l', but perhaps it is true. In fact, perhaps
there always is a point x, so that the number of distinct distances d(x, , x i),
2 < i < n, is greater than cn/(log n) 1 / 2 . This and several other conjectures are dis-
cussed in [1] .

For k >_ 4, Pk(n) is much easier to handle than it is for k = 2 .
Let x, , . . ., xn be n points on the surface of a two-dimensional sphere . Denote by

P'2 (n) the largest integer for which there are P2(n) pairs xi , xj for which all the
distances d(x i , x) are the same. I could not prove that

lim P2(n)/n = cc,
n- .

Ulam recently asked me the following question : Let x,, . . ., xn be n points in the
plane. Does one get interesting combinatorial and geometric questions if one modi-
fies the metric and asks how often we can have d(x i , x) = I? E.g ., he asked : What
if we define the distance of two points as the sum of the absolute values of the
differences of their coordinates In this case I proved that if n 4, n - 0 (mod 4),
then P 2 (n) _ (n 2 + n)/4 . I hope to return to these questions later .

Reference for Section I : [5] .

II

Let there be given n points in the plane not all on a line . Join every two of them .
Sylvester conjectured and Gallai proved in 1933 that there always is a line that
passes through precisely two of these points . This problem and various extensions
and generalizations are of course discussed in [1] . Motzkin conjectured that for
n 13, the number of ordinary lines (i .e ., the number of lines going through pre-
cisely two of the points) is _ n/2 . Motzkin observed that for every even n, this
conjecture-if true-is best possible . Hansen recently proved this conjecture ; his
proof, which is not yet published, is quite complicated [6] .

Denote by L 1 , . . ., L,,, the lines determined by our points x 1 , . . ., x . . Denote by
L i I the number of points on L i . Put I L i I = y i , y, _ . . . _ y,,, . It easily follows from

Gallai's theorem and also from a theorem of de Bruijn and myself that if m 1, then
m _ n. Grünbaum asked, What are the possible values of m I showed that for

P 2(n) < n3/2

	

for some c > 0 (2)

and

(3)

Fan Chung proved

f2(n) > cn 5 /' .

I still believe that my old conjectures

n 1 +c/log log nf2(n) > cn/(log n)",

	

P2(n) < (4)
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m

cn3/2 all possible values of m can occur except (z) - 1 and (z) - 3

. The analo-
gous problems in higher dimensions can probably be settled without great difficulty
(lines are replaced by hyperplanes) .

The following problem is probably quite difficult : Denote by F(n) the number of
possible choices of the set

	

y., . We must of course have

Y_1 (y2) = (2n)

	

(5)

(5) is by no means sufficient for the existence of a set x i , . . ., x„ for which
I Li I = yi and perhaps it is not reasonable to expect a good necessary and sufficient
condition . I conjectured several years ago that

F(n) < exp cn'/2 .

	

(6)
It is easy to see that (6) if true is best possible, but I do not believe that to decide

(6) will be easy and I offer $250 for a proof or disproof of (6) .
Denote by hk(x, , . . ., xn) the number of indices i for which I Li = k . What is the

possible range of values of hk(x,, . . ., xn)

As far as I know, this question has not yet

been investigated .
Gallai's theorem can be stated as follows : Unless all the x ; are on a line,

hz(x, , . . . , xn) - 1. Hansen's theorem states that for n

13, hz(x, ,

. . . , xn) -

n/2

. Put

max hk(x, , . . . , xn) = tk(n) .

Trivially t2(n) _ (z) . t3(n) was first studied by Sylvester and was investigated in a
very nice paper by Burr, Grünbaum, and Sloane [7] .

Croft and I observed that for every k and n

no(k), tk(n) c(k)n2

. We could not
determine the largest possible value of c(k) . Put

lim tk(n)/n2 = ck .
n-a

Trivially ck < 1/k(k - 1) and for k = 2 and 3, equality is possible . Croft and I conjec-
tured that

lim k2ck = 0,

	

(7)k- .
but we could not even prove ck < 1/k(k - 1) for k

3

. (Recently, Szemerédi and
Trotter proved ck < (log k)`/k3, where c is an absolute constant .) Put

H(n) = max I hk(x, , . . . , xn)J
x1, . . .,x, k ~W

In other words, H(n) is the largest number of lines that contain at least n points . I
conjectured that H(n) < cn'12, but could not even prove H(n) = o(n) . Recently,
Szemerédi and Trotter proved H(n) < cn',2 . This result has not yet been published .

I thought that perhaps H(n2) = 2n + 2, but Szemerédi informed me that recently
someone showed H(n)

3n'/2

.
Purdy and I conjectured that

max

	

Li I < cn'l3 .

	

(8)i=i
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The lattice points show that (8) if true is best possible . It is possible that the
method of Szemerédi and Trotter will give (8) . More generally, perhaps the number
of indices i for which I L i I n"2-" is less than c22 "n 1 / 2 and if true the lattice points
show that it is best possible . Szemerédi and Trotter have proven

n

max

	

l L; l < c, n 4 / 3(log n)°2 .
=1

Croft and I conjectured that to every e 0 there is a ko = k o(e) so that if
L i I < en for all i, then

Li ko
2i)

< E
(

2
n) .

In other words, the number of pairs of points situated on "large lines" is small .
Assume that x,, . . ., xn is such that I L i I < k ; i.e., no line contains more than k

points . Denote by T,(n) the maximum number of lines that contain k points . I
conjectured that for k 3

Tk(n) = o(n2 ) .

	

(9)

For k = 3, Sylvester and Burr, Grünbaum, and Sloane [7] proved that T3(n) _ (1
+ 0(1))(n2/c), but the exact value of T3 (n) is not yet known .

Grünbaum proved

Tk(n) cn"Ik ;

perhaps the exponent 1 + 1/k is best possible .
Purdy observed that

1
~ I L i l < 3

M ,

and that 3 is best possible .
Additional references for Section II : [8, 9] .-

III

Hadwiger and Nelson posed the following problem : Let Gk be a graph whose
vertices are the points of E k (the k-dimensional Euclidean space). Two points are
joined if their distance is 1 . Determine or estimate the chromatic number h(k) of Gk .
It is known that 4 < h(2) < 7. I am almost sure that h(2) 4 . In this connection, L .
Moser asked the following interesting question : Let R be large and S a measurable
set in the circle of radius R so that no two points of S have distance l . Denote by
m(S) the measure of S. Determine

lim max m(S)/R2 .

	

(10)
R -r

It seems very likely that the limit in (10) is less than 4.

I asked the following question : Let S be a subset of the plane . Join two points of
S if their distance is 1 . This gives the graph G(S) . Assume that the girth (shortest
circuit) of G(S) is k. Can its chromatic number be greater than 3 Wormald proved
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that such a graph exists for k < 5 . The problem is open for k 5 . Wormald sug-
gested that his method may work for k = 6, but probably a new idea would be
needed for k 6 .

A related (perhaps identical) question is : Does G(S) have a subgraph that has
girth k and chromatic number 4

Let 0 < r, < . . . < rk . G 2(r, , . . ., r k ) is the graph whose vertices are the points of
the plane and two points are joined if their distance is one of the numbers r, , . . . , r k .
Put (h(G) is the chromatic number of G)

h r(2) = max h(G 2 (r, , . . . , rk )) .
rl, . . ., rk

It is easy to see that limr~~ hr (2)/r = oc, but I do not know if hr (2) grows
polynomially .

Larman and Rogers proved

ck 2 < h(k) < (3 + 0(1))k.

I conjectured that h(k) (1 + c) k . This conjecture was recently proved by Frankl
and Wilson. The value of lim k-~ h(k)'I' is not known and in fact it is not even
known if the limit exists .

V. T . Sós and I proved that if there are n + 1 triples in a set S of n elements, then
there are always two of them whose intersection is a singleton . The proof is simple.
We conjectured that if I S I = n, n n o(k) and A i c S, I A, I = k, 1 < i < tk , tk (k-z)
is a family of distinct subsets of S, then there are always two A's whose intersection
is a singleton . It was immediate that if true, this conjecture is best possible .

Katona proved the conjecture for k = 4 and Frankl proved it in the general case .
I further conjectured : Let I S I = n, 0 < rf < Z, A, c S, 1 < i < T„, n . Assume that

for some r,

Then
T,,, n < (2 - E) " ,

	

£ = E(11) .

	

(11)

It is easy to see that (11) implies h(k) < (1 + c)k. ( 11) is still open ; the proof of
Frankl and Wilson did not use (11) . [June 25, 1982-1 just had a letter from Frankl :
He and Füredi have proved (11) .]

In a recent paper Simonovits and I investigated h*(k), the so-called essential
chromatic number of E k . h*(k) is the largest integer for which there is a finite x, , . . .,
x„ in Ek so that if we omit o(n 2 ) edges of Gk in all possible ways, we are always left
with a graph of chromatic number -h*(k). We prove that h*(4) = 2 and conjecture
that h*(k) tends to infinity exponentially. In fact, we only proved h*(k) - k - 2.
Several further problems (which I think are interesting and challenging) are dis-
cussed in our paper .

A well-known theorem of de Bruijn and myself states that every k-chromatic
graph contains a finite subgraph of chromatic number k . Thus all the problems
considered in this section are problems about finite sets and finite graphs .

Perhaps the following modification of the Hadwiger-Nelson problem is of some
interest : Join two points in E2 if their distance is between a and /3, a < 1 < /I .
Determine or estimate the chromatic number h(2, a, /i) of this graph .

References for Section III : [10-16] .

rin < r < (z - ri)n,

	

(A, n A) r for every l < i < j < T„ n .
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IV

An old problem of Heilbronn states as follows : Let zl, . . ., z„ be n points in the
unit circle . Denote by Ak(z l , . . ., zn) the smallest area of all polygons Izi l , . . ., ZJ 1
1<i l < • • • < ik <n.Put

9k(n) = max AJZ 1 I
. . . , Zn) .

Heilbronn asked for the determination or estimation of g 3 (n). He of course
observed that trivially g 3(n) < c/n and suspected that the order of magnitude of g 3 (n)
is 1/n 2. I observed that indeed g 3 (n) c/n 2 . The first nontrivial result was due to
K. F. Roth who proved g 3(n) < 1/n(log log n)". This was improved by W . Schmidt
to c/n(log n)" and later by Roth to 1/n"'1 .

In a recent paper, Komlós, Pintz, and Szemerédi [17] improved the value of c,,
but their really surprising result was their proof of

gs(n)
c log n

	

(12)
n

The proof of (12) uses a novel combination of combinatorial and probabilistic
arguments, which will have many further applications . Szemerédi believes that (12)
perhaps is best possible .

As far as I know, the first nontrivial results for k 3 are due to Schmidt . He
proved

presents considerable difficulties . As far as I know (14) is still open and seems to be a
fundamental problem .

Szemerédi and I posed the following problem : Denote by D(z l , . . ., Z n) the smal-
lest distance between two of our z's and a(z l , . . ., z n) is the smallest angle deter-
mined by three of our points (if three z's are on a line, then a(z l , . . . , z n) = 0) . Is it
true that

D(zl, . . ., Zn)a(Z1, . . ., Zn) = o(I/n 3 / 2)

	

(15)

It is almost trivial that (15) holds if c/n 3/ 2 replaces o(1/n 3 / 2) . Perhaps in fact
o(I/n 3 / 2) can be replaced by c/n 2 . This conjecture is perhaps too optimistic. The
regular polygon shows that if true, it is best possible . (15) if true may throw some
light on Heilbronn's problem .

V. T . Sós, E. Straus, and I slightly modified Heilbronn's problem as follows :
Denote by L(z l , . . ., zn) the largest integer for which there are L(z l , . . . , Zn) Z'S on a
line. Assume L(z l , . . . , Zn) = o(n 1 /2 ) . Is it then true that there are three z's, z << , Z i2 , zi3 ,
not on a line for which the area of the triangle (z„, Z, z , z, 3) is o(I/n) Perhaps this
conjecture is too optimistic. Pints proved that if we assume L(z l , . . ., zn ) < cna for
some fixed positive a then the conjecture indeed holds . The lattice points show that
o(n l / 2 ) can certainly not be replaced by O(n l /2 ) .

Ck
gk(n) (13)

and observed that the proof of

n1+1/k

ga(n) = o
Cn)

(14)
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EUCLIDEAN RAMSEY PROBLEMS

A finite subset C of E„ is called r-Ramsey for E„ if for any partition of E„ into r
sets Si , Ui_, Si = E,,, some S i always contains a subset C which is congruent to C .
If C is r-Ramsey for every r for some E„ , then it is called Ramsey .

The study of these problems was started by "us" (Graham, Montgomery, Roths-
child, Spencer, Straus, and myself) a few years ago . Many very interesting and
challenging problems remain on this subject . We prove that if C is Ramsey, then C
must lie on the surface of some sphere . Further, we prove that any subset of the
vertices of a rectangular parallelepiped is Ramsey . We do not know which (if any) of
these alternatives characterize Ramsey sets, and I offer $500 for an answer to this
question .

Is it true that every nonequilateral triangle is 2-Ramsey in the plane I offer $250
for a proof or disproof. L . Shader proved that all right triangles are 2-Ramsey (in
Ez ) .

Gurevich asked : Put E„ _ = 1 Si . Is it then true that at least one S, contains
the vertices of a k-dimensional simplex of volume I Graham proved and gener-
alized this . His paper refers to nearly all the relevant literature on Euclidean Ramsey
problems . (See G, aham's paper in this volume .)

We posed the following problem : Let S c EZ be such that no two points of S
have distance 1 . Is it then true that S (the complement of S) contains the vertices of a
unit square We could not settle this problem . Juhász proved that the answer is
affirmative. In fact, she proved that our theorem remains true if "unit square" is
replaced by "arbitrary four point configuration ." She further proved that the
theorem certainly fails if four is replaced by 12 . Many further problems and conjec-
tures are discussed in our papers .

References for Section V : [18, 19] .

VI

In this final section, I discuss miscellaneous problems .

1 . Let x 1 , . . ., x„ be n points in the plane not all on a line . Denote by A(x l , . . .,
x„) and a(x, , . . . , x„) the area of the largest and the smallest nonzero, respectively,
of the triangles (x,, x j , x,), 1 < i < j < l < n. Purdy, Straus, and I proved that

7

A(x 1 , . . . . x n)Ia(x1 , . . ., xJ = [n12]

	

( 16)

and we determined all cases when there is equality in (16) . Straus extended (16) to
higher dimensions . In (16), one could perhaps replace triangles by polygons with r
vertices, but as far as I know, this has not yet been investigated.

Our paper on this subject will soon appear in Discrete Mathematics.
2. Corrádi, Hajnal, and I asked : Is it true that n points in the plane not all on a

line determine at least n - 2 different angles This is trivial if no three of the points
are on a line, but seems to present curious difficulties in the general case and all we
proved was that the number of distinct angles is cn 1 / 2 .
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A related question is : Is it true that the smallest (nonzero) angle determined by
our points is < 7r/n We have equality for the regular polygon . This is again trivial if
no three of the points are on a line, but in the general case we only get c/n 1 / 2 .

An old problem of G . Dirac states : Is it true that if we join any two of our
points, then there always is a point that is joined to at least n/2 - c distinct lines As
far as I know, here also only cn 1/2 has been proved so far .
[Editors' note : A version of this problem has recently been solved by Szemerédi and
Trotter, and independently by Beck .]

Scott asked : Is it true that our points determine at least 2[n/2] distinct direc-
tions We have equality for the regular polygon . Scott proved cn'l 2 . Here the
problem was completely solved . First Burton and Purdy [20] proved n/2 and
recently P . Ungár has proven 2[n/2], thus brilliantly settling the conjecture of Scott .
It does not happen too often that a problem in this subject gets a complete solution .
[Editors' note : Ungár's paper has appeared in the Journal of Combinatorial Theory,
Series A 33 : 343-347 (1982) ; see Jamison's paper in this volume for a summary of
Ungár's proof as well as a history of the problem .]

The three problems discussed here are really unrelated .
3 . A few years ago, I asked the following question : Let f(n) be the largest integer

for which there are n points x l , . . ., x„ in EZ so that there should be f(n) distinct
circles of unit radius passing through three of them . I observed

3n/2 < f (n) < n(n -1).

	

(17)

1 believe that f (n)/n - oc but f (n)/n 2- 0, but have made no progress on this
problem .

It might be difficult to give an exact (or even an asymptotic) formula for f(n).
Several related questions can be posed .

Straus and I observed that if n k - k + 2(k2 1 )( k 3 1 ) and x 1 , . . ., xnk are in general
position (i .e., no three on a line and no four on a circle), then there are always k of
them so that the (3) radii of the circumscribed circles are all different . Probably our
estimate for n k is far from being best possible. See [21] .

4. Denote by n k the smallest integer (if it exists) for which every set of n k points
(no three on a line) contains k, which form a convex polygon that contains none
of the other points in its interior . It is easy to see that n 4 = 5. Ehrenfeucht and
Harborth proved that n s is finite . Harborth in fact proved n s = 10 [22] . It is not yet
known if n 6 exists . J . D . Horton just informed me that he showed that n, does not
exist . His proof will be published in the Canadian Mathematical Bulletin .

I raised this problem as a sharpening of an old problem of E . Klein (Mrs .
Szekeres) : Let f(k) be the smallest interior for which every set off(k) points, no three
on a line, contains the vertices of a convex k-gon. Klein observed 50 years ago that
f(4) = 5 and Szekeres conjectured f(k) = 2k-2 + 1 . Makai and Turán proved this for
k = 5. Szekeres and I proved

41
2k-2 +1 <f(k)

	

2k -
k-2

This problem is discussed and referenced in [1] .
5 . Let x 1 , . . ., x n be n points in k-dimensional space. Assume that d(x i , x j) - 1

and that either two distances are equal or they differ by at least 1, i .e .,

d(x i , x) = d(x k , x,)

	

or

	

I d(xi , x) - d(xk , x,) I - 1 .

	

(18)



Let

Erdős : Combinatorial Geometry

	

9

Dk(n) = min D(xl , . . . , xn),

where D(x,, . . ., x n ) is the diameter of x,, . . ., x" and the minimum is to be taken
over all sets x l , . . ., x n in Ek satisfying (18). Trivially D,(n) = n - 1 ; 1 expect that
D2(n) cn, but I am very far from being able to prove this . Kanold proved D2(n)
cn'l 4 (Elemente der Mathematik, 1982, Manh) and the conjecture (4) would imply
D2(n) cn/(log n) 1 / z : I find the conjecture D2 (n) cn a challenging and interesting
problem and offer $100 for a proof or disproof.

The lattice points in E3 (respectively, Ek ) easily show that

D3(n) < c 3 n 2/3 ,

	

D,(n) < ck n(k-I)/k .

	

(19)

I would expect (without any real evidence) that the order of magnitude in (19) is
best possible .

6. Let x, , . . . , xn be n points in E2 , at most k on a line. It is easy to see that if
k(z) < n, then there are always r of them no three of which are on a line ; i .e ., there
are (1 + o(1))(2n/k)1/2 points no three of them on a line . Probably this can be very
much improved, but I have no further results on this problem . The best upper
bound is the trivial 2n/k .

7. It is not difficult to prove that if S is a set in the plane of infinite two-
dimensional measure, then it contains for every c the vertices of a triangle of area c .
I could never prove that there is an absolute constant a so that every planar set of
measure a contains the vertices of a triangle of area 1 . In fact, perhaps a = rz/ 3
(the equilateral triangle inscribed in the circle of area 7r/,/3 has area 1) . This conjec-
ture is perhaps again a bit too optimistic .

Let R be large and S a set of plane measure cR 2 in a circle of radius R. Is it
true that S contains the vertices of an equilateral triangle of side 1 Straus
thought that this result perhaps already holds if we only assume that the area of S is
greater than C, where C is a sufficiently large absolute constant .

An old conjecture of mine states : Let E be an infinite set of real numbers ; then
there always is a set S of positive linear measure that contains no subset similar (in
the sense of elementary geometry) to E. I offer $100 for a proof or disproof.

8 . Two-distance sets and points in general position .
Denote by gk(n) the smallest integer for which every set of g k (n) points in En

determines at least k + 1 distinct distances . Trivially g l (n) = n + 2 and Blockhuis
recently proved (sharpening a previous result of Delsarte, Goedels, and Seidel) that

(n) < (n + 1)(n + 2)
9z 2

Denote by Gk(n) the smallest integer for which every set of Gk(n) points in En
contains a subset of k + 1 points any two distances of which are distinct ; i .e ., any set
o£ G,(n) points contains a subset of k + 1 points that determines (k+ i) distinct
distances . I proved long ago that Gz(2) = 7 and Croft proved Gz(3) = 9 . Bárány and
Füredi proved

Recently Blockhuis proved
G2(n) < n"g ".

G,(n) < c l n2 .



10

	

Annals New York Academy of Sciences

It would be interesting to determine the exact values of g 2 (n) and GZ(n) and more
generally g,t(n) and G k (n), for k 2. This is not easy even for E, .

The 2" vertices of an n-dimensional cube determine n + 1 distinct distances . Is it
true that every set of 2" points in E„ determines at least cn distinct distances, where c
is an absolute constant independent of n

9. To end the paper, I state two problems from the collection of W. Moser .
Problem 60 (due to Sierpinski) states : Do there exist two point sets in the plane such
that no matter how they are placed in the plane, their intersection contains exactly
one point I proved the existence of two such sets by transfinite induction .

Problem 59 due to Steinhaus states : Does there exist a point set (in the plane)
such that no matter how it is placed on the plane, it covers exactly one lattice point
I found this old problem of Steinhaus very challenging and got nowhere with it .
More generally, let S be a set of positive numbers . Is there a set P in the plane such
that no two points of P have distance in S and no matter how P is placed in the
plane it covers exactly one lattice point In the problem of Steinhaus, S is the set of
numbers (u2 + v2)" .
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