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Does there exist a function f(r, #) such that each graph G with x(G)=f(r, n) contains
either a complete subgraph of order r or else two non-neighboring #-chromatic subgraphs? It is known
that f{r, 2) exists and we establish the existence of f(r, 3). We also give some interesting results about
graphs which do not contain two independent edges.

1. Introduction

I'wo subgraphs G,. G, ol a graph G are called non-neighboring if there is no
edge € £(G) with 1v,€G, and v,€G,. In general, an arbitrary graph may not
contain two non-neighboring subgraphs at all, for example the complete graph. In
this paper we raise the following question: Is there a minimal integer f(r. n) such that
each graph G with y(G)=f(r, n) and which does not contain a complete subgraph of
order r must contain two non-neighboring n-chromatic subgraphs? An upper bound
for /(r, 2) follows from a result of S. Wagon [2]. Here we show that it is sufficient to
prove the existence of f(r. n) for r=n. More precisely, for a fixed »n, an upper bound
for f(r.n). r=n. is given in terms of f(r.n), r=n. The proof is based on the same
idea of S. Wagon. From f(3, 3)=8 we deduce an upper bound for f{(r, 3). Next we
investigate graphs which do not contain 2K, as an induced subgraph. We say that the
two edges vyvy, tyy, of the graph G are independent if the subgraph induced by
Py, Usy Uy, 2y 18 2K, 1ee., the complement of a chordless 4-cycle. We prove that a ver-
tex-critical 4-chromatic graph G which does not contain two independent edges has
order |G|=13. We also give a lower bound for the maximum degree ol a graph
without two independent edges.

2. Notation

We consider graphs G =(V(G), £(G)) which are finite, loopless and have no
multiple edges. The neighborhood N(v) of a vertex v€G is the set of vertices adjacent
to v. We put N*(v)=N(v)U {v}. For W< V(G), wedenote N(IWV )= {N(v):ve W}
and NY(W)=NW)UW. If G, is a subgraph of G then N(G,), N*(G,) respectively
denote N(V(Gy)). N*(V(Gy)). Two subgraphs G, G, are non-neighboring if V(G )M
NIN'(G,)=0. A subset W < V(G) is called a dominating set il N*(W)= V(G).
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3. The functions f(r. 2) and f(r. 3)

S. Wagon [2] proved that if ¢ contains neither a complete subgraph of order
r nor two independent edges then 7(G)= [5] it follows that f'(r, 2}"_-[5] +1. The

slightly stronger result f (r+1,2)=f (r, 2)+r is implicit in [2]. It is trivial that
f(2.2)=2 and the pentagon C, shows that f(3.2)=4. The 5-wheel C,+Kk, shows
that f(4,2)=35 and from Wagon’s Theorem we have f(4,2)=7. Recently P. Hajnal
proved that f(4.2)=6. Finally, Nagy and Szentmiklossy proved f(4.2)=3

Theorem 1. for r=n,
f(r.n) = I—Hn—l)[r; ] 2()’(!4—1 " —])[ jl]
Rooe =t o

Proof. Let G be a graph which does not contain two non-neighboring si-chromatic
subgraphs. Let K be a complete subgraph of maximum order in ¢ and assume that

IK|=k=n. Foreach 1=/=n, let Sj-"'. I=i= [ ] denote the j-subsets of F(K'). Put

)(,:’:' = I N(v}l'"'S-:“ =0 | =i = [::],

. _ : k
Y = {o: NONVK)=V(EK)-SP} 1=j<n l=i= [;]

We have z(X!")=n—1 since otherwise. S\" would be non«neighborim_ to an n-chro-
matic subgraph of X", Also y(Y{?)= SAVESNUES since Y{? does not contain
a complete subgraph of order j+1. The union of the X" and Y'” 1s V(G). Therefore

n—1

S k - k
7(G) = (n- I}[”]J.rg(_f(,wl, ") — |)[J-J

which implies the required result. |
Theorem 2. f(3,3)=8.

Proof. Let G be a triangle-free graph which does not contain two non-neighboring
odd circuits. Let C=uv,4v;...15, be an odd circuit of minimum lenght in G. We describe
a proper 7-coloring ¢ of G as follows. Let ¢(py)=1 and ¢(v;)=2 (resp. 3)il / is odd
(resp. even) and 1=7/=2k. Further we let ¢(x)=2 (resp. 3) if xéN(u;) for i even
(resp. odd) and 2=i=2k—1. Otherwise.for xe N(C) we let

4] I xe N(y))
c(x) =14 x5 N(vy)
5 x€ N(ow).

Since G—N*(C) does not contain an odd circuit, we need at most two more
colors 6 and 7 to extend ¢ to all of V(G). This shows that 7(G)=7 and. therefore.
f3.3)=8. 1
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It is easy to check that the triangle-free 5-chromatic graph described by
Mycielski [1] does not contain two non-neighboring odd circuits. This shows that
f(3.3)=6.

From Theorems | and 2 we get the following polynomial upper bound for
f(r.3).

Corollary 3. f(r, 3}'_;:52[!.; I]+?[:‘—21]+r (r=3). i

4. Graphs without two independent edges

In this section we prove some more results about graphs without two inde-
pendent edges. We start by a result about 4-critical (i.e vertex-critical 4-chromatic)
graphs without two such edges. Examples of these graphs are K, and the 5-wheel
C;+K,. We shall encounter more in what follows. It is somewhat a surprising fact
that these graphs cannot have a large order. specially if we know that this is not the
case tor higher chromatic numbers.

Theorem 4. [/ G is a 4-critical graph without two independent edges then |G| =13.

Proof. We may assume that G is not (and therefore does not contain) K,. Let v, v, 0,
be u triangle in G. We have two cases.

Case . There is a vertex veG adjacent to none of vy, vy, vy. Since G contains no two
independent edges, then each vertex weN(v) must be adjacent to exactly two of
;. Us. 0y, Let ¢ be a proper 3-coloring of G —uv. There must exist three vertices
iy, Uy, uy€ N(v) such that c(u;)=i(i=1, 2, 3). Suppose the vertices v,. v,, v, Were so
labelled that ¢(v)=i. Thus « is adjacent to v; iff i+j. However, G contains no
more vertices since, so far, it is 4-critical. G could contain none, one or two more edges
connecting some of u,, u,, uy. These graphs are shown in Figure 1.

Case 2. N'(vy, vy, vy)=V(G).
We let

Jj#i

A;=N@w)—UNF), Bi=NNu)—{v} 1=i=3,
i#i

k] a3
A=A, and B=lJB,.

i=1 i=1
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We note that each B, is independent since G contains no K. Also, each A, is
independent since if, for example, there were two adjacent vertices a. a’€ A; then the
two edges aa’. v,v; would be independent. Therefore both 4 and B are nonempty.
We pick an edge xy with x€4,, véB; and i=; (if no such edge exists then G is
3-chromatic). For convenience, we assume that yé B, and x€A4,. We choose a maxi-
mal uniquely 3-colorable subgraph in G —x as follows. Assign color 7 1o
(i=1,2,3). At each subsequent step a vertex v is assigned color j whenever it is
adjacent to two vertices which were previously assigned the two other colors distinct
from /. We continue in this way until we cannot proceed [urther. Denote by W' the
set of vertices colored in this way and by ¢(v) the color assigned to o€, Thus, for
example, ¢(v)y=i for each veB,;. Suppose c(w)= 1 for each vertex well’ adjacent
to x. Then by putting c¢(x)=1 and

| veA,—W
() =12 vEA;—W
3 ved W

we get a proper 3-coloring of’ & which is a contradiction. Therefore, there is a vertex
wi e W adjacent to x with ¢(w;)=1. We prove that there is a path ) w....1, such
that:
(1) e(w;)=i (mod 3)
(1) for i—=t, w;eA; where i+2=j(mod 3)and weB; where 1=/ (mod 3).

Phis is true it wy€B;. Suppose not, then necessarily w €4, and it was ussig-
ned color 1 due to its adjacency to a vertex w, (previously) colored with color 2.
Either w,€ B, or wycA4, and we can find wy with the required properties. Continuing
in this way we, eventually, arrive at w,€ B. Let us assume lurther that this path is of
minimum length. Clearly the vertices vy, va, 0y, X. ¥o wy. ..oy, span @ 4-chromatic
graph so that they must be all of V(G). Thus we have to prove that 1=8. Assunic. on
the contrary, that 1=9. Consider the two edges xw; and w,w,. There is no edge
wyw, since c(wy)=c(w;)=1. Also, xw., wywed E(G) since, otherwise, we could have
chosen a puth of smaller length. Therefore xw€ E(G). Now consider the two edaes
xwy and wyr,. I either xivg, won € E(G) then we get a path of smaller length. Also
none of x,wy is adjacent to vy. This is a contradiction since iy, wy o, cannoi be
independent. This completes the proof that [G|=13. |

To show that 13 in Theorem 4 is best possible. we give a graph G with |G| =13.
This is shown in Figure 2.
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In contrast to Theorem 4, we describe a S-critical graph without two indepen-
dent edges which has 4n+35 vertices [or arbitrary n. The vertices of this graph are
Xys Xy Xyy Ngs Vo Vis oe0s Vane Theedges are

i (i # i)

Vivier (O =1i=4n-1),

i—j=2.3 (mod 4),

viv; i=j and i—j=2.3 (mod4),
VoXs  VauXy-

Our next result describes dominating sets of connected graphs without two
independent edges. Here, of course, the connectedness is equivalent to having no
isolated vertices.

Theorem 5. Let G be a connected graph without two independent edges. Then G has
a dominating sei whose induced subgraph is either a complete subgraph or a path on 3
vertices.

Proof. Let v, 0,€ £(G). Denote X — V(G)—N"(v;, vy) and Y=N"(vy, 0,)— {vy, v,).
We may assume X0 since otherwise {v,, v,} is a dominating set. The set X is inde-
pendent but each x€ X is adjacent to at least one ye¥. We choose vertices 1,. ...
.. €Y with r minimum and satisfying:

(i) XS Ny

i=1
(i1) Tor each i, N(y)1X 1s maximal that is not properly contained in N(y) X
forany veY.

I r=1 then {o, vy, y,} 15 a dominating set with the required property. Let
us assume that r=2. If y;+#y; then we can find x, X"€ X such that y,x. ;X' € E(G)
but y,x’, y;x{ £(G). Therefore y;v;€ E(G) forall i=/. Obviously {v,, vy, yi.....0,)
is a dominating set. So we need only to prove that for i=1, 2, either v, is adjacent
to all of p,.....» orelse N()SN(y.,....»,). Suppose on the contrary that.
for example, v, v, & E(G) and there is a vertex v€ N(v,) adjacent to none of Jy,. ...
.o b, Let xe N(y)MX. Since the two edges v, v, y, x are not independent, then we
must have xv€E(G). Therefore N(y)MXSN(v)(1X and by (ii) above equality
holds. Choose two vertices x;, Xo€ X with x, ¥, X,1,€ E(G) and x;r,. x,, 4 E(G).
The two edges x, v, x,p, are then independent. This is a contradiction and our theo-
rem is proved. [

Corollary 1. I1G is a connected graph of order n and without two independent edges then

_ i
its maximum degree A(G)=min {2 Vn—2, T (n+1 )} .

Proof. If G has the vertices of a complete subgraph of order r as a dominating set then
this complete subgraph contains a vertex x with degree

1 _
d(x, G) = ;{rr—r)—kr—l = 2Vn-—2.
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If the dominating set is a path v, v, v, then for some i

d(v;. G) '-.i:%(rH—l). |

For each n, we can construct a graph G with |[G|=n, A(GJ:[Z Vn —21
([x] is the smallest integer =x) and no two independent edges as follows. Choose
two positive integers r, s with rs=n and r+s is minimum. Starting from the vertices
vy, ..., v, of the complete graph K., we add n—r more vertices u,, ..., u,_, cach
Jjoined to at least one v; in such a way that no v, is joined to more than s—1 vertices
u;. Clearly for large n these are the only extremal graphs to Corollary 1. In parti-
cular, for sufficiently large n, [2)/n —2] is the smallest possible maximum degree.
However, even for small values of #, this is not far from being true.

Corollary 2. All connected graphs G on n vertices and without two independent edges

satisfy A(G)=2Vn —2 except the three graphs shown in Figure 3.

Proof. Assume 4(G)=2Vn —2. Then, since 4(G) is an integer. we must have
I

I—s,“[rH- 1)

keeping in mind that G must have a path of three vertices as a dominating set, we can
check each case to see that no such graph exists except when n=35, 7, 10 where there

is @ unique graph in each case. [
/’\ N /'JT\

<2yn—2. Thisis trueonly for n=5,7,8,10, 11, 13, 14, 17. However,

Fig, 3
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