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Let v(n) denote the number of dlstmct prime factors of n. We show that the 
equation n + v(n) = m + v(m) has many solutions with n #M. We also show that if v 
is replaced by an arbitrary, integer-valued function f with certain properties 
assumed about its average order, then the equation n +f(n) =m+f(m) has 
infimtely many solutions with n f m. 8. 1985 Academlt Press. Inc 

1. IK;TRODUCTION 

IfS(n) is an arithmetic function, one can ask for the distribution of the 
integers n for which f(n) =f(n + 1). Depending on the function f, this 
question is usually either trivial or intractable. However, even when the 
conjectured “truth” is unobtainable, partial results are sometimes possible. 
Also easier questions can be asked, such as: find the distribution of the n 
for which If(n)-f(vt + 1)1 . IS small or find the distribution of the pairs n, m 
for which f(n) =f(m) and 1 n-m 1 is small. 

The aim of this paper is to study the equation 

n f v(n) = m + v(m) (n+m) (1) 

and some related questions, where v(n) is the number of distinct prime fac- 
tors of n. Note that if n, m is a solution of (l), then certainly Jn -m) is 
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small. We show that not only does (1) have many solutions, but a 
generalization of (l), where v(n) is replaced by an arbitrary, integer-valued 
function f(n) with certain properties assumed about its average order, 
always has infinitely many solutions. 

Let Q(n) denote the number of prime factors of n counted according to 
multiplicity and let z(n) denote the number of divisors of n. Recently, 
D. R. Heath-Brown (“The divisor function at consecutive integers,” to 
appear) showed that z(n) = z(n + 1) has infinitely many solutions. He 
announced that his method also gives infinitely many solutions of 
G!(n) = B(n + 1). In a later paper in this series we shall show that the num- 
ber of n <x for which z(n) = t(n + 1) is 0(x/J=) and the same for 
O(n) and v(n). In another paper we shall show that 1 v(n) - v(a + l)\ is 
bounded on at least cx/Jlog log x values of n <x and the same for Q(n). 
We shall also obtain an upper bound for the number of solutions of (1) 
and of the equation d(n) = #(n + l), where 4 is Euler’s function. 

Section 2 below will be devoted to the following theorem. 

THEOREM 1. IA f (n) be a positive integer-valued arithmetic function for 
which there is a differentiable function F(x) and an x,,, such that for x > x0, 

(ii) 

(9 1, 

O<F’(r)<$ F’(x,‘2) < 3F’(x), 

(iv) F’(x) is decreasing, 

(v) lim F(x)= +oo. 
x--t+‘u 

Then the equation 

n +f(n) = m -t-f Cm) 

has infinitely many solutions. 

COROLLARY. Each of the equations 

n + v(n) = m + v(m) 

n+LJ(n)=m+O(m) 

n-t-z(n)=m+z(m) 

has lizfinitely many solutions. 

@#ml 

Wm) 
@#ml 

(n#mm) 

(2) 
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In fact, the Corollary can be derived easily from Theorem 1 by using the 
well-known formulas 

~~~v(n)=xloglogx+c,x+Q I-& ) 
( > 

c Q(n)=xloglogx+c,x+O 
X 

nsr ( 1 iogx’ 

.5-X T(M) = x log x + c3x + cl(&). 

It is not hard to construct examples to show that condition (i) on the 
average-order function F(x) stated in Theorem 1 is nearly best possible. 
For example, let f(n) = [log log(rt + 2)], so that it is clear that n +f(n) = 
pn +f(m) has no solutions n #m. We have 

1 f(n) =x log log x + O(x). 
II < x 

If we let F(x) = log log x, then every condition of the theorem is satisfied 
except that it is not true that 

1 f(n)-xloglogx <i for x>xO. 
n < x 

Rather 

c ,f(n)-xloglogx <(1+0(I))& 
n s x 

so that apart from the precise value of the constant our condition is best 
possible. 

Another example is f(n) = [n”“]. It is again immediate that n +f(n) = 
m +f(m) has no solutions n # m. We have 

c f(n) =$x5/4 -fx-(~+2(Xl~4}2-2(X1/4))X3/4+~(X1~*)~ 

nsx 

If we let F(x) = $~i’~ - i - &x - 1’4, then every condition of Theorem 1 is 
satisfied except that 
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fails. Rather 

c f(n)-xF(x) d l 
n<x (20+o(l)) F(x)’ 

so that again, apart from the precise value Y/240,” the condition of the 
theorem is best possible. 

It is interesting to note that Theorem I can be used to give an “G?- 
theorem” for the mean value of some non-decreasing, integer-valued 
functionsf(n). Indeed, the conclusion of the theorem is not satisfied, so at 
least one hypothesis for the function F(x) must also fail. For example, if 
f(n) is integer-valued, non-decreasing, and f(n) N log log ft as PZ + cc, then 
for every value of the constant c we have 

limsup-1- C f(n)-xloglogx-cx &f. 
x’cc x n<x 

In Sections 3 and 4 we shall prove (by a different method) that Eq. (1) 
has “many” solutions: 

THEOREM 2. There is an x, such that for x > x,, the equation 

n + v(n) = m -I- v(m), nQx, m<x, nfm 

has more than x * exp ( -4000 log log x log log log x > solultions. 

2, PROOF OF THEOREM 1 

Assume that the hypotheses of Theorem 1 hold. For k = 1,2,..., let Y(k) 
denote the set of integers n such that 

Oin<k and ?z+~(n)z+t1. 

Denote by g(k) the number of elements of the set Y’(k). 
Assume first that for some positive integer k, 

gW) ‘dk + 1). (3) 

Clearly k + I G 9’(k+ 1) and k + 1 #Y(k), so that (3) implies that 
Y(k) - Y(k+ 1) has at least two elements. That is, (3) implies there exist 
integers m, n with m #n, such that both are in Y(k) and neither is in 
9’(k+ 1). Then clearly, we have 

m -tf(m) = n +-f(n) = k + 1, 
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giving a solution of (2). Furthermore, distinct values of k determine distinct 
solutions of (2). Thus if (3) holds for infinitely many k, then also (2) has 
infinitely many solutions. 

So let us assume the opposite, that 

g(k) G g(k + 1) for k z ko. (4) 

We now show that the functions g and f have about the same average 
order. We have for x > x,, 

c l- c f(n) 
rick n<r 

n+f(rl)2k+l 

by condition (ii) of Theorem 1. Thus by condition (i), for .Y > x0 

c 0) -xf’(-xl G k;ygW - C f(n) 1 f(n) - XF(X) 
k4r 1 I. nszr nc ‘( 

(5) 

By (5) and conditions (iii) and (v) of Theorem 1 it follows that g(k) is 
not bounded, so that for all X, there is an integer k, with 

k,>x,,g(k,)<gW,+l). (6) 

Let X, be any number larger than 2. max (x0, k,,, lo} and let k, be such 
that (6) holds. Put 

4 
x=-k,, 

3 
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Then by (4) and (6) we have 

(7) 

On the other hand, by (5), we have 

b=k,--,+l 

-I-4.min 5 1 
1 

40’ 120F’(x) i 

<k,(F(k, + 2) - 2F(k,) + F(k, - t)) + t(F(k, + I) - F(k, - I)) +; 

Now condition (iv) of Theorem 1 implies F is concave downward, so that 

< 6t*F’(x) + ;, (8) 

by condition (iii) of Theorem 1. Thus from (7) and (8), 

t < 6t2F(x) + ;, 

so that 

1 
t,lZF’(x). (9) 

But (9) contradicts the definition of t, which shows that there is no k, for 
which (4) holds. Thus (3) holds for infinitely many k, which, as we have 
seen, is sufficient for (2) to have infinitely many solutions. 
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3. PREPARATION FOR THEOREM 2 

We shall use the following lemmas in the proof of Theorem 2. 

LEMMA 1. Let g be an arbitrary set of primes. Let x >, 1 and let a, b be 
integers Mpith 0 < a < b such that eaery prime factor of b is in 9. Let 

Then 

H:.v(g(a+bn)-E)2-Ex <c,x (10) 

where the constant c4 is absolute (independent of each 9, u, b, x). 

Proof: The Lemma can be proved easily by T&n’s method; see [ 1, 21. 
For the sake of completeness we give the proof, 

We may assume that x is an integer. Then 

ti~Y(g(a+bn)-E)2=,,4,g(~+bn)2-2E z g(a+bn)+xE’. (11) 
n<r 

The first sum is 

,I?, s(a + bn I* 

=xE+Q(X”3)+X 1 L + Q(x2j3) = xE+ xE* + Q(x), 
p,q < 1113 p q$ a pq 

plo+‘b; 

where the implied constant is absolute. 
The second sum on the right of (11) is 

-2E c g(a+bn)= -2E c 1 1 = -2xP+ O(Ex”3) (13) 
n=sx ?l<rp<.G’.pBb 

pla+ hn 

(as in the calculation in (12)) where again the implied constant is absolute. 
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Finally, (ll), (12), and (13) yield that 

n~x(da+W-E)2= E x +xE*-2xE2+~E2+O(x)=.~E+O(x), 

which gives (10). 

LEMMA 2. Let 9 be a set of primes with 

Let a, b be integers with 0 Q a < b nnd such that every prime factor of b is in 
9. Let 

Then for 

f(n)= C 1. 
P~Jp,Pll7 

x > b2, (15) 

and x > x2 (where x2 is an absolute constant, independent of9, a, 6) and for 
all t > 0, the number of integers n with a i- bn <x and 

f(a + bn) < log log x - tdlog log x (16) 

is less than 5x/t2b. 

Proo$ The lemma is clearly true if 0 < t < 1, so assume now that t > 1. 
Let F denote the set of integers n with a + bn <x and satisfying (16). 
Define 

so that g(n)df(n) for all n. Thus 

g(a + bn) <f(a + bn) < log log x - tJ= (fornEY). (17) 

In view of (14) and (15) we have 

E= c ~=loglogx+o(l), 
p< ((X-LI):bp,pp.P p 

(18) 
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where the error term is uniformly bounded. Thus from Lemma 1 we have 

ni (x Q)!‘b 
c (g(u+bn)-E)2=Ey+O y ( > 

(19) 

=~(loglogn+O(l)). 

On the other hand, by ( 17) and (18) we have for x large that 

(g(a+bn)-E)2> c E F n3F (+q2 

Combining this estimate with (19) gives the lemma. 

LEMMA 3. For x > x and all t > 0, the number of integers n dx with 
v(n) 2 log log x + t P. log log x 1s less than 5x/t2. 

This result is well known [l, 23 and, in fact, is a consequence of 
Lemma 1. 

4. THE PROOF OF THEOREM 2 

The idea of the proof is to show there are many disjoint intervals 
[u, U] t [ 1, x] such that the function n + v(n) maps most of CU, v] into an 
interval [u’, 0’1, where v’ - U’ is a bit smaller than v - U. In fact U, U, u’, V’ 
will be found so that more integers in [u, tl] are mapped into [u’, v’] than 
there are integers in [u’, 0’1. Thus in [u, v] there are at least two numbers 
n, m with YI + v(n) =m + v(m). The interval [u, U] is found so that just 
above U, the function v(n) is for most n, unusually large (so that U’ can be 
taken large), while just below II, the function v(n) behaves normally. 

Let pi denote the ith prime. Let x be a large integer, put 

and let 

)’ = [42Jlog log x-j 



328 ERD&, SARI&Y, AND POMERANCE 

A simple computation shows that for large enough x, 

and 

= exp(( 1 + o( 1)) 2y2 log(2y’)) 

< exp(4000 log log x log log log X) < JI. 

(211 

Let h = h, denote the least positive solution of the linear congruence system 

y2 f jv 

n pi , 
> 

j = 1, 2 ,...) y. (22) 
i=.v*+(j-1)4.+1 

Thus 0 < h, < b and h satisfies (22) if and only if 

h 5 h,(mod b). (23) 

Let 2 denote the set of integers h with 0 <h Gx- b and such that (23) 
hoids. Put 

f(n)= 1 1. 
P$a.Pln 

For each h E &‘, let yk denote the set of positive integers j such that 

h+j+v(h+j)<h+ioglogx+~. (24) 

(Note that if jg fhah, then j< log log x +JJ/~.) Finally, let q denote the set 
of h E H with 

IAl + (25) 

We now show that at least half of the elements of H are in yi4. By the 
construction of the sequence S, for 1 <j<y we have 

v(h+j)= C l= c l+ c 1 =y+f(h+j) 
.dh+J Plh+J Ah+] 

PC4 PdP 
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so that (24) implies 

f(h +j) = v(h + j) -y < log log x-j- y/2 < log log x-y/2 

(for 16j<y, jEA). (26) 

On the other hand, for j >y we obtain from (24) that 

f(h +j) < v(h + j) <log log x-j+ y/2 

(fory<j<loglog~+y/2,jE#~). (27) 

Obviously, we have 

c IAl> ’ ,,~~,~~=~Y 1X-W. (28) 
hs.F 

We now obtain an upper bound for the sum on the left of (28). We have 

=I Cl+Cr:l. 
l.Q<yhtX J>y hex 

JEbh JEbh 

By (26), the first inner sum is at most the number of terms of the arithmetic 
progression h0 + j + bn in (0, x] with 

f(h, + j + bn) < log log x -y/2. 

By (27), the second inner sum is at most the number of h, +j + bn in (0, x] 
with 

f(h,+j+bn)<loglogx-j+y/2. 

By (20) and (21), for large x Lemma 2 can be applied to estimate each of 
the inner sums, so that 

~ 20x log log x + 5x log log x 

9 b 

< 20x log log x + 5x log log x 1 .- 
yb b Y/2- 1 

< 3 lx log log x 

9 . 
(29) 
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Thus (28) and (29) imply that 

496x log log x 
I~-&1 < y2b 

x 
32 

With this and (21) we have for large x that 

thus showing that at least half of the elements of X are in $. The mem- 
bers of 2, are our candidates for the numbers “u” described in the begin- 
ning of this section, while the numbers h + log log x + y/2 for h E A?, are the 
candidates for the numbers “u’.” However we have to do some more thin- 
ning out to allow for ‘V and “vi.” 

Let X2 denote the set of h E Xj for which there is an integer I, with 

h+y<l,<h+b (31) 

and (letting z = log log x + 4’/4) 

In order to give a lower bound for 1 X1 1, we need an upper bound for 
( S$ - Z2 1, i.e., for the number of h E 2, such that 

for all 1 satisfying 

h+y<ldh+b. 

We have 

for large enough x. 

(33) 
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On the other hand, by Lemma 3 we have 

h+b 

c c 11 
hE3E”,-P*/=h+.v+l h<n<l 

n+v(n)2/+r 

5X 

k>; ((k-loglogx)/Jioglogx)2 

=5xloglogX c 
1 

k>: w-wOgx)2 

1 
<5xlogiogX~- 

Y/4--1 

< 25x log log X 

Y 
for large x. 

Thus (33) and (34) imply that 

17 25x log log x 425x log log x 
I&-%l<bJ’. y = by2 

x 
-%’ 

so that by (30), 

(34) 

(35) 

Now for h E %* consider the interval [h + 1, /h], where 1, satisfies (31) 
and (32). By (24) and (25), but for at most y/16 exceptions, every 
nE[h+l,lh] has 

n+v(n)>h+loglogx+;. (36) 

By (32), but for at most y/16 exceptions, every n E [h + 1, Zh] has 

n+v(n)<I,+loglogx+~. (37) 

Thus, but for at most y/8 exceptions, every FZE [h + 1, Zh] has both (36) 
and (37) holding. So we have at least lh -h - y/8 numbers n mapped by 
n + v(n) to the interval 
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which has at most Ih - h - [y/4] integers. There are therefore at least 
[JJ/~] pairs n, VIE [h+ 1, Ih] with n#m and n+v(n)=m+v(m). 

As h runs over X2, the intervals [h + 1, Zh] are disjoint and contained in 
[l, x]. Thus, below x, there are at least (using (21), (35) and assuming x is 
large) 

[y/811&1 >4 IX11 +x.exp(-4OOOloglogxlogloglogx) 

pairs n, m<x with n#m and n+v(n)=m+v(m). 

Remarks. Probably Theorem 2 is far from the truth. We conjecture that 
there are positive constants c5, c6 such that 

I{ndx:3m#n,n+v(n)=m+v(m)))-c,x, 

~{(n,m):n<x,m<x,n+v(n)=m+v(m))~-c,x. 

Almost the same proof as for Theorem 2 can show the analogous result 
with Q(n) replacing v(n). With a little more difficulty, the same can be 
proved with r(n) replacing v(n). 
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