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The Ramssy number r(F, i) is determined in the case where F is an arbitrary fixed graph
and G is a sufficiently large sparse connected graph with a restriction on the maximum degree of its
vertices, An asymptotically correct upper bound is obtained for f{ F. T) where T is a sufficiently
targe, but otherwise arbitrary, tree,

1. Introduction

Let F be a graph with chromatic number g(F)=m. The number s=s(F) is
defined to be the least number of vertices in a color class under any m-coloring of the
vertices of F. Then for every connected graph G with n=s vertices, the Ramsey
mumber r{ ', ) satisfies the inequality

(1 riF, Gy =(m-1){n—1)+s.

The Ramsey number r(F, i) is the least number N such that in every iwo-coloring
(R, B)={(red, blue) of the edpes of Ky, either there is a red copy of I or else a blue
eopy of G. The inequality (1) holds in view of the fact that the edges of the complete
graph of order (m—1){(n—1)4+5—1 can be given the coloring in which the blue
graph, denoted (B, is isomorphic to (m—1)K,_,UK,_,. Then the red graph, deno-
ted (R), does not contain F since {R) has chromatic number m but the smallest color
class has s —1 vertices. Likewise. (B} does not contain G since no component of (B
has more than n—1 vertices. A natural line of inquiry asks for the determination of
those cases for which (1) holds with equality. The classical result of this type is the
simple theorem of Chvatal [4], namely r(K,. T)=(m—1)(n—1)+1 for every tree T
of order n. Many other examples of equality in (1) can be found when one assumes
that 7 is sufficiently sparse. Previous results of this type can be found in [2], [3] and
{3]. The present paper concerns the case in which F is a multipartite graph. Our nota-
tion for an m-partite graph with parts of size py, po, ..., p, will be K{(py, ..., p,).
In case the parts are all of equal size p, we shall write K_(p, ..., p). The floor of x
(greatest integer =x) and the ceiling of x (least integer =x) will be denoted |x] and
[x]. respectively. A path which is a subgraph of & is a suspended path of G if each
vertex of the path, except for its endvertices, has degree 2 in G. Throughout F and G
will have no isolates,
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2. Sparse graphs with restricted maximum degree

This section is devoted to a consideration of r(K(p, ..., p,). G) where G is
a connected graph which is sparse, i.e. with relatively few edges, and in which the
maximum degree, 4(G), is restricted. The starting point is the following general-pur-
pose lemma which gives certain key “sparse graph”™ techniques.

Lemma. (i} Let X={xy,...,x,} and ¥={, ¥o. ... py} bedisjoint sets of vertices in
a two-calared complete graph in which (xy, ..., x,) is a blue monochromatic path. If
a=b(c—1)+d and there is no longer blue path from x; 1o x,, then either (RY>K,
or else there is a set X' X with |X'|=d which is completely joined with Y in (R).
(ii) Suppose that (R, B) is a twe-coloring of the edges joining X={xy, .... x,} with
Y={y1. ..., ¥} inwhicheach vertex of X is adjacent in (B to at least ¢ vertices of Y.
Then either there is a blue matching of X into ¥ or else (R)2K(c+1, b—a+1).
(iii) 1 G is @ graph with n vertices and g=-n edees in which there is no suspended path
with more than a vertices, then G has at least [(nf2a)—(3(g—n)j2)] vertices of degree
one, .

Proof. (i) Here we make use of a familiar argument which occurs in the Bondy—Erdds
paper on cycle Ramsey numbers [1] and elsewhere. If one of the vertices v£F is
adjacent in (B} to ¢ vertices on the path, then there are at least ¢—1 successor ver-
tices (the last vertex may be x, and not have a successor) which together with v span
a K. in (R). Otherwise, the path could be lengthened. It follows that with no K, in {R)
there are at most b(e—1) blue edges joining X with ¥. However, if we assume that
there is no set of d vertices in X which is completely joined with ¥ in (R), then there
areatleast a—d+1=b(c—1)+1 blue edges joining ¥ with X and a contradiction has
heen reached. (ii) This is an immediate consequence of Hall's theorem [6] . If there i3
no blue maiching, then for some subset X" X" Hall's matching condition fails. By
the assumed degree condition, [X7|=¢. Then X7 is completely joined in (R) with
Y'c¥ where |¥'|=b—a4l. (iii) This is Lemma 2 of [5]. The short proof can be
found in this reference. |}

The following propesition, while not giving an exsct Ramsey number, Es..';
stepping stone to a case of equality in (1),

Proposition. Given p,=p,=...=p,,, k and A, there exists a corresponding number'1
such that for every graph G with n vertices, g=n+k edges and maximum degree =4

F(K(P1y ooy Pu)s G) = (m—D(n—1)41.

Proof, Let p=p,+p.+... +p,, denote the order of the multipartite graph. The proof
is by double induction on m and ». Although it represents a momentary departure
from our disavowal of sraphs with isolates, the trivial m=1 ecase will serve as an
anchor. It is clear that & proper choice of [ will ensure that the proposition is true for
all n=p*[2(p*—1)4 +3k]. Hence. we take m=1, n=p*[2(p*— 1) 4 +3%] and assume
that the proposition is true for all smaller values of these parameters. Set N=
=(m—1){(n—1)+! and suppose that (&, B) is a two-coloring of the edges of Ky in
which (R} B K(py, ..., pn) and (B)HG. We shall demonstrate that this assumption
leads to a contradiction. The proof is divided into three cases.
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(i) & contains a suspended path with p* vertices.
Let H be the graph obtained from G by shortening the length of this path by one, Then
H has n—1 vertices, no more than (n—1)+k edges and has maximum degree =4.
Since we may assume that [ is an increasing function of p, k& and 4, it follows from the
induction hypothesis that there is a blue copy of H and, disjointly, a red copy of
K(pyy ooy Pmoy). Now apply part (i) of the lemma by letting A" be the vertex set of the
suspended path and ¥ be the vertex set of the red K(p;, ..., pn-1). Now we set
a=p*—1, b=p—p,., t=p and d=p,. The requisite inequality is clearly satisfied
and so from the lemma we find that either (R)>K(p,, ..., p,,) (or perhaps even K,)
orelse (BY2G.

(ii) & contains a set of p* independent end edges.
Let H denote the graph obtained from G by deleting a set of p* independent end edges.
In order to be able to use part (ii) of the lemma, we shall use the following device.
Let ¥ denote the vertex set of the two-colored Ky and note that either (R)D K, or
else there is a set W with [W|=¢(p—1) such that every vertexin F—W is ddjaﬂﬂl‘l[
in (B to at least ¢ vertices of J#. Such a set W may be found by an algorithmin which
W is initially empty and the process of finding a red cliquein ¥ —W and then placing
the vertices of that clique in W is repeated ¢ times. As long as ¢ does not exceed
p it is certainly true that N—e(p—1)=(m—1)(n—p*— 1)+ Thus, by the induction
hypothesis, there is a blue copy of H which is vertex disjoint from W, Set a=p* and
let X={x, ..., x,} denote the set of verticesin this copy which are incident with the
edges which were deleted in going from @ to H. Let ¥ oW denote the set ofall vertices
of V which are not vertices of the copy of H. Thus |¥F|=b=N—(n—p*) and every
vertex of X is adjacent in (B) to at least ¢ vertices of ¥. It follows from part (it) of
the lemma that either (B)2 G or else (R 2 K(p, N—n+1). In view of the induction
hypothesis, N—n+1 Er%ﬂ[pl. viis Pm=1)s G). Thus either (RYSK(py, ..., pa) OF
else (B)=G.

(1if) Neither (i) nor (ii) occur.
Note that if G had (p*—1)4 +1 vertices of degree one, then it would necessarily have

p* independent end edges. Thus, in view of part (iii) of the lemma, we must have

{n,.f{Zp"} —(3k/)=(p"—1)4 andso n=p*[2(p*—1}4 +3k]. But!was chosen so as to
ensure that the proposition is true for all a=p*[2(p*—1)4 +3k] and so we have
reached a contradiction. |

Now we are ready to prove a case of equality in (1).

Theorem 1. Given s=pi=...=p,. & and A, there exisis a corresponding manber n,
such that for every connected graph G with n=ny vertices, q=n-+k edges and maxi-
mum degree =4,

F(K(P1s oo P)s G) = (m —=1)(n—1) +5.

Proof. The proof is by induction on m. Again, it is trivial for m=1, Thus we set
N+{m—1}{n—1)+s and assume that (R, B) is a two-coloring of the edges of Ky
in which (R)DK(py, ..., ps) and (B)DG. In what follows, I will denote the func-
tion whose existence was established in the preceding proposition. Again, we have
three cases. As before, p=p;+... +Pp.
(i) G has a su.rpmded path with p*+1{ vertices.

Let H be the graph obtained from & by shortening this path by /. By use of the induc-
tion hypothesis together with the result of the preceding proposition we find a blue
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copy of H and, disjointly, a red copy of K(p,. ..., py—1). The argument is completed
by an application of part (i) of the lemma.
(ii) G has a set af p*+1 independent end edges.
The structure of this argument is the same as that in the proof of the proposition, The
desired result follows by an application of the induction hypothesis, the preceding
proposition, and part (if) of the lemma. -
{1it) Neither (1) nor (ii) occur,
By means of part (i) of the lemma, we are now able to conclude that n=n,
=(p*+D)[2(p*+1—1)A+3k]. In view of (1), it Tollows that r(K(py. ..., pu) G)
=(m—1)n—1)+5 holds for all p=pn,.

Corollary. Let F be a fixed graph of order p, chromatic number ¢(Fy=m and such
that in every m-coloring of V(F) each celor class has at least s vertices. Set a=
=1/{2p—1). There exist constants Cy and Cy such that for all sufficiemly large n
A =n+C 0 and A(G)=C.n® imply that the conmected graph G satisfies

FLF, G = (m—1){n—1)+s

Proof. To see that this result is true, it suffices to work with crude upper bounds,
first for / { Proposition) and then for m, {Theorem 1). Review of the proof of the propo-
sition shows that it suffices to take

p+j—2

p—Luf
where /=p*[2(p*—1)4+3k]. In what follows, C,. C, and C; will represent numbers
which are independent of n and which approach 0 as C; and C, approach 0. Using
the above hypothesis and the relationship between n, and [, we have j=C,n", /=
= Cyn'P~ 1% and finally n,=C,n*?~"*=n when C, and C, are chosen to be suffi-
ciently small. J

(2) = I’I_'KF| R.-ﬂ =

3. Trees

The extreme case of a sparse connected graph is a tree. In the case of trees, we

can obtain some interesting results without assuming a restriction on the maximum
degree. In the lemma which follows, the join of G and H, denoted G+H, is defined
for V(G)MV(H)=0 to be the graph obtained by adding all edges joining (G} and
V(H).
Lemma. Let X=1x,,.... x,} and W be disjoint sets of vertices and let W denote the
set of vertices in W to whieh x, is adjacent, k=1, ...,a. Suppose that for k=1, ....a
(W) contains by=b subgraphs isomorphic to G but that \W') contains a total of c=d
such subgraphs. Then in (X UW the mimber of subgraphs isomorphic to G+K, is at
least (ab—pd?d'=?{p! when ab=pd.

Proof. Let Gy, Gy, ..., G, bea listing of the subgraphs of (W) which are isomorphic
to G. For each j=1, ..., ¢ let M, denote the number of & for which G ;< (W,). Then

&) M, = > by =ab.
=]

#=1
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Using the convexity of f(x)= [;] . Jensen’sinequality yields the fact that the number
of subgraphs isomorphic to G +K, is at least (under the assumption ab=pd)

w

@ > [“:J] = e[“i‘r*] =d [“i’d] ~ (ab—pdyd*—?[p!. 1

J=1

The Ramsey number r(K,(p, ..., p),T) is well known to be complicated. Chances
for exact results are slim unless restrictions are placed on 7. Therefore, we are con-
fent with asymptotic results.

Theorem 2, Let p=2 be fixed and for m=1,2, ... set
e
=1

x(m) =

_ P
Blm) = = ey

For each m=1,2, ... there exists positive copstants A, and B,, such that if N=
=(m—1)n+k where k=0(n) but k=A_ "™, n sufficiently large will imply that
in every two-coloring (R, B) of the edges af Ky either (B contains everv tree T of order
n or else (B contains at least B, (k/n)"™n"* subgraphs isomorphic o K (p, ....p).

Proof., The proof is by induction on m. The case m=1 is casily checked. Now let m
exceed | und suppose that the theorem is true in all prior cases. Throughout the proof,
Ay, Byy Cyy, oo will represent positive numbers which may depend on m but which
are independent of n. By an obvious parameter scaling, it suffices to prove the exis-
tence of a positive 4, which ensures the stated conclusion when N=(m—1)n+2k
and k=d,psm,

It is a well-known fact that if every vertex of (B has degree at least n—1 then
{B) contains every tree 7' of order #. By assuming that (B does not contain every tree
of order n, repeated use of this fact leads to a sequence of vertices ¥y, ..., x, such
that each of these vertices is adjacent in (R) to at least (m—2)n+k of the remaining
(m—1)n+k vertices. Let W denote the set of these remaining vertices and note that
k=0(n) implies that in the red subgraph induced by W the number of copies of
Ko alp, ..., p) 15 at mest O(n'™—Y7), p—=. Thus, invoking the induction hypothe-
sis, we may apply the lemma with

(5) a = k= A n"™

(6) b= B,_,(k/n)!*Vp—1r
and

(7N d=C, n™-1r,

Note that the exponents x(m) and fi{m) have been defined so that
(%) a{m){l+f(m—1} = fi{m—1)
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and

(9) p{l1+F(m—1)} = fim).

it follows from (5), (6) and (8) that

(10) ab-= B, ik (kin)f "~ Hyw—he e pple=le,
Consequently, (7) vields

(i ab—pd = E k(kjn)f"™ e,

In view of the lemma and relations (8) and (9), we find that (R) contains at least

(12) {Emk(kllr”]ﬂm—ﬂ"{H—I}p}p{cmnlm—i]rl'l—p”?! = B (kin m)
subgraphs isomorphic to K. (p. ....p). |

The crucial fact is that for each fixed p and m, z(m)=1 so that n™™=o(n),
n—===. The theorem clearly gives the bound r(K.(p, -...p), T)=(m—1)n+ A4, n"=.
In view of (1) the consequences of the theorem can be stated in the following uniform
asymptotic sense.

Corollary, Let F be a fixed graph with chromatic number 3(F)=m. For ecvery &=0
there exisis N(g) such that
|F[F, T)
n

—{m— ‘[}] =g
for every tree T of order n=N{g). |}

In the bound r(K,(p, ...p)T) = (m—1n+A,n"™, the exponent
(p™—p)(p™—1) can hardly be expected to be best possible. However, in the case
p=m=2 we can obtain a sharp result.

Theorem 3. For every tree T of order n,
r(K(2,2), T) = n4[yn] .

Proof. Before giving the proof of this result, let us note that it is best possible sinen
r(K(2.2), K(1, p*+1))=p*+p+1 whenever p is a power of a prime [7]. It is known
as well [7] that r(K(2,2), K(1, n=1))=n+[yn1s0 itis enough for us to prove the
result when T4 K(1, n—1).

The proof is by indvction on n. For n=3, T=K(l,n=1) so we know the
result to be true. Take n=3 and let T be a tree of order n other than K(1, n—1).
With N=n+yn] suppose that there exists a two-coloring (R, B) of the edges of
Ky in which (R)DK(2,2) and (By T. Consider the tree to be rooted at a vertex
of degree A(T). Since T4 K(1,n—1), we may select an end vertex u which is at
distance at least two from the root vertex. Let T denote the tree obtained from T by
deleting u. Let v denote the immediate predecessor of u in the rooted tree and let w
denote the immediate predecessor of v. Note that w is possibly the root vertex. By the
induction hypothesis, there must be an embedding of T° in (B). For simplicity of
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notation, the vertices in this embedding will have the same designation as in T”, Set
a=[)n] and suppose that v has b successors in 7. Consider the set of vertices P in the
two-colored Ky which are either immediate successors of v in the blue embedding of
T’ or else disjoint from F(T7) in this embedding. Form the partition of this set
(RR. RB, BR. BB) according 1o the adjacency pattern with respect to v—w. Thus
RB is the set of vertices in P which are adjacent to rin (R} and adjacent to w in {B).
In terms of the previously introduced parameters, we have |RR|+|RB|=a+] and
|BR|+|BB|=b—1. Let |RR|=c and |BB|=d. In view of the fact that (R)D
$K(2,2), ¢=1. Let 0=PU{r}. Noie that no vertex of Q which is adjacent to w
in (B} can be adjacent in (B to as many as b vertices of Q. Otherwise, such a vertex
could play the role of v and provide an embedding of T into {B). Thus, every such
vertex is adjacent in (R) to at least a+1 vertices of (. In terms of our parameters, the
number of these vertices is a—c-+d+2. At the same time, w is adjacent in (R) to
b4¢—d—1 vertices of @. Now, by the usual pigeonhole argument using the assump-
tion that (R} 1 K(2, 2)

(13) (a—c+d+ﬂ[a;r1]+[b+c;d_1] . [HEH]‘
Using the identity
R

with x=b, p=a+1 and g=d—c+1, we see that (13} is equivalent to
(15) b = gt +d —c+1.

However, @*=n, d=0 and c¢=1. Since the root vertex was chosen to have maxi-
murn degree and ¢ is necessarily distinet from the root, (15) implies that 7 has at least
2b=n edges. Thus. we have arrived at a contradiction and the proof is complete. |j

4. Questions

The edge density of a graph G is defined to be max {g(H)/p(H)} where p and
¢ denote the number of vertices and number of edges respectively and the maximum is
taken over all subgraphs H—G. Does bounded edge density and A(Gl=o(n)
imply that

r(F. G) =(m~-1)(n—1)+s
for all sufficiently large n? Does bounded degree have such an implication?

5. Dedication

The three last pamed authors [R. ). F, C. C. R, R. H, 5] pratefully dedicate
this paper to Paul Erdds in honor of his 70th birthday.
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