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The Ramsey number r(F, G) is deternüned in the case where F is an arbitrary fixed graph
and G is a sufficiently large sparse connected graph with a restriction on the maximum degree of its
vertices . An asymptotically correct upper bound is obtained for r(F, T) where T is a sufficiently
large, but otherwise arbitrary, tree .

1. Introduction

Let F be a graph with chromatic number x(F)=m. The number s=s(F) is
defined to be the least number of vertices in a color class under any in-coloring of the
vertices of F. Then for every connected graph G with n--s vertices, the Ramsey
number r(F, G) satisfies the inequality
(l)

	

r(F, G) -- (m-l)(n-1)+s .

The Ramsey number r(F, G) is the least number N such that in every two-coloring
(R, B)=(red, blue) of the edges of KN , either there is a red copy of F or else a blue
copy of G . The inequality (1) holds in view of the fact that the edges of the complete
graph of order (m-1) (n-1) +s-1 can be given the coloring in which the blue
graph, denoted (B), is isomorphic to (m-1)K„_~UKS_~ . Then the red graph, deno-
ted (R), does not contain F since ~R) has chromatic number m but the smallest color
class has s-1 vertices . Likewise, (B) does not contain G since no component of (B)
has more than n-1 vertices. A natural line of inquiry asks for the determination of
those cases for which (1) holds with equality . The classical result of this type is the
simple theorem of Chvátal [4], namely r(K,,,, T)=(m-1) (n -1)+ for every tree T
of order n . Many other examples of equality in (l) can be found when one assumes
that G is sufficiently sparse . Previous results of this type can be found in [2], [3] and
{5j. The present paper concerns the case in which Fis a multipartite graph. Our nota-
lion for an m-partite graph with parts of size p,,, p, . . ., p will be K(p,, . . . I p,,,) .
In case the parts are all of equal size p, we shall write K(p, . . ., p) . The floor of x
(greatest integer --x) and the ceiling of x (least integer -x) will be denoted [xl and
[x], respectively. A path which is a subgraph of G is a suspended path of G if each
vertex of the path, except for its endvertices, has degree 2 in G . Throughout F and G
will have no isolates .
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2. Sparse graphs with restricted maximum degree

This section is devoted to a consideration of r(K(p,, . . ., p,„), G) where G is
a connected graph which is sparse, i .e. with relatively few edges, and in which the
maximum degree, d (G), is restricted . The starting point is the following general-pur-
pose lemma which gives certain key "sparse graph" techniques .

Lemma. (i) Let X= {x,, . . ., xJ and Y= {Y,, Y2, , Yb} be disioint sets of vertices in
a two-colored complete graphh in which (x,, . . ., xa) is a blue monochromatic path . tf
a-b(c-1)+d and there is no longer blue path from xl to xa , then either (R) :D Kc
or else there is a set X'cX with JX'J =d which is completely joined with Y in (R) .
(ü) Suppose that (R, B) is a two-coloring of the edges joining X= {x,, . . ., xaj with
Y= {Y,, . . . , Y b } in which each vertex of X is adjacent in (B ) to at least c vertices of Y .
Then either there is a blue matching of X into Y or else (R)DK(c+l, b-a+1) .
(iii) If G is a graph with n vertices and q >n edges in which there is no suspended path
with more than a vertices, then G has at least [(n/2a)-(3 (q-n)/2)] vertices of degree
one.

Proof. (i) Here we make use of a familiar argument which occurs in the Bondy-Erdős
paper on cycle Ramsey numbers [1] and elsewhere . If one of the vertices YEY is
adjacent in (B) to c vertices on the path., then there are at least c-1 successor ver-
tices (the last vertex may be xa and not have a successor) which together with y span
á K. in (R). Otherwise, the path could be lengthened . It follows that with no K. in (R)
there are at most b(c-1) blue edges joining X with Y . However, if we assume that
there is no set of d vertices in X which is completely joined with Y in (R), then there
are a# least a-d+ 1--b (c -1) + 1 blue edges joining Y with X and a contradiction has
been reached. (ü) This is an immediate consequence of Hall's theorem [61 . If there is
no blue matching, then for some subset X'(--X Hall's matching condition fails . By
the assumed degree condition, ~X'J>c . Then X' is completely joinedin (R) with
Y'cY where IY'l ~-2n b-a+1 . (iii) This is Lemma 2 of [5] . The short proof can be
found in this reference .

The following proposition, while not giving an exact Ramsey number, ' is a
stepping stone to a case of equality in (1) .

Proposition. Given p,-p2 _ . . ._p,,,, k and d, there exists a corresponding numb&,,
such that for every graph G with n vertices, q-n+k edges and maximum degree d

r(K(p,	pr„), G) - (m-1)(n-1)+l .

Proof. Let p=p,+p2+ . . . +p,,, denote the order of the multipartite graph . The proof
is by double induction on m and n. Although it represents a momentary departure
from our disavowal of graphs with isolates, the trivial m =1 case will serve as an
anchor. It is clear that a proper choice of l will ensure that the proposition is trite for
all n-p2[2(p2 -1)d+3k] . Hence,wetake m>1, n>p 2[2(p 2 -1)d+3kJ ándassume
that the proposition is true for all smaller values of these parameters . Set N
=(m-1) (n -1)+I and suppose that (R, B) is a two-coloring of the edges of K,, in
which (R) K(p,, . . ., p,,,) and. (B) G . We shall demonstrate that this assumption
leads to a contradiction . The proof is divided into three cases .
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(i) G contains a suspended path with p2 vertices.
Let H be the graph obtained from G by shortening the length of this path by one . Then
H has n-1 vertices, no more than (n-1)+k edges and has maximum degree --d .
Since we may assume that 1 is an increasing function ofp, k and d, it follows from the
induction hypothesis that there is a blue copy of H and, disjointly, a red copy of
K(pl , . . ., p,,, _,) . Now apply part (i) of the lemma by letting Xbe the vertex set of the
suspended path and Y be the vertex set of the red K(pl , Now we set
a=p2 -1, b=p-p,,,, c=p and d=p,,, . The requisite inequality is clearly satisfied
and so from the lemma we find that either (R)DK(p l , . . ., p (or perhaps even Kp)
or else (B ) D G .

(ü) G contains a set ofp 2 independent end edges .
Let H denote the graph obtained from G by deleting a set ofp 2 independent end edges .
In order to be able to use part (ü) of the lemma, we shall use the following device .
Let V denote the vertex set of the two-colored KN and note that either (R) D KP or
else there is a set W with IW Í-c(p-1) such that every vertex in V-W is adjacent
in (B) to at least c vertices ofW. Such a set W may be found by an algorithm in which
W is initially empty and the process of finding a red clique in V-W and then placing
the vertices of that clique in W is repeated c times . As long as c does not exceed
pit is certainly true that N-c(p-1)á(m-1)(n-p2-1)+l. Thus, by the induction
hypothesis, there is a blue copy ofH which is vertex disjoint from W. Set a=p2 and
let X= {x,, . . ., xJ denote the set of vertices in this copy which are incident with the
edges which were deleted in going from G to H. Let Y W denote the set of all vertices
of Vwhich are not vertices of the copy of H. Thus I Y I =b=N-(n-p2) and every
vertex of X is adjacent in (B) to at least c vertices of Y. It follows from part (ü) of
the lemma that either (B) D G or else (R) D K(p, N-n + 1) . In view of the induction
hypothesis, N-n+l-r(K(px , . . ., pm_,), G) . Thus either (R) :DK(pa , . . ., p,„) or
else (B)DG .

(iii) Neither (i) nor (ü) occur.
Note that if G had (p 2 -1)d + 1 vertices of degree one, then it would necessarily have
p2 independent end edges. Thus, in view of part (iii) of the lemma, we must have
(n/(2p2))-(3k/2)-(p2-1)d and so n~p2[2(p2 -1)d +3k] . But 1 was chosen so as to
ensure that the proposition is true for all n-p2[2 (p 2 -1)d+3k] and so we have
reached a contradiction . I

Now we are ready to prove a case of equality in (1) .
Theorem 1 . Given s=pl- . . .=p,,, k and d, there exists a corresponding number n o
such that for every connected graph G with n>-n o vertices, q-n+k edges and maxi-
mum degree -d,

r(K(pi, . . ., pm), G) =(m -1)(n-1)+s .

Proof. The proof is by induction on m. Again, it is trivial for m=1 . Thus we set
N=(m-1) (n-1)+s and assume that (R, B) is a two-coloring of the edges of KN
in which (R) K(pl , . . ., p,,,) and (B) 1) G . In what follows, 1 will denote the func-
tion whose existence was established in the preceding proposition . Again, we have
three cases . As before, p=p1+ . . . +p„, .

(i) G has a suspended path with p2+1 vertices.
Let Hbe the graph obtained from G by shortening this path by l . By use of the induc-
tion hypothesis together with the result of the preceding proposition we find a blue
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copy of H and, disjointly, a red copy of K(pl , . . ., p,,-,) . The argument is completedd
by an application of part (i) of the lemma .

(ü) G has a set of p`L+l independent end edges .
The structure of this argument is the same as that in the proof of the proposition . The
desired result follows by an application of the induction hypothesis, the preceding
proposition, and part (ü) of the lemma .

(iii) Neither (i) nor (ü) occur.
By means of part (iii) of the lemma, we are now able to conclude that n--n,=_

(p2 +1) [2 (p 2 +I-1)® +3k] . - In view of (1), it follows that r(K(p l , . . ., pG)=
=(m-l)(n-1)+s holds for all n>-no .
Corollary. Let F be a fixed graph of order p, chromatic number X(F)=m and stick
that in every m-coloring of V(F) each color class has at least s vertices . Set C.-
=11(2p-1) . There exist constants Cl and C2 such that for all sufficiently large n
q(G)-n+C, n" and d(G)-C 2 na imply that the connected graph G satisfies

r(F, G) _ (m-1) (n-1)+s .

Proof. To see that this result is true, it suffices to work with crude upper bounds,
first for I (Proposition) and then for na (Theorem 1) . Review of the proof of the propo-
sition shows that it suffices to take

(2)

	

I t°(Kp, JQ s (
p+

-
-2) ,

p 1

where j=p'2 [2(p2 -1)d +3k]. in what follows, C,, C, and C, will represent numbers
which are independent of n and which approach 0 as C, and C., approach 0 . Using
the above hypothesis and the relationship between na and l, we have j-Ca n", 1

C,ncp-3" andfinally no-C,n2(p-')"<n when C, and C 2 are chosen to be suffi-
ciently small .

3. Trees

The extreme case of a sparse connected graph is a tree. In the case of trees, we
can obtain some interesting results without assuming a restriction on the maximum
degree. In the lemma which follows, the join of G and H, denoted G +H, is defined
for V(G) n V(H)=0 to be the graph obtained by adding all edges joining V(G) and
V (H) .
Lemma. Let X={xl , . . ., x Q } and W be disjoint sets of vertices and let W, denote the
set of vertices in W to which x, is adjacent, k =1, . . ., a. Suppose that for k =1, . . ., a,

(W,) contains bl ob subgraphs isomorphic to G but that (W) contains a total of c-d
such subgraphs . Then in (XU W) the number of subgraphs isomorphic to G +Kp is at
least (ab-pd)pd'_p/p! when ab>pd .

Proof. Let G,, G2 , . . ., G, be a listing of the subgraphs of (W) which are isomorphic
to G. For each 1=1, . . ., c let M; denote the number of k for which G; c (Wk ) . Then

(3) b a ~_n ab .
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Using the convexity of J '(x) =
( XP)

, Jensen's inequality yields the fact that the number
of subgraphs isomorphic to G+Kp is at least (under the assumption ab>pd)

(4)

	

(M;) - c (able) d (abid)
(ab-pd)Pd1-P/p! . 1

=1 P

	

P

	

l p

The Ramsey number r(K,,,(p, . . ., p),T) is well known to be complicated . Chances
for exact results are slim unless restrictions are placed on T . Therefore, we are con-
tent with asymptotic results .
Theorem 2. Let p --2 be fixed and for m =1, 2, . . . set

and

f (m) =
P(Pm -1)
P-1

For each m=1, 2, . . . there exists positive constants A,,, and Bm such that if N=
=(m-l)n+k where k=0(n) but k=Amn"(m) , n sufficiently large will imply that
in every two-coloring (R, B) a f the edges of K, either ~B) contains every tree T of order
n or else CB) COntaZJ1S at least B,;,(kln)a(~")nmP SZ1bgYaphS ZSOYYlOYphZC t0 K„,(p, . . ., p) .
Proof. The proof is by induction on m. The case m=1 is easily checked . Now let m
exceed i and suppose that the theorem is true in all prior cases . Throughout the proof,
A1L , B,,,, Cm , . . . will represent positive numbers which may depend on m but which
are independent of n . By an obvious parameter scaling, it suffices to prove the exis-
tence of a positive A . which ensures the stated conclusion when N=(m-1)n+2k
and k--An (') .

It is a well-known fact that if every vertex of ~B) has degree at least n -1 then
(B) contains every tree T of order n. By assuming that (B) does not contain every tree
of order n, repeated use of this fact leads to a sequence of vertices x 1 , . . ., x,, such
that each of these vertices is adjacent in ~R) to at least (m-2)n+k of the remaining
(m-1)n+k vertices . Let W denote the set of these remaining vertices and note that
k=®(n) implies that in the red subgraph induced by W the number of copies of
Kan- 1(p, . . . , p) is at most O(n(m-1)P), n-- . Thus, invoking the induction hypothe-
sis, we may apply the lemma with

(5)

	

a = k - A,,, na(m)

(6)

	

b = Bm _ 1 (k/n)R(n,-1)n(m-1)P
and
(7)

	

d - Cmn (m- 1)P .

Note that the exponents a (m) and fl (m) have been defined so that

(8)

	

a(m) {i+#(m - 1)} _ AM - 1)

a (n1} = P	-p
p

	 m

-1
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and

(9)

	

p{1+fl(m-1)} _ P(m).
It follows from (5), (6) and (8) that

(10)

	

ab -- B",-ik(k/n)s("'-1)n('"-1)P -- Dm ncm-1>P

Consequently, (7) yields

(11)

	

ab-pd Emk(k/n)"(m-1)n(m-'1)P

In view of the lemma and relations (8) and (9), we find that (R) contains at least

(12)

	

{Emk(k/n)R('n-1)n(-- ' )PIPIC„~n(--1)P}1-P1p! -_ B.(kln)"(')n'"p

subgraphs isomorphic to Km(p, . . ., p) . I
The crucial fact is that for each fixed p and m, a(m)--1 so that n'(m)=o(n),

n-. The theorem clearly gives the bound r (Km (p, . . . , p), T) (m -1) n +Amna(m) .
In view of (1) the consequences of the theorem can be stated in the following uniform
asymptotic sense .

Corollary . Let F be a fixed graph with chromatic number x(F)=m . For every E>0
there exists N(a) such that

~r(F, T)
-(m-1)I s

n

for every tree T of order n >N(e) . 1
In the bound r(Km (p, . . ., p), T) - (m-1)n+An"(m> the exponent

(pm-p)l(pm - 1) can hardly be expected to be best possible. However, in the case
p = m =2 we can obtain a sharp result .

Theorem 3, For every tree T of order n,

r(K(2,2), T) -- n-} ff ;ij .

Proof. Before giving the proof of this result, let us note that it is best possible since
r(K(2, 2), K(l, p 2 + 1))áp2 +p + 1 whenever p is a power of a prime [7] . It is known
as well [7] that r(K(2, 2), K(1, n-I))--n+[}fin l so it is enough for us to prove the
result when T*K(1, n-1) .

The proof is by induction on n . For n-3, T~-_K(1, n-1) so we know the
result to be true. Take n:!-3 and let T be a tree of order n other than K(l, n-1).
With N=n+frl suppose that there exists a two-coloring (R, B) of the edges of
KN in which (R) K(2, 2) and (B ) T. Consider the tree to be rooted at a vertex
of degree A(T). Since T*K(1, n-1), we may select an end vertex u which is at
distance at least two from the root vertex. Let T' denote the tree obtained from T by
deleting u . Let v denote the immediate predecessor of u in the rooted tree and let w
denote the immediate predecessor of v. Note that w is possibly the root vertex. By the
induction hypothesis, there must be an embedding of T' in (B) . For simplicity of
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notation, the vertices in this embedding will have the same designation as in T' . Set
a=[Vn) and suppose that v has b successors in T. Consider the set of vertices Pin the
two-colored KN which are either immediate successors of v in the blue embedding of
T' or else disjoint from V(T') in this embedding . Form the partition of this set
(RR, RB, BR, BB) according to the adjacency pattern with respect to v-w . Thus
RB is the set of vertices in P which are adjacent to v in (R) and adjacent to w in (B ) .
In terms of the previously introduced parameters, we have IRRI+IRB I=a+1 and
JBRJ+JBBJ=b-L Let IRRI=c and IBBI=d. In view of the fact that (R)
1)K(2, 2), c--1 . Let Q = P U {v). Note that no vertex of Q which is adjacent to w
in ;B) can be adjacent in (B) to as many as b vertices of Q. Otherwise, such a vertex
could play the role of v and provide an embedding of T into (B ) . Thus, every such
vertex is adjacent in (R) to at least a + 1 vertices of Q. In terms of our parameters, the
number of these vertices is a-c+d+2. At the same time, w is adjacent in (R) to
b+c-d-1 vertices of Q. Now, by the usual pigeonhole argument using the assump-
tion that (R) ID K(2, 2)

(13)

	

(a-c+d+2)'a21)+(b+c2d-1) (a+2+1)

Using the identity

(14)

	

(x2p)-lx 2 q) = 2 (n+q)[2x+(p-q+1)]

with x=b, p=a+1 and q=d-c+1, we see that (13) is equivalent to

(15)

	

2b - a2 +d-c+l .

However, a2 -n, d-0 and c- l . Since the root vertex was chosen to have maxi-
mum degree and v is necessarily distinct from the root, (15) implies that Thas at least
2b--n edges. Thus, we have arrived at a contradiction and the proof is complete . I

4. Questions

The edge density of a graph G is defined to be max {q(H)/p(H)) where p and
q denote the number of vertices and number of edges respectively and the maximum is
taken over all subgraphs H(--G. Does bounded edge density and d(G)=o(n)
imply that

r(F, G) _ (m-1)(n-1)+s

for all sufficiently large n? Does bounded degree have such an implication?

5 . Dedication

The three last named authors [R . J . F, C. C . R., R . H. S] gratefully dedicate
this paper to Paul Erdős in honor of his 70th birthday.
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