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Last July after I returned to Hungary from a meeting on number theory
in the Netherlands, | heard the sad news that my friend and collaborator,
E. Straus, died of a heart attack on July 12, 1983, I had known for a long
time that he had diabetes and in fact we were together in 1948 in Princeton
when this was diagnosed. I also knew that he had several earlier heart
attacks. Nevertheless, [ did not expect that the end would come so soon. 1
cannot write at such short notice a complete deseription of his far-reaching
mathematical activities, so 1 will restrict mysell to the history of our
friendship and collaboration.

This is a very strong restriction since his most important work was
probably on the connection between arithmetic and algebraic properties of
entire functions, a subject about which I could only write after consider-
able preparation and for which there is now no time. Since 1 have been
asked to finish this report in two to three weeks [ must rely a great deal
on my poor old memory, This last restriction is really my own fault;
but, enough of the excuses, and let me start my subject. T will begin at
the end. Let me state two of our relatively recent results which are “lost™;
i.e., the proofs were supposed to be in more or less complete form in
Ernst’s possession, but we could find no trace of the manuscript and
there is little hope that they can be found. Most likely they never existed.
First, a result due to Ernst, Selfridge and myself,

Let n = myle). Then

{1} ﬂ;r=ﬂ1a2.1.gm;_f:{|_|5].;:ﬂlé...ga”

is always solvable in integers a,, . . ., a,. This result is certainly not of great
importance, nevertheless, it pleased us since it is the best possible. Since
ilim = (1 + o{1)) (afe), it is elear that in (1), (n/e) (] — &) < &, cannot
be replaced by (n/e) {1 + &) < ay. Nevertheless, we managed to prove a
slightly stronger form of (1), Let ¢ be sufficiently large and 5 > nyle).
Then in (1), all the &’s can be taken to be larger than (n/e) (1 — ¢/log n).

Ernst claimed that he had 4 nearly completed manuscript of the proof of
(1}, Perhaps this manuscript was lost or, perhaps, his memory deceived
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him. In any case, Selfridge and | will have to reconstruct our proof, which
will be an onerous but not too difficult task. It might also be of some
interest o determine the dependence of ny on £;e.g., determine the smallest
ny so that for every n > my, n! is the product of n integers all greater
than n/3. We have not yet carried out this task: but we hope to do so in
time for our paper to be included in the collected papers of E. Straus,
which | hope will be published in a few yvears.

Mow to our second missing paper. This paper was supposed to have
appeared in this Proceedings, and T should have prepared it after I heard
of Ernst’s death. Besides my laziness, | have an excuse; Ernst assured me
that he had a nearly complete manusecript which was never found. Here is
our result: Denote by Fn; k) the least common multiple of # + 1, ..
n + k and by fin; k) the least common multiple of n = 1, n = 2, ...
n — k. We would expect that usually Fin; &) = fin; &) holds and, in Fact
if, say k > enm, then forall, n, Fin; k) = fin; k) is easy to see. We prove that
foralmost all n there is a & so that

(2) Sin; kY = Fin; &)

and conjectured with some trepidation that there are infinitely many
integers n for which, forevery & < n,

(&) Fin k) = fin: &)

holds. We never came to a firm conclusion if (3) is true or not. It might
be of some interest to try to determine the largest possible value of k =
k(n) for which fin; &) = Fin; f) can hold. 1t is easy to see that & must be
of{m) but must it be e{n:)? Also, can one estimate the number of integers
k for which (2) holds? We planned to investigate this in the future, but,
unfortunately, fate prevented us. These problems are probably not of great
importance; but it often happened before that seemingly special questions
in number theory unexpectedly lead to interesting developments,

MNow let me come back to the beginning. In 1944 Ernst Straus visited me
with his fiancee, Louise, in Princeton. He was interested in various
geometric problems about convex sets. These problems are not very
popular now, but let me mention only one question which we then dis-
cussed and which is still open. Let J be a Jordan curve. Is it always possible
to find four points on J which are the vertices of a square? I do not know
whao first formulated this pretty conjecture, and as far as [ know it is still
open. Let me add a little story which | remember. We had lunch together
with the great algebraist Claude Chevalley, who was never much inter-
ested in elementary geometry but noticed “‘bosses’, i.e., girls. He said
about Louise: “What a pretty girl, | hope we will see more of her”".

Qwur next contact with the Strauses was in the summer of 1948, Louise
and Ernst were married by then and all three of us were in Princeton, We
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then made the following pretty conjecture, Is it true that, {or every in-
tegern, 4/n = 1/x + 1/y 4+ 1/z is solvable in positive integers x, y, 27
This interesting conjecture is still open. It is settled for many arithmetic
progressions and also, if it fails, then the smallest such # must be quite
large. Schinzel and Sierpinski have the following extension. For every a
there is an my(a) so that, for every n = ngla),

| |

1
*tytz:

i —
n
is solvable in positive integers x, y, z. In memory of Straus, I offer five
hundred dollars for a proof or disproof of this conjecture.

The paper On the representation af fractions as sum and difference of
three simple fractions (Jointly with M.Y, Sobbarac), deals with the
Schinzel conjecture that, for every given positive integer g and all suf-
ficiently large n, the equation a/n = 1/x £ 1/y £ 1/z has integral solu-
tions x, v, z. It has been proved there that the conjecture holds for all a
less than 40, and that at least in the cases # < 35, the fraction |/x can be
chosen among the three nearest neighbours of a/n. Further, the paper
gives some conjectures cach of which implies the Schinzel conjecture.
One such conjecture states that

lim sup dnts

o,
weeos gz 85+ 1

Qur first joint paper was in fact written when we both were at UCLA.,
Ernst was at the University of California and I at the Institute for Numeri-
cal Analysis. I have to add here a personal note (perhaps when my obi-
turary will be written (soon?) this should be mentioned). John Curtiss was
then head of the Institute for Numerical Analysis and he created for me
the so called Curtiss condition, i.e.. 1 was paid only when [ was there and
I could leave without asking for a leave of absence but it was up to the
Institute to decide if I got paid while I was away (since then [ have been
fortunate enough to have posts only under these conditions).

In our paper we answer the following question of Dvoretsky, Let xy,
Az, ... be an infinite sequence of unit vectors in a Banach space which
are linearly independent in the algebraic sense. Is it then true that there
is a subsequence which is linearly independent in a stronger sense? We
prove, among other things, that there always is a subsequence for which
B fexy = 0implies 4, = 0.

We were together again in Colorado in 1959 and 1963. We proved the
following theorems: Let mg be an increasing sequence of positive integers
and assume lim sup nifn,ey = 1, N, < emyep where N, is the least common
multiple of ny. . . ., . Then ¥ 1/ny is rational only if myey = 0 —n; + 1
for all &t = Ay, It is not impossible that the conditions N, < Cn,y, are
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superfluous. We could weaken it but could not eliminate it entirely, We
wrote several more papers on the irrationality of infinite series. Here 1
mention only one problem of ours which has never been published.

It is easy to see that if ) = «++ is a sequence of integers {or which
¥z I/ny is rational, then we must have

lim n}? < @
and this is best possible. Let
_L S
E L =, — 1
both be rational. How fast can ny increase? David Cantor observed that
this holds for m, = (4) and we could never decide if n; can increase ex-

ponentially or even faster. We observed that the set of points (x, ») in the
plang (#, < ng < ---, #, integers), given by

o ]
r= ;%.,P= %_4 n*—_l'

containg open sets and this no doubt generalises for higher dimen-
sions. Perhaps we missed the nicest conjecture (due to Stolarsky) which
states as [ollows. Let ny = ny; < +++ be an infinite sequence for which
Y ln < m.

Is it then true that there is an integer ¢ for which X, 1/(n; — t)is
irrational?

Straus and [ also considered the following question, Let a sequence
Aiay < a» < ... be called non-averaging if the arithmetic mean of any
two or more members of A is not in 4. What can be said about the growth
properties of such sequences? We proved thatif gy < @y < -+ < g, =
n then & = o{n®™) and conjectured thal k < n* for every ¢ > 0. This was
shown to be false by H. L. Abbott who showed that it is possible to have
k = a0, Recently, Abbott improved this to #/5. Many interesting open
questions remain here, (H. L. Abbott, On a conjecture of Erdos and Straus
on non-avergging sets of infegers, Proc. Fifth British Combinatorial
Conference, Congressus Numerantium XV, (1975), 1-4).

In 1959 at the meeting at Boulder, Colorado, Bose, Parker and Shri-
khande presented their disproof of Euler's conjecture, i.e., they proved
that, for every # > 6, there are two pairwise orthogonal Latin squares.
Inspired by their ideas, Chowla, Straus & I showed that the number of
pairwise orthogonal Latin squares of order n is greater than ent where our
e was > 1/91. R. Wilson considerably improved our result but perhaps
further improvement will be possible in the luture,

Mow | discuss what I think is our most important and most original
joint work, namely our papers on Euclidean Ramsey Theorems. 1 hope
that these résults, and even more the problems, will outlive the authors,

— s —
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hopefully, by centuries. A set & of Euclidean s space is called Ramsey
if, for every r, there is an n = gk, r) so that, for every r coloring of
Euclidean n space, there is a monochromatic configuration &' which is
congruent Lo k. IT congruent is replaced by similar, then Gallai proved
that every finite set & is Ramscy, In our first paper on this subject we
prove that every brick, i.e., every rectangular parallelepiped is Ramsey
and we also prove that every set which is Ramsey must lie on an m dimen-
sional sphere. We never could decide whether any of these conditions are
necessary or sufficient. It is quite possible that the truth is somewhere in
between. Perhaps the most interesting open problems are: 1s the regular
pentagon Ramsey? or is every triangle Ramsey or, in particular, is the
triangle of angles 30, 30, 120 Ramsey (every acute angled triangle is the
subset of a brick and is therefore Ramsey)? Also is it true that if we divide
the plane into two subsets and T is any triangle, then at least one of the
subsets contains a monochromatic congruent copy of T (Le., the vertices
of T} with a possible single exception of an equilateral T. We and L.
Shader proved several special cases of this conjecture, As another nice
problem, let S be a set in the plane, no two points of which are at distance
l. Is it then true that the complement § of § contains the vertices of a
square? R, Juhasz proved our conjecture in a more general form. She
proved that § contains a congruent copy of any configuration of four
points. She further showed that four cannot be replaced by 12, but the ex-
act value of this number is not known, e.g. is it true for 57 (R. Juhasz,
Ramsey type theorems fn the plane, ], Combinatorial Theory (1979),
152-170.)

To end this short obituary | just want to remark that Ernst was not
only a first rate mathematician, but also a superior human being, both
intellectually and morally, 1 remember one occasion when, with great tact,
insight and intelligence, he smoothed over a potentially unpleasant dis-
agreement between two excellent mathematicians, | was concerned since
they were both friends of mine and | wrote congratulating him for a suc-
cess which had eluded me. *‘Blessed are the peace makers'. UCLA, Los
Angeles, Calilornia and the warld will never he the same lor me without
him. May his theorems live forever.
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