
A RAMSEY-TYPE PROPERTY IN ADDITIVE NUMBER TKEORY 

by S .  A. BURR and P. ERDOS 

Dedicated to Prof. R .  A. Rankin on his 70 th  birthday 

1. Infroduction. Let A be a sequence of positive integers. Define P(A) to be the set 
of all integers representable as a sum of distinct terms of A. Note that if A contains a 
repeated value, we are free to use it as many times as it occurs in A. We call A complete if 
every sufficiently large positive integer is in P(A), and entirely complete if every positive 
integer is in P(A). Completeness properties have received considerable, if somewhat 
sporadic, attention over the years. See Chapter 6 of [3] for a survey. 

One interesting question about completeness properties is how robust they are. For 
instance, if one is content with a slightly weaker property ("subcompleteness"), it often 
happens that even rather strong perturbations of a sequence cannot destroy the property 
[I, 21. Another sense in which a property can be robust is that, even after the object in 
question is somehow partitioned into two or more classes, the property remains true for 
some class. This is the province of Ramsey theory, which is heavily studied today; see [4, 
51 for surveys of the general field. The most straightforward definition of a "Ramsey- 
complete" sequence would be that if it were partitioned into two classes A, and A,, either 
P(A,) or P(AJ would contain every large positive integer. Unfortunately, this does not 
appear to lead to interesting problems. It seems necessary to permit the class to vary with 
the number represented, as in the following definitions. 

DEFINTTION. A sequence is Ramsey-complete if whenever the sequence is partitioned 
into two classes A, and A,, every sufficiently large positive integer is a member of 
P(A1) U P(AJ.  

DEF~N~~ION. A sequence is entirely Ramsey-complete if whenever the sequence is 
partitioned into two classes A, and A2, every positive integer is a member of P(Al)U 
P(A2). 

These definitions lead naturally to many questions. Here we will consider that of the 
maximum possible growth rate of such sequences. As usual, let A(x) denote the number 
of terms of the sequence A that are less than or equal to x. It is easy to see that a 
sequence for which A(x)<log2x infinitely often cannot be complete. Furthermore, a 
complete sequence with exponential growth also must grow in a fairly regular way. 
Something similar applies to Ramsey-completeness. Our main object here is to prove the 
following two theorems. It will be convenient in most of what follows to work with the 
binary logarithm log,, which we will denote by lg. To avoid confusion, we use In for the 
natural logarithm. 

THEOREM 1. There is an entirely Ramsey-complete sequence A satisfying 
A ( x )  - A(*x_X) < 2 IgZ x for all sufficiently large x. 

THEOREM 2 .  There is an E > O  such that no infinite sequence of integers A satisfying 
A (x) -A ( ix) < E 1g x for all sufficiently large x is Ramsey -complete. 
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Theorem 1 gives a lower bound on the maximum growth rate of an (entirely) 
Ramsey-complete sequence, and Theorem 2 essentially gives an upper bound, along with 
a smoothness condition. In each of these theorems, it is possible to replace the condition 
on A(x)-A(4x)  by a pure growth condition. For the first, this is essentially mvial. 

THEOREM la. There is an entirely Ramsey-complete sequence A satisfying 4 >2(112'Y; 
for all sufficiently large x. 

Proof (using Theorem 1). We have A ( x )  = (A  ( x )  - A(4x)) + ( A  (4x) - A ex)) + . . . , 
where about Ig x terms a ear Therefore, the sequence in Theorem 1 satisfies A ( x ) <  
(2 + e) 1g3 x ; hence 4 > Zb> 2 ( l n ' ~ .  

At the cost of considerable effort, it is possible to prove a similar analog of The- 
orem 1. 

THEOREM 2a. There is a C>O such that no infinite sequence of integers A satisfying 
4 > 2CJ; for all sufficiently large x is Ramsey-complete. 

We will not prove this here; the proof is quite complicated, and the small improve- 
ment does not seem to justify the effort, in view of the substantial gap between Theorems 
1 and 2. 

2. Tbe Lower Bound. We now prove Theorem 1, in a form which explicitly exhibits 
the required sequence. 

THEOREM lb. Let A be a sequence defined as follows. The sequence begins with 16 
copies of 1, followed by blocks B, for each n 3 1, where B, consists of 2n +2 copies of 2", 
together with n + 2 copies of each of the numbers 2" + 1, 2" + 2, 2" + 4, . . . ,2" + 2"-'. Then 
the sequence A is entirely Ramsey-complete. 

Proof. We will use induction. We will employ a stronger hypothesis, namely that if A is 
partitioned into two classes, then for each n > 0, all the integers ( n  - 1)2"-', . . . , n2" are 
representable by a single class, using only terms from B,-,, B,,...,,. . . , and the 1's at the 
beginning. (Of course, the class may vary with the value of n.) Denote the set 
{(n - 1)2"-', . . . , n2") by D,-,. The hypothesis is trivially true for n = 1, 2. Now suppose 
that the hypothesis holds for n - 1, n 2 2. Thus, without loss of generality, all of Dm-, 
is representable by Class 1, without using B,, B,+,,. . . ; we distinguish two cases. 

(1) At least n + 2  of the members of B, are in Class 1, say b,, . . . , bn+,. These all 
satisfy 2" r b, r 2" +2"-'. In this case, we will show that all of D, = {n2", . . . , ( n  + 1)2"+') 
is representable in Class 1 as well. F i t  consider the numbers representable using just b,, 
together with the members of Dm-,. The numbers so representable are ( n  - 1)2"-'+ 
b,, . . . , n2" + b,. I f  n r 2, it is clear that this range of values overlaps Dn-,, even if b, is as 
large as 2" +2"-'. Hence, we have represented all of ( n  - 1)2"-', . . . , n2" + bl. In the 
same way, if we now use b, as well, we can represent all of (n  - 1)2"-', . . . , n2" + bl+ b,. 
Continuing in the same fashion, we see that all of ( n  - 1)2"-', . . . , n2" + bl + b2+. . . + 
bn+, can be represented by Class 1. Since n 2" + bl + b2 + . . . + bn+, 3 n2" + ( n  + 212" = 
( n  + 1)2"+', this includes all of D,. 
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(2) No more than n + 1 of the members of B, are in Class 1. In this case, Class 2 
contains at least n + 1 copies of 2", and at least one copy of each of 2" + 1,2" +2, . . . ,2" + 
2"-1 . We will show that all of D, can be represented by Class 2, using only these numbers. 
Consider any number of the form n2" + m, where 0 m < 2". The binary expansion of m 
requires just n bits. For each zero in this expansion, add in a copy of 2". Each 1 
corresponds to some value 2k; add in a copy of 2"+2k. Thus, we can represent all of 
n2", . . . , ( n  + 1)2" - 1 by Class 2. At least one copy of 2" is left over. With this, in similar 
fashion to Case (I), we can represent all of n2", . . . , ( n  + 2)2" - 1. It is now an easy matter 
to continue as in Case (I), representing all of Dm. (And a great deal more: observe that at 
least n2+ 3n t 1 members of B, are in Class 2 in this case.) This completes the proof. 

Theorem lb uses a sequence in which many values are repeated. Repeated values are 
convenient, but not necessary. 

THEOREM 1c. There is a strictly increasing sequence A which is entirely Ramsey- 
complete and satisfies A(x) -A(&x) < 6  lg2 x for all suficiently large x, where 6  is some 
constant. 

Sketch of proof. We will describe roughly how to construct such a sequence 
in a way similar to that of the proof of Theorem lb. In place of the 16 copies 
of 1, use {1,2,3, .  . . , r} for some suitable r. For the blocks B,, use 
{2"i 1,2"&2,2"*3,. . . ,2"* sn} in place of the 2n + 2  copies of 2", and 
{2"+2'*1,2"+2'lt2,Zn+2'*3, ..., 2"+2'irn} in place of the n+2 copies of 2"+2', 
where s and t must be suitably chosen. The definition of D, must change somewhat. The 
rest of the proof is then rather similar, using the fact that if both x i  a are in a class, then 
2x is representable by that class. 

3. The Upper Bonnd. We will shortly prove Theorem 2, but we need a lemma. As 

a technical convenience, we extend the definition of the binomial coefficient to (3 
arbitrary nonnegative real u and u using the gamma function. Furthermore, whenever a 

sum or product involves , the condition O s u  G u is implicit. 

LEMMA. Let S(u, u )  denote the sum ( .), and let y be a fied constant. Then 
iZ.0 U - 1  

there is an a =a(?), not depending on u, such that for every u > 1 ,  

Proof. We first consider the range in which 2'S iu .  Let u S i u ;  then 

tor all such u, so that S(u, u)C2 . Taking natural logarithms and using Stirling's 
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approximation, we have: 

Therefore, returning to binary logarithms, 

Let us sum this from 0 to k, where uI8 <2 ' s  44, so that k = lg u + O(1). Using the 
k k 

standard formulas 2' = 2""' - 1 and j2' = (k - 1)2*+'+ 2, we have 
.j -0 i -0 

for some a'> 0. Thus, n ~ ( ~ , 2 ' ) < 2 - ' ~ .  
oSi<ld~/4) 

However, the number of factors omitted from this product is not more than 2+lg y + 1, 
and each of these is no more than 2". Including these factors, we have our desired upper 
bound on the whole product. This completes the proof. 

We now restate and prove Theorem 2. 

THEOREM 2.  There is an E > O  such that no infinite sequence of integers A = 
{ a ,  < a2 6. . .) satisfying A ( X )  - A(4X) < E Ig X for all suficiently large X is Ramsey - 
complete. 

Proof. Let y = 5 and let a be the corresponding value in the lemma. We will prove 
the desired result for E < l/(a + 1). Let A be any sequence satisfying the given condition. 
Define the sequence (Z,, Z 2 , .  . .) by Z1 = 4, Zk = 2'Pq-l. Partition A as follows. For each 
i, Zk <ai sZ,+ ,  for some k. When k is odd, place ai in Class 1; when k is even, place ai 
in Class 2.  We will show that if k is large enough, there are integers in each interval 



A RAMSEY-TYPE PROPERTY 9 

(Zk, Zk+,] that are not representable by either class. Set Z = Zk; without loss of general- 
ity, k is even. Set X = 2 ~ 2  lg Z. We will show that most of the integers in [X, 2x1 are not 
representable by either class. Indeed, no such integer is representable by Class 1, since it 
is clear that 2X< Zk+,, and 

We now must estimate how many integers in [X, 2x1 are representable by Class 2. 
To do this we break up the interval [Z, 2x1 into subintervals: 

where the last interval contains the number Z. Hence 2k'1<2WZ94~ lg Z S ~ E  lg X. In 
each interval (X .2-', X .2-'+'I, there are fewer than E lg (X .2-j+') 9 E lg X members of 
A. Moreover, no more than 2X/(X. 2-') = 2"' summands in each such interval can be 
used to represent a number less than or equal to 2X. Hence, no more than 

sums are possible using summands in such an interval. Hence, by the above lemma, with 
y = 5, the total number of sums using all these intervals is less than 

FiaUy, we must take into account any other a, in Class 2. These are all no greater 
than Zk-,. As in the proof of Theorem la, 

Therefore, the number of integers representable by a, 6Zk-,  is no more than 

Consequently, the total number of sums in [X, 2x1  can be no more than 

This completes the proof. 

4. Concluding Remarks. Our results leave open many interesting problems. The 
most obvious of these is that of the true maximum order of growth for Ramsey-complete 
sequences. Possibly, Theorems 2 and 2a are closer to the truth than Theorems 1 and la. It 
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certainly appears that the proof of Theorem l b  leaves room for improvement. It seems 
likely that one might be able to improve, say, the condition in Theorem l a  to perhaps 

> 2'-, without too much trouble. However, no obvious line of attack has presented 
itself to narrow the gap, at either end, by a substantial margin. 

Another very interesting area to study is that of generalizing the definition of 
Ramsey-completeness to partitioning the sequence into three (or more) classes. The 
following would seem to be a natural conjecture, by analogy to Theorem la. 

CONJECIURE. There is a /3 and a sequence A satisfying a, > 2" for large x, such that if  
A is partitioned into three classes A,, A*, Aa, then P(A,)  U P(AJ U P(A3) contains all large 
integers. 

However, serious complications arise when trying to mimic the proof of Theorem lb, 
and it is possible that no such f3 and sequence A exist. 

Finally, one can ask whether various "natural" sequences are Ramsey-complete. The 
most obvious of these would seem to be sequences of polynomial values, for instance the 
sequence of squares. Indeed, the ideas in the proofs of Theorems l b  and l c  may be useful 
here. 
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