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Three results on the interval number of a graph on n vertices are presented. (1) The interval 
number of almost every graph is between n/4lg n and n/4 (this also holds for almost every 
bipartite graph). (2) There exist Km,+ -free bipartite graphs with interval number at least 
c(m)n’-*I( , m+lj/lg n which can be improved to &$4+0(&) for m = 2 and (n/2):/lg n for 
m = 3. (3) There exists a regular graph of girth at least g with interval number at least 
&I - 1)/2)1'(9-2). 

In this note, we apply counting arguments and results on graph decomposition 
to obtain inequalities concerning the interval number of a graph G. The interval 
number i(G), first appearing in [7], is the minimum t such that G is the 
intersection graph of sets consisting of at most t intervals on the real line. Such a 
description of G is called a t-representation of 6. 

Extremal results on the interval number of a graph have given us upper bounds 
on i(G) in terms of other graph parameters; see Table 1. 

Since the maximum interval number for a graph on n vertices is attained by 
K t,,,2,, mn,2I, we are motivated to ask how large the interval number can be if we 
forbid induced copies of K,,,. The following lemma is applicable to this question 
and also yields an immediate bound on the interval number of a random graph, 
Since the arguments extend to higher dimensions, we consider id(G), which is the 
‘d-dimensional’ interval number: a d-dimensional t-representation of G expresses 
it as the intersection graph of collections of at most t d-dimensional boxes (sides 

Table 1 

Parameter Upper bound on i(G) Attained by Reference 

Number of vertices n b+W41 K bm. rti/2i [31 
Maximum degree A DA + Wl any triangle-free regular graph [41 
Genus 3 for planar graphs adding pendant vertices to I& 161 

(for higher genus see [51) 
-* 

Number of edges e Je r41 
- 

(i [Je+ 11 conjectured K Ln,2,, r,,,q 1 
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parallel to axes), and i,(G) is the minimum t such that G has a d-dimensional 
t-representation. See [5,8] for further discussion of this generalized parameter. 

All logarithms are taken with base 2. A property holds for almost every graph if 
its probability goes to 1 as n goes to CQ in the probability spaces defined for each n 
by letting the 29 labeled graphs on II vertices be equally likely. 

Lemma 1. For fixed t and d, the logarithm of the totaal number of graphs with 
i,(G)~t is bounded by a function asymptotic to (2nt +i)d lg n-(n-i)d lg(4ti). 
For triangle-free graphs and d = 1, the corresponding bound is nt lg n + O(nt). 

Proof. In each dimension, we count the possible arrangements of t intervals per 
vertex. A representation is determined by the ordering of the endpoints of the 
intervals. We may assume the endpoints of the intervals are distinct. The 
representation is then determined by assigning 2t of the sequence of 2nt end- 
points to each vertex. This can be done in &, .ty’, .& ways. Counting the t- 
representations certainly overcounts the graphs. In d dimensions, we use the dth 
power of ‘this. Using Stirling’s approximation, the logarithm of this is asymptotic 
to (2nt + $)d lg n - (n - $)d lg(4at). 

The argument for triangle-free graphs is somewhat more delicate. Intervals for 
three distinct vertices cannot intersect, which greatly restricts the possible t- 
representations. To obtain an upper bound, consider the length of the intervals, 
where we have assumed the endpoints lie at x = 1,2, . . . ,2nt. Since the ‘depth’ of 
the representation is at most 2 and there must always be a unit lost between the 
end of an interval and the start of another, the total length of intervals is at most 
3nt - 2. Representations with shorter total length can be obtained from these by 
shrinking intervals, so we need only count representations with maximum total 
length. 

Let vi be the jth interval assigned to vertex 2). The number of ways to distribute 
the total length among the Ut for all j and v, is (‘z!:‘). Since v1 appears before a2, 
etc., the entire representation is now determined by specifying the order of the 
left endpoints, i.e., an arrangement of t copies of each v. When one interval ends, 
the interval to start at the next point is specified by this ordering. There are (,, .“:, J 
such orderings. Many of these orderings give rise to non-representations, but at 
least this gives an upper bound. The logarithm of this bound (3~1~‘)(t, .“,J is 
asymptotic to nt lg n +0 (nt). As before, the number of graphs allowed is at most 
the number of legal t-representations. q 

Theorem 1. Almost every graph G has i(G) 3 n/4 lg n. More generally, for fixed d 
almost every graph has id(G)2 n/4d lg n. The lower bound of n/4 lg n also holds 
asymptotically for the interval number of almost every bipartite graph. 

Proof. Let t = n/4d Ig n. From Lemma 1, the logarithm of the number of graphs 
on n vertices with id(G) < t is bounded by n2/2 - nd lg n. + 0 (n lg lg n). The 



A note on interval number 131 

logarithm of the total number of graphs is (z). The number of graphs grows 
exponentially faster than the number with id(G) < t, so almost all graphs have 
id(G)>t. 

The same argument works with random bipartite graphs when d = 1. Given a 
partition of the vertices into two equal-sized parts, the logarithm of the number of 
bipartite graphs that can be formed is n2/4. Considering all bipartite graphs adds 
only a linear term to this logarithm. By Lemma 1 and the same rate-of-growth 
argument as before, if t = (l- e)n/4lg n, where E > l/lg n, then almost every 
bipartite graph has i(G) 3 r. q 

Scheinerman [5] used a less detailed version of the first counting argument in 
Lemma 1 to show that i,(G) is unbounded. If t grows faster than n/4 lg n, then 
there are many more t-representations on n vertices than there are labeled 
graphs, according to this count. Hence an upper bound on i(G) can be given if 
almost every graph has not too many t-representations. More precisely, let 
t = (1 + ~)n/4 lg n. If almost every graph has at most en2/2 t-representations, then 
i(G) =z t for almost every graph. If almost every graph has at most (2c - 1)nd lg n 
t-representations, then i(G) s c + n/4 lg n for almost every graph. 

The edge bound on interval number suggests a more direct approach to an 
O(n/lg n) upper bound. We need only show that almost every graph has cliques 
that cover ahnost all the edges but do not use any vertex too many times. More 
precisely, if a set of cliques in which each vertex appears at most c,n/lg n times 
covers all but (c,n/lg n)2 edges in G, then i(G) s (cl + +)n/lg n, by the bound 
i(G)<& in [4]. 

Next we apply Lemma 1 to the interval number of K,,,,,-free bipartite graphs. 
The most interesting case is m = 2, d = 1. It is known that a graph with no induced 
4-cycle has at most &(n - 1)/2+ n/2 edges (see [ 1, p. 3101). The edge bound 
thus yields an upper bound of 0(nq for the interval number of such graphs, 
noticeably smaller than the bound for arbitrary graphs. However, we can show 
only the existence of K,,,-free bipartite graphs with i(G) > nf. 

Theorem 2. There exist K,,,m-free bipartite graphs with interval number at least 
t L (1- l/(m!2)(n/2)1-2”“‘1’ 4d 1 / g n plus lower-order terms. This can be improved 
to &/4 + O(A) for m = 2 and (n/2)$/4d lg n for m = 3 and certain values of n. For 
d = 1 and m 3 3, these bounds can be improved by a factor of 2. 

Proof. Let z(n, m) be the largest number of edges in a J&,-free bipartite 
graph with n/2 points in each part, and let t be the maximum of i,(G) over all 
K %,-free bipartite graphs. It is known that z(n, m) L L(l- l/(m!2)(n/2)2-2”m+1’] 
(see [l, p. 3161). The extremal graph has 2*(“~“‘) subgraphs, each of which is 

-free. By Lemma 1, we must have 2ntd lg n >z(n, m). Thus ta 
$Y./(m!2)(n/2) - ’ 2’@“+1)/4d lg n plus lower-order terms. The same argument can 
be applied to get lower bounds on the maximum interval number of K,,$-free 
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bipartite graphs. The bound for m = 3 follows from a better bound for z(n, 3). 
When n/2 is the cube of an odd prime, z(n, 3) 2 (n/2)5 (see [ 1, p 3141). If d = 1, we 
can use the triangle-free version of Lemma 1 to save a factor of 2. 

For m = 2 and d = 1, the most interesting case, we can do better than this 
argument. Asymptotically, z(n, 2) is about (n/2)4 which would yield a lower 
bound of m/2d lg n + O(n4) for m = 2 for the maximum d-dimensional inter- 
val number on &,-free bipartite graphs. When d = 1, we can dispose of the lg n 
factor. 

It is easy to see that the interval number of a union of graphs is at most the sum 
of the interval numbers of the graphs united, by using optimal representations for 
each. Thus, for any decomposition of the edges of KLn,2J,m,z1 into k graphs, one of 
them must have interval number at least (n +1)/4k. We can show there is a 
decomposition of Kb,,, ,m,,,zl into a small number of K,,,,-free graphs by obtain- 
ing a lower bound on the k-color Ramsey number of K,,,,,. If rk (K,,,) > f(k), 
then K,,, and with it KL,,,2J,m,,,zl, can be decomposed into f-‘(n) K,,,,-free graphs. 

Graham and Chung [2] showed that rk (KJ > (2/e*)mk”“*. This guarantees a 
K. -free bipartite graph with interval number at least FZ-“~/~, which is not as 
go:: as the result above. However, they conjectured that rk(K,,*) - 
(t - 1) k” + o( k”) for t 2 s z 2, which would produce a K&,-free graph with interval 
number at least nl-““(t- 1)1’“/4+o(n1-1’” ). This result would be uniformly better 
that that above. For m = 2, the result is available; Graham and Chung showed 
rk(K2.2) > k*- k + 1 when k - 1 is a prime power. By considering the next prime 
power, we get rk(K&> k*+o(k’). Inverting this yields the existence of a K,,*- 
free graph with interval number &/4+0(&). Of course, better bounds for all m 
would be obtained by using lower bounds on the k-color bipartite Ramsey 
numbers for KS,,, when such become available. q 

Finally, we consider bounds on the maximum interval number for another way 
of forbidding the 4-cycles that are so prevalent in KLti,.lru’z,, namely increasing the 
girth. Consider graphs on n vertices with girth at least g. We obtain the result 
below, but setting g = 4 shows that it is not best possible. 

Theorem 3. Among the regular graphs on n vertices with girth at least g, there exists 
a graph with interval number at least +((n - 1)/2)1’(g-2). 

Proof. In [ 11, Bollobas summarizes results on the minimum number of vertices in 
a graph with girth g and minimum degree 6. One such result is particularly 
applicable here. If m 2 [(d - l)g-l- l]/(d - 2), then there exists a d-regular graph 
on 2m vertices with girth at least g. If g 84, the interval number of such a graph 
is exactly r(d + 1)/2] [4]. Setting n = 2m and inverting this relationship as in the 
proof of Theorem 2 yields the result claimed. 0 
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Note added in proof 

The bound i(G) s & for graphs with e edges has been improved to i(G) C a 
by J. Spinrad, G. Vijayan and D. West. 
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