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TREE-MULTIPARTITE GRAPH
RAMSEY NUMBERS

P. Erdos, R. J. Faudree, C. C. Rousseau and R. H. Schelp

AnstracT  The Ramsey number (T, K{n n)) is studied in the case
where T is a fixed tree of order m and n is large. In particular, we
find that r(K(1, m—1), Kin.n)) is bounded above and below by
cmnflogim) where in each bound c is an appropriate positive con-
stant,

1. Introduction

Given graphs Gy, ..., G, the Ramsey number r((i,....G,) is the
smallest integer r 5o that, if we color the edges of K, by k colors, then for
some i the ith color class contains a copy of (. The study of
riGy, ..., (3 ) or generalized Ramsey theory was popularized by Harary,
although there were earlier papers on this subject, in particular that of
Gerencsér and Gyarfas [4].

In [3] we considered Ramsey numbers of the form r(H, G) where H is
a fixed muoltipartite graph and & is a large sparse graph. The present
paper is a companion to [3]. In it we focus on Ramsey numbers of the
form r{T, (3) where T is a fixed tree and & is a large multipartite graph.

Before presenting these rather special results, we first shall review some
of the problems of generalized Ramsey theory which have been of great
interest to us. It would be very desirable to have an asympiotic formula
for riK5, K, ). At present, we only know that

(g ) = K<)
N=——=)=rlKs. K, )<e; 1
“ (log n)* i log n W

for all sufficiently large n. One would expect that, for m =4 fixed and n
sufhiciently large,

r(K,,. K )y<n™"F (2)

but this is open even for m = 4. Perhaps
PG K= (3)
Erdds strongly believes this but others disagree. All agree that the
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problem 15 likely to be difficult. No one doubts that

. Gy, K)
lim ———==10, 4
i i'[K;, Kn} { :.
but even this is open at present. Szemerédi has observed that
“2
<gl=—=,
rlCy, K, ) ﬂ(ﬂog rl}‘) (5)

which just fails to give (4). The argument is based on the following result,
which is found in [1]. Let «, d and h denote the independence number,
average degree and number of triangles respectively of a graph G of
order N. Then

a = c{N/d) min{log{ Nd*/h), log d}. (6)

{In (5) and (6) ¢ stands for different absolute constants.} Now the desired
result follows immediately by observing that in a graph & of order N=¢
{n/log n)* with no C, the average degree of G is O(N'?) and the number
of triangles is at most as large as the number of edges, i.e. Nd/2.

Let G be a graph with g edges. Is it true that

r(Ks, G)=2q+1? (7)

Equality helds in the case where G is a tree.

2. Results

Our first theorem gives a general upper bound for r(T, Kin, n}), where T
is a tree of order m.

THEOREM 1 Let T be a tree of order m. For all n=3m,

r(T, K{n, n)) = [4mnflogim)].

Proor  As the result is trivial in the case m=23, we may assume that
m =3 Let (red, blue) be a two-coloring of Ky where N = [4mn/log(m]].
If there is no red copy of T, then the number of red edges is at most
Nim =2} (This is a well-known result which is easily proved by induc-

N
tion.) Thus, we may assume that there are at least (,’)—N{m —2) blue

edges, so that the average depgree of the blue graph is at least N—2m+3,
Let dy, ds,...,dy be the degree sequence of the blue graph and let d
denote the averace deeree of this graph. By a well-known argument, the
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i (‘::)}m— 1}(:) (8)

implies that there is a blue copy of Kim, n). By convexity, (8) will be

satisfied if
M) n(Y) ()

and the latter certainly holds if

N(N _nz'") > n(:) (10)

Mote that (10) is equivalent to

inequality

N—n) ( N)
=
2m I 2m (11)
and it certainly follows that there 15 a blue K(n, n) if
+2m )\ 2
Er(1—u) S (12)
i N

With our choice of N and in view of the fact that n=3m we need only
verify that

Im
-2 1be) 1‘“3{‘“}) >1 (13)

Mm;’log{m}}(l T

for all m =3, and this is completely straightforward. [

Remarks Neither the constant 4 nor the inequality n=3m is a sharp
condition. In fact, were we to set N = [emn/logim]] and assume n to be
sufficiently large, then (11) would become

IF 2
fm:nug(m‘:}(l —15'55-’31;) <1, (14)
CIf

which is satisfied for all sufficiently large m by taking ¢ =2. Further, the
critical value ¢, so that ¢=cy will ensure that {14) holds for all m is
approximately 2+ 1/e.

The complete r-partite graph having n vertices in each part will be
denoted by K (n,....n). In the following theorem, log'"(n) denotes the
r-times iterated logarithm, ie. log'(nl=logln) and log''(nl=
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logllog" M(n)), r=2,3,.... The theorem is proved by induction, with
Theorem 1 constituting the first step,

Turorem 2 Let T be a tree of order m. For each r=2 there exisis a
constant ¢, such that

T, K,(n,...,n)=[cmnlog" "(m)]
whenever m is sufficiently large and n=3m.

The proof of this result is very similar to the proof of Theorem 1 and so
it will be omitted. Suffice it to say that using the strategy of the proof of
Theorem 1 one can verify that the blue graph contains a Kin, p), where
p=[c,_ymnllog”" *(m)]. This fact, together with the induction
hypothesis, completes the proof.

The next result shows that the result of Theorem 1 is, within a constant
factor, the correet magnitude in the case where T 18 a star,

Theorem 3 Let m be fixed. There exisis a positive constant ¢ such that
FLE(L, m—1), K, n))= Lemnflogim)]

for all sufficiently large n. If m is sufficiently large, ¢ =} will suffice.

Proor  The proof uses the Lovisz—Spencer method as developed in [7]
and previously applied by the authors in [2]. We shall simply review the
basic ideas of this method. Should additional details be needed, the
reader 15 referred 1o the account given in [7]. Let N = |emn/logim)]. We
wish to show the existence of a two-colouring of the edges of Ky in which
there 15 no red Ki(l, m—1) and no blue K{n n}. This will be accom-
plished by the probabilistic method, in particular by considering a random
two-coloring in which each edge of the K, is colored red with indepen-
dent probability p. For each set § of m vertices of the Ky, let Ag denote
the event that the red subgraph spanned by 5 contains K{(1, m—1).
Similarly, for each set T of 2n vertices let By denote the event that the
blue subgraph spanned by T contains K, n). For a fixed Ag let Ny,
denote the number of 8 #5 such that A; and A, are dependent.
Similarly, let N,y denote the number of T such that Ag and By are
dependent. In exactly the same way, define Ny, and Ngg. Letting A and
B denote typical A; and By respectively, the desired conclusion will
follow from the fundamental lemma of Lowvisz if there exist constants a

and b such that aP(A)<1, bP(B)<1. (15)
logla)= N, .aP{A}+ N, zbP(B), {16)
log(h) = Ng aP{A)+ NggbP(B). (17)
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The following bounds are obvious:

m N—Z)
= () 2) as
N
Nag Ngy= (2”) (19)
2m\fN-2
Nn<(5) (-3
= o Nw—2 (20)
PlAY=mp™ ", (21)
2,
P{B}ﬂ( ""){1 —p. (22)
With £ an appropriately small positive constant, set
p=(2+e) log(m)in, (23)
a=1+e, (24)
b=m"", (25)
c=¢ (26}

Straightforward caleulations verify that with these choices N, aP(A) and
N.zbP(B) tend to zero as n —oo and that log(b} exceeds Ny aP(A), at
least for all sufficiently large m. Thus with n—< and m taken to be
sufficiently large. conditions (15-(17) are satisfied and the proof is
complete, [l

Although the bound of Theorem 1 is, in a certain sense, sharp in the
case where T is a star, this is certainly not the case in general. In
particular, the behavior of r{T, K(n, n)) is quite different in the case
where T is a path, Higgkvist reports that he has proved the following
result [5];

Tueorem (Hagekvist) r(P,, K(m k)l<m+n+k—2.

In any case, the crude upper bound r(P,, Kin n)l=m+4n follows from
a simple argument using a result of Posa [6]. Let (red, blue) be a
two-coloring of the edges of Ky, where N=m+ 4n. If there is no red P,
then Pésa’s lemma vields a set of vertices X with its neighborhood in the
red graph, X)), such that |[X|=m/3 and |[IMX)UX|=3|X|. Repeated
use of this result gives a set Y such that n=|Y|sn+m/3 and
IFIY)U YI=3|Y|=3n+m. It follows that the blue graph contains a copy
of Kinn).
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3. Open questions and final remarks

What is the behavior of r(T, Kin, n)) when T has bounded degree?
Perhaps the methods of Higgkvist will shed some light on this question.
We have seen that for a tree, T, the Ramsey number r(T, K{n, n)) is
linear in n. However, if T is replaced by a graph containing a cycle this is
no longer true. In [7] Spencer showed that r(C,. K,)=cin/log(n)}",
where « ={m—1)/{m—2). By the same method, one obtains the same
bound for r(C,,, Kin, n})), except for the value of the positive constant ¢
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