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SOME OLD AND NEW PROBLEMS IN COMBINATORIAL
GEOMETRY

Paul ERDŐS
Hungarian Academy o/ Sciences, Budapest, Hungary

In this paper several unconnected old and new problems in combinatorial geometry are
discussed . The reference list is as complete as possible, including two papers dealing with
similar subjects [6, 7] . Many interesting problems and results are in Grünbaum [11], which
also has an extensive and useful bibliography and interesting historical remarks .

1

The following problem is attributed to Heilbronn . Let f(n) be the largest
number for which there are n points x,, . . . , x„ in the unit circle for which the
areas of all the triangles {x ;, xi , x, I are , f (n) . Determine or estimate f (n) as
accurately as possible . Trivially, f(n) <c/n and Heilbronn conjectured

n,_< f(n)<n .

I observed that f(n) > c,/n' holds . The first non-trivial upper bound,

	C	
f (n) < n (log log n)`

'

	

(Z)

was proved by Roth [l6], his result was improved by Schmidt [18] and later Roth
proved f (n) < n - " i10 [17] Very recently Komlós, Pintz and Szemerédi disproved
the conjecture of Heilbronn . In fact they proved

c,In gn <f(n)<nn

	

(3)

Their proof of the lower bound in (3) is extremely noteworthy and uses a very
interesting new combinatorial idea . They seem to believe that the lower bound
in (3) gives the correct order of magnitude of f(n) .

This problem led Szemeredi and Erdös to formulate the following conjecture .
Let z	z„ be n points in the unit circle . Denote by d(z ;, z;) the distance
between z ; and zi . Put D (z,, . . . . z,) = min, ., si .„ d (z„ zi ) . Denote by
a (z,, . . . , z„) the smallest angle determined by the n points . It is well known and
easy to see that

(1)
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Tmaxa(z,, . . .,z„)=
n

and for a certain c :

max D (z	z„) _ (c + o(1))n

Now we conjecture that

a(z,, . . ,z„)D(z,, . . ,z, ) = o

		

(4)n

and perhaps it is less than c/n' . The regular polygon shows that if true, this is the
best possible .

Corrádi, Hajnal and Erdős noticed more than 20 years ago that the following
simple question seems to present some difficulties . Let z,, . . . , z„ be n points not
all on a line . Is it true that they determine a positive angle which is , 7T/n? We
have not even been able to show that it is less than c/n for some absolute
constant c .

Schmidt [78] proved that one can find n points in the unit circle so that the
area of the least convex domain determined by any four of them is always
greater than On". He also observed that it seems very difficult to show that
among any of these n points there always are four of them so that the area of the
convex domain determined by them is o(1/n) . Indeed, this beautiful problem is
still open .

As far as I know the following question has not yet been investigated . Let
f,(n) be the largest number for which there are n points in the unit sphere so that
all the triangles determined by them have an area , f,(n) . Determine or
estimate f,(n) as accurately as possible . Trivially, f,(n)<(c/n)213 and I believe
one can show that f,(n)>c/n. The first problem would be to prove f,(n)=
o(1/n'r') .

2

Straus, Purdy and Erdős [19] proved that if x	x„ are any n points in the
plane not all on a line, then they always determine two triangles of non-zero area
so that the ratio of their areas is not less than [(n + ])/ 2], and it is easy to see that
[(n +1)/2] is the best possible . We further show that equality is only possible if
the points are all situated on two parallel lines .

Several interesting generalizations are possible, e .g . for quadrilaterals instead
of triangles and for the points being in higher dimensions . We also thought of the
following possible sharpening of Roth's Theorem . Let x	x„ be n points in
the unit circle, with at most o(n'") of them on a line ; then they always determine



a triangle of non-zero area which is o(1/n) . The lattice points show immediately
that the condition o(n `) cannot be relaxed . Many further conjectures of this
type can be stated but so far we have no results .

3

Let x,, . . . , x„ be n points in the plane . We join every pair of them to obtain
the lines L	L,„ . It is well known that if m > 1, then m -- n . The possible
values of m = n are fairly well known . For m < cn3/ ` Kelly and Moser [13] have
fairly complete results, and answering a question of Grünbaum Erdös [4] proved
that every cn 3,12 < m < (z) can occur, except

	

I and (7)-3 .
Denote by u; the number of points on the line L;, u, - u, ,

	

, u,„ =2 . Very
little is known about the possible choices of {u,, . . . I u„} . Trivially

á(z')_(2)

and by the well-known Gallai-Sylvester Theorem u,„ = 2 (unless m = l, u, = n) .
Erdös conjectured that the number of possible choices of {u,, . . . , u„, } is less than
exp c • n 1 ~2 . It is easy to see that this conjecture if true is best possible, apart from
the value of c. Purdy and Erdös conjectured that

Y, (u') < c'n 3a

and perhaps the number of u, > n° is less than C • n' -", but so far no progress
has been made with these conjectures .
Denote by a„ (k) the largest integer for which there are a„ (k) lines, with

u; = k, and by 0n (k) the largest integer for which there are a„ (k) lines, with
u, = k, under the assumption that u; =0 for all u; > k (i .e . there are no lines
containing more than k points) . Clearly a„ (k) -_ (3„ (k) .

As far as I know Sylvester was the first to investigate a„ (3) . He proved

na„ (3) > 6 - cn .
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(5)

His results were improved in a recent paper by Burr, Grünbaum and Sloane but
the exact value of a„ (3) is not yet known . It seems certain that a„ (3) = Pn (3) .

Croft and Erdös observed that the example of the lattice points shows that for
every k, a„ (k) > Ckn` . Trivially, a„ (k) < n (n -I)/k(k -1) for every k > 2 and
we conjectured that

lim a
(2)
nl	) < (k .

	

(6)
2)
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Expression (6) should not be difficult to prove, but we have not yet done so . It
would be of interest to determine the value of the limit in (6) . Croft and Erdős
further made the following much sharper conjecture . For every E > 0 there is a
k,,(E) and an n = TI(E) so that

a„ (k) (2) < E (2) .
k„~ -nn

In other words, the number of pairs of points (x„ x;) for which the line (x„ x;)
has at least k„ and fewer than Tin points is less than E(,) .

I conjectured many years ago that for every k > 3 :

lim0,(k)/n=x,

	

lira (3„(k)/n'=0.

(7)

(8)

The first conjecture of (8) was proved by Kartesti who in fact proved that for
every k :

/3„ (k) > ckn log n,

and this was strengthened by Grünbaum to :

/3n (k) >c,,n(9)

which, as far as I know, is the strongest inequality known at present and is
perhaps the best possible .

The second conjecture of (8) is still open and I offer 2000 shekels or 100 dollars
to anyone who can prove or disprove it .

As stated previously, Gallai proved that unless all our points are on a line
there is at least one ordinary line, i .e . a line with I L; I = 2, and Dirac proved that
there are at least three such lines . De Bruijn and Erdős conjectured that the
number of ordinary lines tends to infinity . This was proved by Motzkin [15] who
conjectured that the number of ordinary lines is, for n > n,,, at least n/2, and
remarked that if true, this is the best possible . Kelly and Moser [13] proved that
the number of ordinary lines is > 3n/7 .

An old conjecture of Dirac states that if x	x„ are not all on a line and if
one joins every two of them, then at least one of the points is incident to n/2-c
lines, where c is an absolute constant . It is not even known that there is an E > 0,
so that there is a point incident to more than En lines .

An old conjecture of mine states that if at most n - k of the points x,	x„
are on a line, then they determine at least ckn distinct lines . I offer (100 dollars
or 2000 shekels) for a proof or disproof . If the conjecture holds, it would be of
some interest to determine the largest value of c for which it holds . The results
of Kelly and Moser [13] imply the conjecture for k < c, n'" .

To end this section I mention the following lovely conjecture of Kupitz, which



is several years old but I only learned it at this conference . Let z,, . . . , z, be any n
points in the plane, then there always is a line l going through at least two of our
points so that the difference between the number of points on the two sides of L
is at most one . It is not even known that this difference can be made less than a
bound independent of n.

4

An old problem of E . Klein (Mrs . Szekeres) states : Let H(n) be the smallest
integer so that every set of H(n) points in the plane with no three on a line
contains the vertices of a convex n-gon . Klein proved H(4)=5, Turán and
Makai proved H(5) = 9, and Erdös and Szekeres [5, 8, 9] proved

2 `+1-H(n)~(2

	

(10)n-2)

We conjectured H(n)=2"-z+1, thus H(6)=17 ; but this is not yet known.
Recently, I found the following interesting modification of this problem . Let

,k be the smallest integer so that every set of M points in the plane, no three
on a line always contains the vertices of a convex n-gon which contains none of
the other points in its interior . Trivially, M, = 5, Ehrenfeucht proved that M, is
finite and Harborth [12] proved that Ms = 10 . It is not yet known if M6 exists.

Denote by fk (n) the largest integer for which every set of n points x	z„
no three on a line contains fk (n) convex k-gons. It is easy to see that for every
k,4
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hm fk(n)/(k) = ck,

	

0<e,<1 .

It would be of some interest to determine the value of ck . Guy conjectured more
than 20 years ago that c, = H .

Denote by F(n) the largest integer so that there are always at least F(n)
convex subsets of the x ; . It is not hard to deduce from (10) that :

n , '° s" < F(n) < n `~""

	

(11)

It would be of interest to improve (11) . No doubt lim-logF(n)/(log n) 2 exists
and I would like to know its value . To obtain an exact formula for F(n) may be
hopeless, but perhaps there is some chance for an asymptotic formula .

5 . Miscellaneous problems

Denote by a, (n) the largest angle not exceeding -rr so that every set of n
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points in r-dimensional space determines an angle greater than a, (n) . Erdős and
Szekeres proved that a z :

a,(2") = Tr I 1 -
1 /

.

	

( 12)n

The problem remains to determine the smallest M2(n) for which a z(m z(n)) _
-rr(1-1/n). We could not disprove that for large n, m2(n)=2"-'+1 . Very likely
m,(n) < 2", but we only could prove that every set of 2" -1 points in the plane
determines an angle % -rr(1- 1/n), or for every e > 0, a z(2" - 1) >
rr(1-1/n- s) .

Very much less is known about a, (n) for r > 2 . 1 conjectured and Danzer and
Grünbaum [3] proved that every set of 2" + 1 points in n-dimensional space
determines an angle > 7r/2, but the value of a" (2" + 1) is not yet known and may
be difficult to determine . I asked : determine the smallest h(n) for which h(n)
points in n-dimensional space always determine an angle _- a/2. Trivially,
h(2) = 4 and Croft proved h(3)=6 . His proof is not simple ; as far as I know h(4)
is not yet known, and it is not at all impossible that h(n) grows linearly, but I
cannot exclude the possibility that h(n) grows exponentially .
Denote by f(n) the largest integer for which there are f,(n) points in

r-dimensional space which determine n distinct distances . Trivially, f, (1) = r + 1 .
As far as 1 know Coxeter first asked for the determination of f, (2) . The sharpest
current upper bound is due to Blokhuis [I] ; he proved f2(r) £(r+1)(r+2) .

Is it true that there is an absolute constant c so that 2" points in n-dimensional
space determine more than en distances? The n-dimensional cube determines
n + 1 distinct distances .
Denote by fr (n) the largest integer so that among any n points in r-

dimensional space one can always select f, (n) of them so that all their distances
should be different. I conjectured that for r=1, f,(n)=(l+o(1))nU2 , and that
perhaps the minimum is assumed if the points are equidistant on the line .
Komlós, Sulyok and Szemeredt [14] proved that f,(n) > cn' !2 for some absolute
constant c < 1 . In fact, they obtained a very much more general theorem which
is very interesting in itself. f, (n)>n` , is not hard to prove, but the value of

lim log f, (n)/log n = c,

is not known . Perhaps c, = 1/(r + 1) . All these problems become much easier for
infinite sets . I proved more than thirty years ago (without using the continuum
hypothesis) that if S is an infinite subset of r-dimensional space and the power of
S is m, then S has a subset S' of power m so that all the distances of the points
determined by the points of S' are different .
Let x	x„ be n (distinct) points in the plane . Denote by d, > d z > . . . > 4
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the distances determined by these points and assume that the distance d ; occurs
u ; times (i .e . there are u; pairs (x,,, x„) with d (x,,, x ..) = u;). I have several
problems and results on the largest possible value of max u ; and on the smallest
possible value of m . I refer for a detailed account of these problems to my papers
quoted earlier [6, 7] . Here I discuss related but slightly different problems . We
evidently have

Vi n . =(
n
2

1 conjectured that for n > 4 the set u	u,„ cannot be a permutation of
1, 2, . . . , n -1 unless the x ;'s are equidistant points on a line or a circle . For n = 4
this is clearly possible . Let x,, x2, x,> be the vertices of an isosceles triangle and x,
the centre of its circumscribed circle . Pomerance found an example which shows
that my conjecture fails for n = 5 . Let x,, x z, x, be the vertices of an equilateral
triangle, x, the centre of the triangle, and x 5 one of the intersections of the
cireumbscribed circle of x,, x z, x, and the perpendicular bisector of the segment
(x,, x,) . Nevertheless 1 am fairly sure that my conjecture holds for sufficiently
large n, perhaps for all n > 5 . A recent communication from L . Berkes, a
Hungarian high school student in Kecskemét, shows that my conjecture also fails
for n = 6 . More generally, one could ask : How many distinct values can the u,'s
take? Clearly, at most n - 1, but perhaps for large n this is possible only if the
x ;'s are equidistant points on a line .

Not much is known about the possible values of {u,, . . .,u,.,} . My previous
conjecture can be restated as follows . Assume that the u,'s are all distinct. Then
for n > 7, m cannot be n -1 (not all the x,'s on a line or circle) . If my conjecture
is true, one could ask what is the largest possible value of m if we assume that
the u ;'s are all distinct . Observe that for the regular (2k + 1)-gon m = k and all
the u,'s are 2k + 1 . Clearly, many questions could be asked about the possible
values of the u, 's. By an old result of Pannwitz the diameter of x,	x„ can
occur at most n times, thus min u; -- n equality holds when n is odd and the x,'s
form a regular polygon . Many problems and conjectures can be formulated : e .g .
let x	x„ be n points and assume all the u ;'s are equal . For which values is
this possible? Denote this value by b„ then t„ = 1 is of course possible and t„ = n
is possible if and only if n is odd. Also by Pannwitz's result, t., <- n. What values
are possible for t„? Clearly .

t„I(2 ) .



136

	

P. Erdős

References

[1] A . Blokhuis, A new upper bound for the cardinafity of 2-distance sets in Euclidean space, this
volume .

[2] S .A . Burr, B . Grünbaum and N.J .A . Sloane, The orchard problem, Gcometriae Dedicala 2
(1974) 397-424.

[3] L . Danzer and B . Grünhaum, Uber zwei Probleme bezüglich konvexen Körper von P . Erdüs
and V . Klee, Math . Z . 9 (1962) 90-99 .

[4] P . Erdős, On a problem of Grünbaum, Can . Math . Bull . 15 (1972) 23-25 .
[5] P . Erdős, The Art of Counting : Selected Writings (MIT Press, 1973) .
[6] P . Erdős, On some problems of elementary and combinatorial geometry, Ann . Math. Ser . IV, V

103 (1975) 99-108 .
[7] P . Erdős, Some combinatorial problems in geometry, in : Geometry and Differential Geometry,

Lecture Notes in Mathematics 792 (1979) pp . 46-53 .
[8] P . Erdüs and G . Szekeres, A combinatorial problem in geometry, Compos. Math . 2 (1935)

463-470.
[9] P. Erdős and G . Szekeres, On some extremum problems in elementary geometry, Ann . Univ .

Sci . Budapest Sect. Math . 3-4 (1961) 313-320 .
[10] B . Grünbaum, New views on some old questions of combinatorial geometry, Coll . Intern . Sully

Teoria Comb., Rome, Vol . l, Math . Rev . 57 10605 (1973) .
[11] B . Grünbaum, Arrangements and Spreads, Conference Board on Mathematical Sciences,

Amer . Math . Soc. No . 10.
[12] H . Harborth, Konvexe Funfccke in ebenen Punktmengen, Elem . Math . 33 (1978) 116-118 .
[13] L .M . Kelly and W . Moser, On the number of ordinary lines determined by n points, Can . J .

Math . 10 (1978) 210-219 .
[14] J . Komlös, M . Sulyok and E . Szemerédi, Linear problems in combinatorial number theory,

Acta Math . Acad . Sci . Hungary 26 (1975) 113-121 .
[15] T .S . Molzkin, The lines and planes connecting the points of a finite set, Trans . Amer. Math . Soc .

70 (1951) 451-464 .
[16] K .F . Roth, On a problem of Heilbronn, J . London Math . Soc . 26 (1951) 198-204 .
[17] K .F . Roth, On a problem of Heilbronn, II and 111, J . London Math . Soc . 25 (1972) 193-212 .
[18] W . Schmidt, On a problem of Heilbronn, J . London Math . Soc . 4 (2) (1971/72) 545-550 .
[19] E . Straus, G . Purdy and P . Erdős, Can . J . Math . (to appear).

Received March 1981


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

