COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
37. FINITE AND INFINITE SETS, EGER (HUNGARY), 1981.

SIZE RAMSEY NUMBERS INVOLVING MATCHINGS

P. ERDOS — R.J. FAUDREE

ABSTRACT

Let F, G and H be finite, simple and undirected graphs. The edges
and number of edges of a graph F will be denoted by E(F) and | E(F)|
respectively. A graph F - (G, H) if every 2-coloring (say red and blue)
of E(F) produces either a "red” G or a ”"blue” H. The size Ramsey
number A G, H)= min {|E(F)|: F~ (G,H)}. For =1, the graph
consisting of ¢ independent edges will be denoted by ¢K,. In this paper,
bounds and in some cases exact values will be calculated for F(th, G)
for various classical graphs G, for example, when G is either a small
order graph, a path, a cycle, a complete graph or a complete bipartite
graph. Asymptotic results are obtained for some graphs in which exact
values could not be calculated.

1. INTRODUCTION

Let F,G and H be finite, simple and undirected graphs. The vertices
and edges of a graph F will be denoted by V(F) and E(F) respectively.
A graph F- (G,H) if every two coloring (say red and blue) of E(F)
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produces either a red G or a blue H. The Ramsey minimal graphs
for the pair (G, H) will be denoted by R(G,H)={F: F- (G,H) but
F'# (G, H) if F';F}. The generalized Ramsey number n(G,H)=
min {| V(F)|: F€ R(G,H)} and the size Ramsey number G, H) =
min {| E(F)|: F€ R(G, H)}.

The Ramsey number r(G, H) has been calculated for many pairs of
graphs (see [3] for a survey), but the size Ramsey number HG, H) seems
to be much more difficult to determine. Since its introduction in [6],
there have been few results. The two numbers are of course related. For

example it is clear that AG, H) < [r(GéH)]. In fact for complete graphs

there is equality.

Theorem A (Chvatal [6]). For n,m=>= 2

nkK., K
nK,,K, )= [ ( "2 m)].
On the other hand for paths and cycles just the opposite occurs.
o r(P ] P ) nz
Trivially nc,,C)=rP ,P)>n, so [ “2 " J> 5 However

there is the following result which answer a question of Erdds (see [5]
and [6]).

Theorem B (Beck [1]). Thereisa constant ¢ such that
rP,,P,)<HC,,C,)< cn.

It is reasonable to start an investigation of size Ramsey numbers
with pairs of graphs for which the generalized Ramsey number is known.
The Ramsey numbers are known for most classical graphs when paired
with a matching (see [7]). But even in this case there are many difficulties
in calculating the size Ramsey number. In the second section of this paper
exact values of F(IKZ, G) will be calculated when G is a graph of small
order, a star, a large complete graph, or t=2 and G is a complete bi-
partite graph. In the third section we will determine upper and lower
bounds for r:(th. G,) when n is large and G, 1is a special graph on
n vertices. In particular G, a complete bipartite graph, path, cycle or
a generalized wheel will be considered. In the last section results on
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. rtH,G)
lim ———=
f_l.m fF(H, G)
and G is a classical graph. Notation not specifically mentioned will fol-
low [8].

will be given, with the emphasis on the case when H = K,

2. EXACT RESULTS

We start with some trivial but useful observations. If F - (G, H),
then tF - (tG, H). Hence

(1) HtG, H) < tHG, H).

In particular, if G = Kz, then

(2) r(tK,, H)< t|E(H)|.
Also, since r(tK,, K )=n+ 2t -2 [7]

. Vi + 2t—2
(3) ;»(:Kl,hf)g[l (H)'z ).

We shall see in this section that both the bound in (2) and in (3) can
be exact for appropriate f1. In fact each can be exact for H an appropri-
ate complete graph K , but (3) can only be exact when H =K . The

later is true since K 3~ (er, Kﬂ —e).

n+ 2t—

The first statament of the following theorem is a special case of a
result in [4]. In the second statement, K, A+ e isa graph with a star with
n — 2 edges attached to a triangle.

Theorem 1. For t, n=1, F(th,Kl,n)ztn. For t=z1, n=z 2,
rtK,, K,  +e)=tn+ 1)

Proof. We prove only the second equality. It is sufficient to show that
if F—(K,, K, , +e), then [E(F)[>t(n+ 1). For t=1 thisresultis
trivial, so assume ¢= 2 and proceed by induction on f. For v €& V(F),
F=v)+ ({1t —1)K;; Kl,n +e) and so |E(F—v)[=(t— 1)(n-1).
Hence if d(v)=n+ 1, then |EF)|zn+ 1+ |E(F—v)|=1Hn+1).
Therefore we assume A(F) = n.

Select vertices v,,v,,...,v, such that v, has maximal degree d,

in G—{vl,y2 ..... v!._]}. Since ﬁ—{vl,...,vf_l}?K1’R+e, a'l.=n
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for all i, and v‘} is an independent set of vertices. If | E(F)| <
<#n+1), then H=f—{v,,v,,...,v,} hasatmost #— 1 edges. Thus
H# tK, and F— E(H) is a bipartite graph. This contradicts the fact that
F~- (iK,, Kl,n +e), andso |E(F)|I=tn+ 1).0

The size Ramsey number r:(er, Tn) is not the same for all trees
T, on n vertices. Theorem 1 and the following theorem verify that.
Here [x] denotes the smallest integer greater than or equal to x.

Theorem 2. For t>= 1, r:(th,P4)= [%] and

3t t even

(tK,,P.) =
Hiky. £g) 13t+ 1 t odd

Proof. For the first equality note that C; - (2K,,P,). Thus
5 - (1K, P,) ! even
t—1

5= Cy UP, > (tK,,P,) t odd.

It remains to show that if Fe R(tK,,P,), then |E(F)| = [%] For

t=1,2 this is trivial. Therefore we assume ¢= 3, and proceed by in-
dunction on . For ve V(G), (F—v)- ((t— l)Kz,P ). Hence if

d0)>3, 1EF) >3+ 1EG - n>3+ [25D )5 (3], Thus we

assume A(F)= 2, and F is the union of paths and cycles each of which
must contain a P,. In this case one can delete an appropriate two vertices
from F and then the edges not on a P, to obtain a graph F' such that
F'>((t-2)K,,P,) and |E(F')|<|E(F)|-5. Hence using the induc-
tion assumption, |E(F)|=>S5+ |E(F')|> [%] _

For the second equality, note that Ce = 2K2,P5). A repeat of the
argument for P4 gives the second equality.n

It is not true that F(IKZ , P ) is approximately r("—jl—) for arbitrary

-

n. Theorem B implies that there is a constant ¢ such that for ¢ suf-
ficiently large, r(tK,,P, )< ct. It would be nice to know how long this
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behavior does last.

Theorem 3. For t< 1 and for all connected graphs G with
|V(G)| < 4 except for P,,

AtK,, G) = I E(G)|.

Proof. The graphs we are concerned with are Kz, Kl,z’ K3, K1,3,
Cy» Ky+e, K, —e and K,. The resultis trivial for K, and it follows
from Theorem 1 for K, K1‘3 + e and the stars. Because of (2), it is
sufficient to show that if F€ R(tK,, G), then |E(F)|> t| E(G)I.

Each graph requires a separate argument, but there are some general
observations that can be made. The result is trivial for r= 1, so we can
assume ¢ = 2, and proceed by induction on ¢. Each edge of F must be in
a copy of G. Thus 8(F)> 6(G). This also implies that if F' - (sK,, G),
then (F'—e)~ (sK,,G) if e€E(F') is not in a copy of G. For
vEV(F), (F—-v)=>((t-1DK,,G). Thus, if d(v)=|E(G)|, the in-
duction assumption implies that |E(F)| = |E(G)|+ |E(F—v)| =
> |E(G)| + (t — 1)|E(G)|. Therefore we can assume A(F)<|E(G).
There is no loss of generality in assuming F is connected. To complete the
induction it is sufficient to find an F' C F such that F' - ((t — DK,, G)
and

(4) |E(F')| < |E(F)| — | E(G)I.

We will only exhibit one representative case (G = C,), and leave
the remaining ones to the reader. If G = C,, then §(F)=> 2, A(F)<3
and we can assume £ is connected. If A(F)= 2, then the connectivity
of F implies that F= C,, so A(F)= 3. If 8(F)= 2, then thereis an
edge wv€ E(F) with du)=2 and d(v)=3. Hence (F—u—v)—
= ((t— 1DK,, C,), since u had degree 1 in F—v. By (4) the proof
is complete in this case. We can thus assume F is 3-regular. Let Uy, Uy,
Uy, U, be consecutive vertices on a 4-cycle C< F. If C contains two
chords, then F = K,, which clearly gives a contradiction. If C contains
no chords, then F'=(F— Up — Uy — Uy — u4)—> ((t—2)K,,G) and
|[E(F)|= 8+ |E(F')|. An induction argument will complete the proof in
this case. We can thus assume every 4-cycle in F contains precisely one
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chord. Since every edge of F is on a 4-cycle, it is straightforward to
check that this is impossible, which completes the proof.

The following theorem shows that the nature of r:(th, K,) is dif-
ferent when n is large relative to t.

Theorem 4. If t=1 and n=4t— 1, then

;([Kz, K—H)= [n + 2{‘— 2]

The following technical lemma will be needed in the proof of the the-
orem.

Lemma 5. If for s> 0, H is a graph on m vertices with m=>

S5s+ 3

> 25 and |E(H)|> (m—s)s+ (), then H>(s+ DK,.

Proof. If H2 (s+ l)Kz, then a well known theorem of Tutte
([2]) implies that

iE(H)|smax{(’2‘]+ 2 [235+ l]+(m—k)k: 0<k<s
=10

0.

]

s.=s—k}.

(=

i=

This reduces to

(Een i< max {(5)+ (OO Y s - ok 0<k<s)<
%max{[;)+s(m—s),[25;1 }
It is straightforward to check that [2] + s(m—s)> [2S+ I] if m=
55+ 3
= 7

Proof of Theorem 4. Since rtK,, K )=n+ 2t -2, f(er, Kﬂ)i

+ 2t - i s ‘ .
< (n 2). To prove the theorem it is sufficient to show that if

n+ 2r
].

Fe R(er, K ), then |E(F)| = ( Assume F has
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n+ 2t— 2+ x vertices (x= 0). Every vertex of F must be in a Kﬂ,

thus s(A)>n—1. If x»&F 2‘;_2)1(2’ =2 then |E(P)I>

> n+ 2t~ 22+ X}t — 1) > [" + 2; N ] We thus assume
(n+ 2t—2)(2t—-2)— 1
©) n—1 '
It is straightforward to verify that (5) implies that n+ 2t — 2+ x>
;M If
7
(6) [E(F)| > () + x(n + 20— 2)+ 1,

then Lemma S gives that F (complement of F) contains a (x + l)Kz.
Select r— 1 vertex disjoint triangles in FU F which are also vertex
disjoint from (x+ 1)K,. Inequality (5) and n> 4t — 1 assure that
this can be done. Color the edges of F in the triangles red and color the
remaining edges of [° blue. There is no red tK, and the largest blue
complete graph has at most (n+ 2t -2+ x)—(x+ 1+ 2t-2)=n-1

vertices. Thus inequality (6) is not satisfied and |E(F)| > [n * 21 ] |

Although the condition #n>4t— 1 is not sharp, it cannot be

removed from the conditions of the theorem. For example the following
is true for t= 2.

Theorem 6.

[n+2 sk
;(2K2,Kn)
2[2] 2<n<s.

The above theorem is an immediate consequence of Theorem 3 and
Theorem 4 except for n=5,6. These two cases can easily be handled
with the methods used in Theorems 3 and 4.

Theorem 7. For n= 2, ;(ZKZ, K )= n? + 2n.

Later in the paper, Theorem 12 gives bounds for F(er, K, ,) for n
large. A slightly more careful analysis when ¢ = 2 gives Theorem 7, so we
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omit the proof. Also in a similar fashion some additional case analysis
will give the following:

Theorem 8. For n=>m> 2, F(ZKZ,Knm)=nm+n+m.

3. BOUNDS

The difficulty in calculating F(IKZ, G) when G isjusta P ,C, or
a Kn‘n is surprising. In this section reasonable upper and lower bounds
giving the magnitude of the size Ramsey number will be determined.
First some lemmas will be proved.

Lemma 8. Fora fixed t > 2, there is a constant ¢ (depending on t)
such that

HtK,,C,)<n+ cYn.

Proof. For small values of n, appropriate choice of ¢ will imply the

result. We can thus assume that »n is large. Let /= [Vn]. Consider the
graph C,"+ ,¢ (acycle of length 7+ 2¢ containing all chords of length < 7).
Replace each edge on this cycle with a path of length /, to obtain a graph
H. Denote the vertices of this new cycle by {x,, x,, ... X R }. Let

G(n,t) be the graph obtained from H by the addition of the edges

{x;ps Xity j' 0<i<t 2<j<I}.

3

For any set S< V(H)= V(G(n,t)) with |S|=1¢-1, it is easily
seen that H — S contains a cycle of length r forsome r, n<r<n+ |,

and that G(n, t) contains a cycle of length n. It follows immediately
that r(zK,,C )< |E(G(n, ))|. Since

[E(G(n, )| <12+ 2t+ I+ 20t+ t(I1—2)<n+ (4t+ 3)Vn,
the proof is complete.n

Lemma 9. If F is a graph such that F — v, = v, 2P for any pair
vy, vV, € V(F), then there is a positive constant ¢ such that |E(F)|>
>n+ cyn.

Proof. For small values of »n an appropriate choice of ¢ implies
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the result, so we assume #n islarge. Assume F has m verticesand m + r
edges. Let H be the graph obtained from F by contracting each sus-
pended path (path, whose interior vertices have degree 2) to an edge.
Thus H has no vertices of degree 2. Let [ be the number of vertices
of degree = 3 and s the number of vertices of degree 1. So H has the
degree sequence d, =>d,>...2d;>1212>...2 L.

Any path contains at most 2 edges from any vertex and at most 2

l
2 @, —2+s5-2
vertices of degree 1. Thus at least =1 o) edges are not in

1
any path. Since F= P, I < Z(d.—2)+s€2(m+r—n+2). No
n i=1 I

suspended path of F can contain m+ r—n edges, for otherwise the
deletion of two appropriate vertices would leave two disjoint graphs with
less than n — 1 edges. Therefore |E(F)I<(m+ r—n)|E(H)|. This
implies

m+r=|EF)I<(m+r—nlEH)| =

L‘:Zi d;) +s

3 <

=(m+r—n)

Sm+r—n(m+r—n+2+D<3m+r—n+ 2)%.

Hence for x=m+r—n+ 2, we have x>|.ﬂ% and m+r>

>n+ g — 2, which completes the proof.u

A very similar proof yields the following

Lemma 10. If F isagraph such that F —v=>C, forany ve V(F),
then there is a constant ¢ such that |E(F)| = n+ cVn.

The following is a direct consequence of Lemmas 8, 9 and 10.

Theorem 11. For fixed t there are positive constants ¢; (1<i<9g)
such that forall nz= 3,
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n+c, Vn<AtK, C)<n+c,¥n (t>2)
and
n+cVn<HiK,,P)<n+c,¥Vn (t>3).

The restriction ¢ > 3 is necessary for paths. Since CnJr R (2K,, Pn).
E(ZKQ,PH)= n+ 1.

If G and H are graphs, then G + H is the graph with disjoint
copies of G and H and all edges between V(G) and V(H). For example
K, + C_ 1isgenerally called a wheel with n spokes.

Theorem 12. For fixed s> 1 and t, there are positive constants c;
(1<i<4) such that forall n

(s+0n+cVn<r(tK,,K + C)<(s+ Hn+c,¥Vn (t>2)

(s+0On+c;Vn<AtKy,, K + P)<(s+ thn+c,Vn (1> 3).

Proof. Both upper bounds come from the fact that F=K__,_ , +

+ G(n, 2t)—~ (er,I?s +C,), where G(n,2t) is the graph defined in
Lemma 8.

We now verify the first lower bound. Assume F— (1K, Ks +.E )
Select vertices 4 = {vl, Visio was Vg 1}’; V(F) such that v; has maximal
degree in F—{y,... *Vpl}' Since F-A>K +C,, dv)=n
(1<i<t—1), so F has at least s+ t— 1 vertices of degree n and a
disjoint C,. If n is small, an appropriate choice of the constant implies
the result, so we can assume n is large. Also, if F has s+ ¢ vertices of
degree > n, then clearly the result follows.

Thus we assume that F has precisely s+ f — 1 vertices of degree
= n, which we denote by B. Let H= F— B. To complete the proof,
it is sufficient to show that |E(H)|> n+ cVn for some constant ¢> 0.
Select two disjoint sets B, and B, of B containing ¢—2 and 2
vertices respectively, and let C be a single vertex of H. Color red all
edges of F incident to a vertex of B, aswell as any edge with both end
vertices in B, U C. Color the remaining edges blue. There is no red tK,,
so there must be a blue K .+ C,. Hence H must contain a blue C,

— 256 —



avoiding the vertex in C. But Lemma 10 implies that |E(H)|>
>n+ cin.

The exact same proof is valid for the second lower bound, except
that B,,B, and C have 7r—3, 3 and 2 vertices respectively in this
argument.

We end this section with a result on the complete bipartite graph

Kn " mentioned earlier.

Theorem 13. For t= 0 and n sufficient large,
2 42 2rQ‘HIKK )< 2+:21+(r
B ”_[2] n( Ky, K, ) <n " 2]'

Proof. For f= 0, the result is trivial and the bounds agree. Assume
t= 1. We first verify the upper bound. Let H be the symmetric bipartite

graph with 2¢ vertices such that each of the vertices in each part have

distinct non-zero degrees. Thus H is unique and |E(H)| = (t+2 1]. Con-

sider H as asubgraphof K _, . andlet F= Kn+r,n+f —EH). It
is straightforward to verify that the deletion of ¢ vertices from F leaves

a K, . Therefore F~ ((t+ 1)K,, K, ) and |E(F)|<n® + 2tn+ (;]

To verify the lower bound we will assume that

2
])

FER(t+ 1K,.K, ) and E(F)<n®+2nt— (5

and we will show that this leads to a contradiction. Each edge of F must

beina K so 8(F)=n and FzK, . If [V(F)I>2n+2t+ 1,

n.n’
then |E(F)I=>n?+ 2t+ n— [ZI,Z,L 1

n. We thus have | V(F)|< 2n+ 2t.

]2 n? + 2tn — (2;] for large

Since r((t+ l)Kz,Kn‘ﬂ)=2n+ t, [ VIF)I=2n+ t+ s for
O0<s<t Let D denote the ¢ —s vertices of F of largest degree. The
graph F— D= KH.". Let A and B be the parts of this bipartite graph
and C= V(F) - (AUY BUD). Thus |C|= 2s. No vertex of AUBUC
has degree > 2n — 5t, for if so, then every vertex in D has degree
= 2n — 5¢. This would imply

~ 357 =



|E(F)| > n? +2sn+(t—5)(2n—5f)+"—53—[HS]‘

=n*+2nt+(n—(t—s+ I)St)—(HS]

which for n large gives a contradiction.

Let a be the number of edges between vertices of A. Likewise
define b. Note that n? +a+ (¢+ s)n—( )é 2+2m_(2r]

so a<(t—s)n. We will use this to show that a= 0. Assume not, and
let xy be such an edge. There is a Kn," with parts X and Y with
x€X and ye€Y. Degree restrictions on x and y imply that
[XNALIYNA|I<n-— 5t With no loss of generality we can assume

IXON A>3t and |YNAl> 22’. Therefore a;i—zr, which

contradicts the previous restrictionon a. Hence a= b= 0.

Each vertex c€ C is incident to an edge which is in a K",n. Since
all of the vertices of 4 (B) must be in the same part of a bipartite graph,
the vertex ¢ must have |[I'(e)NA|=2n—-2t or |[I'N(e)NB|=n-— 2L
Both inequalities cannot be satisfied. Thus C can be partitioned into
Cy UCq, where G, ={c€C: II(c)NM|>n—-2}. Let A'=A4UC,
and B'=BU Cy. The argument of the previous paragraph also implies
that there are no edges between vertices of 4' (or B').

Let T< A" with |T|=1¢t. Thus F-— T?K i For this to occur,
|A'|—t+ |D|>n. Hence |A'|>n+s and llkBWlse |B'|>n+ s.
This implies |A'|l=1|B'|=n+s. Therefore F—-T= K, , requires
that each vertex of D must be adjacent to at least »n vertices in B

(and also in A). Thus d(v)=2n for veD, and |E(G)I=
>n2+ 2+ (t—5)2n— [t+ s] This gives a contradiction, which

completes the proof.1
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4. ASYMPTOTIC RESULTS

In this section we will consider for fixed nontrivial graphs H and G,

r(tH, G
tf:(H, (;)’

Equation (1) implies that the above ratio is < 1. The following theorem
is also a consequence of (1).

Theorem 14. lim %{r}%—g exists.
1+ oo

Proof. Let a *%’% and a be the greatest lower bound of

{a;: t= 1}, For any €> 0 there is an m such that a<a, <a+ %
a

Select / such that *}—’l <% andlet N=1Im. If n>N then n=qm+ r

with ¢=/7 and 0<r<m. Thus
_ri(gm+ nH, G) < r(q + 1)mH, G) <

n (gm+ r)AH, G) qgmr(H, G)

+ +
Qq lamélilam<a+e.l

. Question. Which numbers in [0, 1] can be limit points of a sequence
[?’(!‘H, G)]
tr(H, G) f—l

The observation that A(tH, G) > t| E(H)| implies that

. AH, G) , 1EWD o o
t"H,G)~ HH,G)

Therefore O is not a limit point. It is possible for 1 to be a limit point,
but of course

r(tH, G) _

: 1, iff A(tH,G)= tn(H,G) forall ¢.
I_’nl tHH. G) iff ) =tr( ) fora

We now consider the case when H = Kz and denote the
L 1Ky, 6)
m =
- MKy, G)
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by r_(G). Theorems | and 3 can be restated as follows:

Theorem 15. If G isa Kl'n, K, ,+te n22, or a connected
graph with | V(G)| < 4 which isnota P,, then FW(G)= I

Question. Is there an infinite family of graphs {G, : n> 1} with
|V(G,)I=n and |A(G,)I<n—1 suchthat

F(G)=1?

On the other hand for paths, cycles, complete bipartite graphs and
complete graphs, F_, assumes small values

Theorem 16. For any n= 2, there is a positive constant a such
that

- - a
<r.P), r.(C)<%

= x|=

2+V2 2 8
QIW(K"‘H)Q—’T"—, ;érﬁ(ﬁf")ﬁz.

Proof. The first lower bound follows directly from inequality (7).
Note that Theorem B implies that F(_nKZ,PZH)é F(nKz, C,,) <
<HC,,,C,,) < 2cn. The first upper bound follows immediately.

If FER(K,,K, ), then A(F)>n and thus | E(F)| =2 tn. Hence
ntK,, K, ) " 1
mK,. K, ) B
On the other hand the proof of the upper bound in Theorem 13 gives that
KKy, K, y<n?+ 20— Dn+ ("51). If we let £=(VZn], then
'-“KPKn,n) 2+ 1'7
R < ;
tn n

This verifies the second set of inequalities.

If F>(K,,K,), then A(F)>n— 1. Thus |E(F)|> t(n— 1) and




Also K = (1K, K,). Ifwelet t=[5], then

[n +2[5] - 2]

2
[51(3)

which completes the proof.1

n+2t—2

4 8
rw(Kn)é éz,

There are several interesting questions concerning Fm (K,). Since

K 2 —* (ersKn)&

n+ 2t—
n+ 2!—2)
- 2
r (K, )< n
((3)
Let
[H"‘ 2t—2]
M, =min ——=——: > 1.
{(3)

Question. Does r; (K,) = Mn?

The small values of Mn are My=M,=M, ZMS =1 and Mg =

= -%-& If the answer to the previous question is yes, then we should have

FoKy) =P (Ky) =7 (K)=F (K)=1 and 7 (K)=Ts. The first
three equalities are a consequence of Theorem 15.
Question. Does r_(K;)=1 and r_(K;) = %%?

The calculation of r_(G) for some special graphs indicates that the
values of Fw tend to be near 0 or 1. This is not in fact true, as the
following theorem indicates.

Theorem 17. The set {FW(G): G a connected graph} is dense in
[0, 1].

Proof. Let k= 2, n and lel?iz;z...BEk}O be integers
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k
such that Z Il. + 2k = n. Then H(n, k, I) will denote the graph contain-
i=1
ing a complete bipartite graph K, , with disjoint stars of /,, [, ..., [
edges respectively attached to the vertices in one part of the K, ,. Thus

k
H(n, k,I) has n verticesand k2 + Zl' I,=n+ k(k—2) edges.
I=

Assume F - (IKZ,H(n, k,1)). Select vertices {vl i Pgiee g Wy l}
such that v, has maximal degree d, in F—{v;,v,,...,v,_;}
Since F—{v,,...,v,_}=Hn k0D, d;=2l+k and |EF)I>
=>(t—- DU+ k) + n+ k(k—1).

Consider the graph G which containsa K, , , ,,, ; With /- 1
disjoint stars of [/ edges and k disjoint stars of /,,/,,...,[ edges
respectively attached to the vertices in one part of the K, . . | .., ;.
The graph G has

k
(k+t— 12+ (t— DI+ Zl I=
=

=n+(t— DI+ k+1t-1)% -2k

edges. Also if S< V(G) with |S|=t— 1, itiseasy toseethat G—S=>
> H(n, k, ). Therefore G- (tK,,H(n, k,D) and r(tK,,H(n, k, D)<
<Sn+(t— DI+ (k+t—1)% - 2k

For n and [ large (relative to k£ and 1),
;(rxzyH(ns k! l)) n+ ﬂ'

11
NEHmED ~ tm ~n' 71
and
HiKy, Hn, k, D onte-ni 1 __1
tIE(H(n, k, D)| (t+ Dn n t+1°
Thus %— ?—Jj—l < 7_(H(n, k, D) 4% & «r—l This completes the proof.

The graphs appearing in Theorem 17 are sparse graphs. The following
result shows that sparse graphs are the only possible graphs that could be
used in the proof of the previous theorem.
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Theorem 18. Let {G,: n> 2} be a family of graphs with | V(G,)| =
=n. If
. LEG I
Im = oo,
n

n—+o

then

lim r_(G,k)=0.

H—=* oo
Proof. Since nnK,,K, )<3n-2,

AnK,,G,)
nTE(G,)]

[3n2— 2]

< lim —_—HIE(GH)I

n— oo

lim 7_(G,)< lim <

n-seo n—+eo
2 1

<5 0.
2,

im —— =

o [EG)I
A constant ¢ such that |E(G,)|<cn does not imply that

lim Fw (G,)> 0. For example for paths and cycles the value of the limit

H—* o=

is 0. It appears that G, needs to be sparse and have large A(G,) for the
limit to be > 0.

Question. If {G,: n> 1} is a family of graphs with |V(G,)|=n
and A(Gn)é ¢, is

lim 7_(G,)= 0?
n—+oo
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