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SIZE RAMSEY NUMBERS INVOLVING MATCHINGS

P. ERDŐS - R .J . FAUDREE

ABSTRACT

Let F, G and H be finite, simple and undirected graphs . The edges
and number of edges of a graph F will be denoted by E(F) and I E(F) I

respectively . A graph F- (G, H) if every 2-coloring (say red and blue)
of E(F) produces either a "red" G or a "blue" H. The size Ramsey
number r(G, H) = min f l E(F) 1 : F-> (G, H)} . For t > 1, the graph
consisting of t independent edges will be denoted by tK2 . In this paper,
bounds and in some cases exact values will be calculated for r(tK2 , G)
for various classical graphs G, for example, when G is either a small
order graph, a path, a cycle, a complete graph or a complete bipartite
graph. Asymptotic results are obtained for some graphs in which exact
values could not be calculated .

1 . INTRODUCTION

Let F, G and H be finite, simple and undirected graphs . The vertices
and edges of a graph F will be denoted by V(F) and E(F) respectively .
A graph F - (G, H) if every two coloring (say red and blue) of E(F)



produces either a red G or a blue H. The Ramsey minimal graphs
for the pair (G, H) will be denoted by R(G, H) _ {F: F- (G, H) but
P t> (G, H) if F' ~ F} . The generalized Ramsey number r(G, H) _
= min {I V(F) 1 : F E R(G, H)} and the size Ramsey number r"(G, H) _
= min fl E(F) J : F E R(G, H)} .

The Ramsey number r(G, H) has been calculated for many pairs of
graphs (see [3] for a survey), but the size Ramsey number r(G, H) seems
to be much more difficult to determine . Since its introduction in [6],
there have been few results . The two numbers are of course related . For

example it is clear that r(G, H) < (r(G2H)1 In fact for complete graphs
there is equality .

Theorem A (C h v a t a 1 [6]) . For n, m> 2

.
r(Kn , Km)

	

r(K
_

	

n,2 Km )
~ .

On the other hand for paths and cycles just the opposite occurs .

Trivially r(Cn , Cn ) > r(Pn , Pn ) > n, so

	

r(Pn2 P
n )~ > 2

2
. However

there is the following result which answer a question of E r d ő s (see [5]
and [6]) .

Theorem B ( B e ck [ I]) . There is a constant c such that

r(Pn , Pn ) < '(n , Cn ) < cn .

It is reasonable to start an investigation of size Ramsey numbers
with pairs of graphs for which the generalized Ramsey number is known .
The Ramsey numbers are known for most classical graphs when paired
with a matching (see [7]) . But even in this case there are many difficulties
in calculating the size Ramsey number . In the second section of this paper
exact values of r(tK2 , G) will be calculated when G is a graph of small
order, a star, a large complete graph, or t = 2 and G is a complete bi-
partite graph. In the third section we will determine upper and lower
bounds for r(tK2 , Gn ) when n is large and Gn is a special graph on
n vertices. In particular Gn a complete bipartite graph, path, cycle or
a generalized wheel will be considered . In the last section results on
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lim r(tH, G) will be given, with the emphasis on the case when H = K2
t, - tr(H, G)
and G is a classical graph. Notation not specifically mentioned will fol-
low [8] .

2. EXACT RESULTS

We start with some trivial but useful observations . If F - (G, H),
then tF - (tG, H) . Hence

(1)

	

r(tG, H) < tr(G, H) .

In particular, if G = K2 , then

(2)

	

r(tK2 , H) < t I E(H) I .

Also, since r(tK2 , Kn ) = n + 2t - 2 [7]

(3)

	

r(tK2 ,1)< l~V(H)~2 2t-2 ) .

We shall see in this section that both the bound in (2) and in (3) can
be exact for appropriate H. In fact each can be exact for H an appropri-
ate complete graph Kn , but (3) can only be exact when H = Kn . The
later is true since Kn+ 2t- 3

_* (tK2 , Kn - e) .

The first statament of the following theorem is a special case of a
result in [4] . In the second statement, Kl n + e is a graph with a star with
n - 2 edges attached to a triangle .

Theorem I . For t, n > 1, r(tK2 , Kin ) = tn . For t > 1, n>2,
r(tK 2 , K l n + e) = t(n + 1) .

Proof. We prove only the second equality . It is sufficient to show that
if F-> (tK2 , Kin + e), then I E(F) I > t(n + 1) . For t = I this result is
trivial, so assume t > 2 and proceed by induction on t . For v E V(F),

(F- v)--> ((t- I)K2 , Kin + e) and so IE(F- v) I > (t- 1)(n - 1) .
Hence if d(v) > n + 1, then I E(F) I > n + 1 + I E(F - v) I > t(n + 1) .
Therefore we assume 0(F) = n .

Select vertices v l , v 2 , . . . , v t such that vi has maximal degree d,
in G - {vl , v 2 , . . . , v i_ i } . Since F- {v i , . . . , v t_ i } > Ki n + e, d i = n
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for all i, and {vl , . . . , vt } is an independent set of vertices . If I E(F) I <

< t(n + 1), then H = f - {vl, V21 . . . , v t } has at most t - 1 edges. Thus
H tK2 and F - E(H) is a bipartite graph . This contradicts the fact that
F - ( tK2 , K l n + e), and so I E(F) I >, t(n + 1) . 1

The size Ramsey number r(tK2 , Tn ) is not the same for all trees
Tn on n vertices. Theorem 1 and the following theorem verify that .
Here [x] denotes the smallest integer greater than or equal to x .

Theorem 2. For t > 1, r(tK2 , P4 ) _ [- t ] and

3t
r(tK2,P5)=

{3t+ 1
t even
t odd.

Proof. For the first equality note that CS - (2K21 P4 ) . Thus

2 CS - (tK2 , P4 )

	

t even

t 2 1 CS u P4 - (tK2 , P4 ) t odd .

It remains to show that if F E R(tK2 , P4 ), then I E(F) I>, [2 ] . For

t = 1, 2 this is trivial . Therefore we assume t > 3, and proceed by in-
dunction on t. For v E V(G), (F- v) - ((t - 1) K2 , P4 ) . Hence if
d(v) > 3, 1 E(F) I > 3 + I E(G - v) I > 3 + [ 5(t21)

	

2 1

	

Thus we

assume 0(F) = 2, and F is the union of paths and cycles each of which
must contain a P4 . In this case one can delete an appropriate two vertices
from F and then the edges not on a P4 to obtain a graph F' such that
F'- ((t -- 2)K2 , P4 ) and I E(F') I < I E(F) I - 5 . Hence using the induc-

tion assumption, I E(F) I > 5 + I E(F') I > [ 2 l .
For the second equality, note that C6 - (2K2 , P S ) . A repeat of the

argument for P4 gives the second equality .)

It is not true that r(tK2 ,Pn ) is approximately t(n ~1) for arbitrary
n . Theorem B implies that there is a constant c such that for t suf-
ficiently large, r(tK2 , Pn ) '< ct . It would be nice to know how long this
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behavior does last .

Theorem 3. For t < 1 and for all connected graphs G with
I V(G) I < 4 except for P4 ,

r(tK2 , G) = tI E(G)I .

Proof. The graphs we are concerned with are K2 , Kl 1,2, K 3 , K1,3 1
C4 , K3 + e, K4 - e and K4 . The result is trivial for K2 and it follows
from Theorem 1 for K3 , K 1 3 + e and the stars . Because of (2), it is
sufficient to show that if F E R(tK 2 , G), then I E(F) I > t I E(G) I .

Each graph requires a separate argument, but there are some general
observations that can be made . The result is trivial for t = 1, so we can
assume t > 2, and proceed by induction on t . Each edge of F must be in
a copy of G. Thus b(F) > S(G) . This also implies that if F'- (sK2 , G),
then (F' - e) - (sK2 , G) if e E E(F') is not in a copy of G. For
v E V(F), (F - v) -> ((t - 1)K2 , G) . Thus, if d(v) > I E(G) I, the in-
duction assumption implies that

	

I E(F) I > I E(G) I + I E(F - v) I >
I E(G) I + (t - 1) 1 E(G) I . Therefore we can assume 0(F) < I E(G) I .

There is no loss of generality in assuming F is connected . To complete the
induction it is sufficient to find an F' C F such that F'- ((t - 1) K 2 , G)
and

(4)

	

1 E(F') 1 < 1 E(n 1 - 1 E(G) I .

We will only exhibit one representative case (G = C4 ), and leave
the remaining ones to the reader . If G = C4 , then S(F) > 2, 0(F) < 3
and we can assume F is connected. If 0(F) = 2, then the connectivity
of F implies that F = C41 so 0(F) = 3 . If S(F) = 2, then there is an
edge uv E E(F) with d(u) = 2 and d(v) = 3 . Hence (F - u - v) -
-> ((t - 1)K 2 , C4), since u had degree 1 in F - v . By (4) the proof
is complete in this case . We can thus assume F is 3-regular. Let ul , u 2 ,

U31
u4 be consecutive vertices on a 4-cycle C < F. If C contains two

chords, then F= K4 , which clearly gives a contradiction . If C contains
no chords, then F' _ (F - ul - u3 - u 2 - u4)

-_~.
((t - 2)K2 , G) and

I E(F) I > 8 + I E(F') I . An induction argument will complete the proof in
this case . We can thus assume every 4-cycle in F contains precisely one



chord. Since every edge of F is on a 4-cycle, it is straightforward to
check that this is impossible, which completes the proof . I

The following theorem shows that the nature of r(tK2 , Kn ) is dif-
ferent when n is large relative to t .

Theorem 4 . If t > 1 and n > 4t - 1, then

r(tK2,Kn)= (n+ 2t-2 )

The following technical lemma will be needed in the proof of the the-
orem.

Lemma 5 . If for s > 0, H is a graph on m vertices with m >
5s2 3 and IE(H)I > (m-s)s+ (2), then H> (s+ 1)K2 .

Proof. If H (s + 1) K2 , then a well known theorem of T u t t e
([2]) implies that

This reduces to

IE(H)I<maxl(2)+ (2(s-2)+ 1 )+(m-k)k: 0<k<s}<

< max {(2) + s(m s), ( 2s2 1)l .

It is straightforward to check that (2) + s(m - s) > ( 2s 2 1) if m
5s+ 3

I E(H) I < max k + S 2s, + 1 + (m - k) k: 0 < k < s(2) '1

	

2

>I- 2

Proof of Theorem 4 . Since r(tK 2 , Kn ) = n + 2t -- 2, r(tK2 , Kn ) <
(n + 2t - 2)

	

To prove the theorem it is sufficient to show that if

F E R(tK2 , Kn ),

	

then

	

I E(n I > ( n + - 2 ) . Assume F has



n + 2t - 2 + x vertices (x > 0) . Every vertex of F must be in a Kn ,

thus S(F) > n - 1 . If x > (n + 2t-2)(2t-2)
1

	

thenn-

	

'
(n+ 2t-2+x)(n- 1)~ (n+ 2t--2

2

	

2

	

~'

(5) X
<, (n+2t- 2)(2t- 2)- 1

n-1

(6)

	

I E(F) 1 > (2 ) + x(n + 2t - 2) + 1,

We thus assume

1 E(F)1 >

It is straightforward to verify that (5) implies that n + 2t - 2 + x
5x + 3

2

	

If

then Lemma 5 gives that F (complement of F) contains a (x + 1)K2 .
Select t - 1 vertex disjoint triangles in F U F which are also vertex
disjoint from (x + 1)K2 . Inequality (5) and n > 4t- 1 assure that
this can be done . Color the edges of F in the triangles red and color the
remaining edges of F blue . There is no red tK2 and the largest blue
complete graph has at most (n + 2t - 2 + x) - (x + 1 + 2t - 2) = n - 1

vertices . Thus inequality (6) is not satisfied and I E(F) I > ( n + 2t - 2)
2

Although the condition n > 4t - 1 is not sharp, it cannot be
removed from the conditions of the theorem . For example the following
is true for t = 2 .

Theorem 6 .

( n
2 2)

r(2K2 , Kn ) _
n>6

2(2)

	

2< n- 5 .

The above theorem is an immediate consequence of Theorem 3 and
Theorem 4 except for n = 5, 6 . These two cases can easily be handled
with the methods used in Theorems 3 and 4 .

Theorem 7. For n > 2, r(2K2 , Kn n ) = n 2 + 2n .

Later in the paper, Theorem 12 gives bounds for r(tK 2 , Kn n) for n
large. A slightly more careful analysis when t = 2 gives Theorem 7, so we
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omit the proof. Also in a similar fashion some additional case analysis
will give the following :

Theorem 8 . For n > m > 2, r(2K2 , Kn m ) = nm + n + m.

3 . BOUNDS

The difficulty in calculating r(tK2 , G) when G is just a Pn , Cn or
a Kn n is surprising. In this section reasonable upper and lower bounds
giving the magnitude of the size Ramsey number will be determined .
First some lemmas will be proved .

Lemma 8 . For a fixed t > 2, there is a constant c (depending on 0
such that

r(tK2 , n) < n + cY-n .

Proof. For small values of n, appropriate choice of c will imply the
result. We can thus assume that n is large . Let I = [ C] . Consider the
graph Cl+ 2t (a cycle of length 1 + 2t containing all chords of length < t) .
Replace each edge on this cycle with a path of length l, to obtain a graph
H. Denote the vertices of this new cycle by {x 0 , x 1 , . . . , x

1 2 + 2tl- 1
} . Let

G(n, t) be the graph obtained from H by the addition of the edges
{xil' xil+ j . 0 < i < t, 2 < j < 1} .

For any set S < V(H) = V(G(n, t)) with I SI = t - 1, it is easily
seen that H - S contains a cycle of length r for some r, n < r < n + l,
and that G(n, t) contains a cycle of length n. It follows immediately
that r(tK2 , Cn ) < I E(G(n, t)) I . Since

1 E(G(n, t))1 < 12 + 21t + (1 + 2t) t + t(1- 2) < n + (4t + 3) f,
the proof is complete .

Lemma 9 . If F is a graph such that F - vl - v2 > Pn for any pair
v l , v2 E V(F), then there is a positive constant c such that I E(F) I >
>n+cF .

Proof. For small values of n an appropriate choice of c implies
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the result, so we assume n is large. Assume F has m vertices and m + r
edges. Let H be the graph obtained from F by contracting each sus-
pended path (path, whose interior vertices have degree 2) to an edge .
Thus H has no vertices of degree 2. Let 1 be the number of vertices
of degree > 3 and s the number of vertices of degree 1 . So H has the
degree sequence d, > d2 > . . . > dl > 1 > 1 > . . . > 1 .

Any path contains at most 2 edges from any vertex and at most 2
I

~(d;-2)+s-2
vertices of degree 1 . Thus at least :- I

	

2

	

edges are not in
1

any path. Since F > Pn , 1 <

	

(dl - 2) + s < 2(m + r - n + 2). No
t=1

suspended path of F can contain m + r - n edges, for otherwise the
deletion of two appropriate vertices would leave two disjoint graphs with
less than n - 1 edges. Therefore I E(F) I < (m + r - n) I E(H) I . This
implies

m+r=1E(F)1<(m+r-n)IE(H)1=

=(m+r-n) 2

I

~ l~ dt )+s

(m + r- n)(m + r- n + 2 + 1) < 3(m + r- n + 2)2 .

Hence for x = m + r - n + 2, we have

> n + 3 - 2, which completes the proof.)

A very similar proof yields the following

Lemma 10 . If F is a graph such that F - v > Cn for any v E V(F),

then there is a constant c such that I E(F) I > n + cC .

The following is a direct consequence of Lemmas 8, 9 and 10 .

Theorem 11 . For fixed t there are positive constants c t (1 < i < 4)
such that for all n > 3,

and m + r >



and

n+c 3 C<r(tK21 Pn )<n+c4 f-n

	

(t>3) .

The restriction t > 3 is necessary for paths. Since n + 1 - (2K2 , Pn ) '
r(2K2 , Pn ) = n + 1 .

If G and H are graphs, then G + H is the graph with disjoint
copies of G and H and all edges between V(G) and V(H) . For example
K, + Cn is generally called a wheel with n spokes .

Theorem 12. For fixed s > 1 and t, there are positive constants c t
(1 < i < 4) such that for all n

n+c, n<r(tK 2 , n)<n+c 2C

	

(t>2)

Proof. Both upper bounds come from the fact that F = Ks + r-
1 +

+ G(n, 2t) - (tK2 , KS + Cn ), where G(n, 2t) is the graph defined in
Lemma 8 .

We now verify the first lower bound . Assume F- (tK2 , KS + Cn ) .
Select vertices A = {v 1 , v2 , . . . , vt_ 1 } < V(F) such that v i has maximal
degree in

	

F - {v1 , . . . , v i- 1 1 . Since F - A > Ks + Cn , d(vi) > n
(1 < i < t - 1), so F has at least s + t - 1 vertices of degree n and a
disjoint Cn . If n is small, an appropriate choice of the constant implies
the result, so we can assume n is large. Also, if F has s + t vertices of
degree > n, then clearly the result follows .

Thus we assume that F has precisely s + t - 1 vertices of degree
> n, which we denote by B . Let H = F - B . To complete the proof,
it is sufficient to show that I E(H) I > n + cyn for some constant c > 0 .
Select two disjoint sets B, and B 2 of B containing t - 2 and 2
vertices respectively, and let C be a single vertex of H. Color red all
edges of F incident to a vertex of B, as well as any edge with both end
vertices in B2 U C. Color the remaining edges blue . There is no red tK2 ,
so there must be a blue KS + Cn . Hence H must contain a blue Cn
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(s + On + c, yn < r(tK2 , Ks + Cn ) < (s + t)n + c2 yn (t > 2)

(s + t) n + c3

	

< r(tK2 , Ks + Pn ) < (s + t) n + c4 > n (t > 3) .



avoiding the vertex
>n+ cyn

The exact same
that B, , B 2 and C
argument .)

in C . But Lemma 10 implies that I E(H) I

proof is valid for the second lower bound, except
have t - 3, 3 and 2 vertices respectively in this

We end this section with a result on the complete bipartite graph
Kn n mentioned earlier .

Theorem 13 . For t > 0 and n sufficient large,

n 2 +2tn-(2)<r((t+1)K2 ,Knn)<n 2 +2tn+(2~ .

Proof. For t = 0, the result is trivial and the bounds agree . Assume
t > 1 . We first verify the upper bound . Let H be the symmetric bipartite
graph with 2t vertices such that each of the vertices in each part have

distinct non-zero degrees . Thus H is unique and I E(H) I = t+2 1 ) . Con-

sider H as a subgraph of Kn + t, n + t and let F = Kn + t, n + t - E(H) . It
is straightforward to verify that the deletion of t vertices from F leaves

a Kn n . Therefore F --> ((t + 1) K 2 , Kn n ) and I E(F) I < n 2 + 2tn + ( t2'

To verify the lower bound we will assume that

FE R((t+ 1)K2, Kn,n ) and E(F) < n 2 + 2nt - (2t) ,

and we will show that this leads to a contradiction . Each edge of F must
be in a Kn n, so b(F)>,n and F > Kn n . If I V(F) I > 2n + 2t + 1,

then IE(F)I > n 2 + (2t+ 1)n - ( 2t 2 1 ) > n 2 + 2tn - (2) for large
n . We thus have I V(F) I < 2n + 2t .

Since

	

r((t + 1) K2 , Kn n ) = 2n + t,

	

I V(F) I = 2n + t + s

	

for
0 < s < t . Let D denote the t - s vertices of F of largest degree . The
graph F - D > Kn n . Let A and B be the parts of this bipartite graph
and C = V(F)-(A u B u D) . Thus ICI= 2s. No vertex of A u B u C
has degree > 2n - 5t, for if so, then every vertex in D has degree
> 2n - 5t . This would imply
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IE(F)1>n 2 +2sn+(t-s)(2n-5t)+n-5t-` t 2 s )-

=n2+2nt+(n-(t-s+ 1)5t)-( t 2 s )

which for n large gives a contradiction .

Let a be the number of edges between vertices of A . Likewise

define b . Note that n 2 + a + (t + s)n - r t 2 s ) < n 2 + 2nt - l
(2t) ,

so a < (t - s) n . We will use this to show that a = 0 . Assume not, and
let xy be such an edge . There is a Kn n with parts X and Y with
x E X and y E Y . Degree restrictions on x and y imply that
I X n A I, 1 Y n A I < n - 5t . With no loss of generality we can assume

n-2t

	

3t(n-2t)
I X n A I> 3 t and I Y n A I> 2

	

Therefore a>

	

2

	

which

contradicts the previous restriction on a . Hence a = b = 0 .

Each vertex c E C is incident to an edge which is in a Kn n . Since
all of the vertices of A (B) must be in the same part of a bipartite graph,
the vertex c must have I r(c) n A I > n - 2t or I r(c) n B I > n - 2t.
Both inequalities cannot be satisfied . Thus C can be partitioned into
CA UCB , where CM = {ccC: Ir(c)nMI>n-2t} . Let A'=AuCA
and B' = B U CB . The argument of the previous paragraph also implies
that there are no edges between vertices of A' (or B') .

Let T < A' with I T I = t . Thus F - T > Kn n . For this to occur,
I A' I - t + I D I > n . Hence I A' I > n + s and likewise I B' I > n + s .
This implies I A ' I = I B' I = n + s . Therefore F - T > Kn n requires
that each vertex of D must be adjacent to at least n vertices in B
(and also in A) . Thus d(v) > 2n for v C D, and I E(G) I >

> n 2 + 2sn + (t - s) 2n - t 2 s ) .

	

This gives a contradiction, which
completes the proof . i



4. ASYMPTOTIC RESULTS

In this section we will consider for fixed nontrivial graphs H and G,

lim r(tH,G)
r- - tr(H, G)

Equation (1) implies that the above ratio is < 1 . The following theorem
is also a consequence of (1) .

Theorem 14 . lim r(tH,G) exists.
t

	

tr(H, G)

Proof. Let at = r(tH,G) and a be the greatest lower bound of
tr(H, G)

{a t : t>11. For any e > 0 there is an m such that a < am <a+ 2 .
Select 1 such that

al
< 2 and let N = lm . If n >N then n = qm + r

with q > 1 and 0 < r < m . Thus

a = r((qm + r)H,G) < r((q + 1) mH,G)
" (qm + r)r(H, G)

	

gmr(H, G)
< q+g l am < 1+ 1 am <a+ e.1

Question . Which numbers in [0, 1 ] can be limit points of a sequence
r(tH,G)

)
-

tr(H, G) r= i

The observation that r(tH, G) > t I E(H) I implies that

(7)

	

r(tH,G) > IE(H)I > 0
tr(H, G) r(H, G)

Therefore 0 is not a limit point . It is possible for 1 to be a limit point,
but of course

lim r(tH, G) = l, iff r(tH, G) = tr(H, G) for all t .
r-• - tr(H, G)

We now consider the case when H = K2 and denote the

lim
r(tK2 , G)

t-- tr(K2 , G)
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by r„ (G) . Theorems 1 and 3 can be restated as follows :

Theorem 15 . If G is a K1, n , KI,n + e, n > 2, or a connected
graph with I V(G) I < 4 which is not a P4 , then r- (G) = 1 .

Question. Is there an infinite family of graphs {Gn : n > 1 } with
I V(Gn )I=n and I A(G n ) I < n - 1 such that

r- ( G) = 1?

On the other hand for paths, cycles, complete bipartite graphs and
complete graphs, r„ assumes small values

Proof. The first lower bound follows directly from inequality (7) .
Note that Theorem B implies that

	

r(nK2 , P2n ) < r(nK2 , C2n )
r(C2n , C2n ) < 2cn . The first upper bound follows immediately .

If F E R(tK2 , Kn n ), then 0(F) > n and thus I E(F) I > tn . Hence

r(tK2 , Kn, n )

	

1>-
tr(K2 , Kn n )

	

n

On the other hand the proof of the upper bound in Theorem 13 gives that

r(tK2 , Kn n )< n 2 + 2(t- 1)n+ ( t 2 1 ) . If we let t= [F2 n], then

r(X2 , Kn,n ) 2+l2
tn 2

	

n

This verifies the second set of inequalities .

If F - (tK2 , Kn ), then 0(F) > n - 1 . Thus I E(F) I > t(n - 1) and

r(tK2 , Kn )

	

t(n - 1) _ 2
tr(K2 , Kn )

	

t (2)

	

n'
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Theorem 16 . For any n > 2, there is a positive constant a such
that

n < r_ (Pn ), r_ (Cn ) < n
2+1 <r_(Kn n )< 2 r_(Kn)< 8

n

	

n n n



Also Kn + 2r- 2 --* (tK2 , Kn ) . If we let t = [n1, then

(n + 2~ 2I - 2

2r_(Kn) <	n n

	

< 8,
2~~2~

which completes the proof . I

There are several interesting questions concerning r_(Kn ) . Since

Kn + 2 t 2
- ( tK 2 , Kn ),

rn+ 2t-21

Let

r_ (Kn )

Mn =min

t(2
(n+ -2

)1
: t> 1

t (2)
Question . Does r_ (Kn ) = Mn ?

The small values of Mn are M 2 = M3 = M 4 = M S = 1 and M6 -
14 . If the answer to the previous question is yes, then we should have15'

r„ (K 2 ) = r_ (K 3 ) = r~ (K4 ) = r, (K S ) = 1 and r_ (K 6) = 15 ' The first

three equalities are a consequence of Theorem 15 .

Question . Does r_ (KS ) = 1 and r_ (K6 ) = 1
14
5 ?

The calculation of r_ (G) for some special graphs indicates that the
values of r_ tend to be near 0 or 1 . This is not in fact true, as the
following theorem indicates .

Theorem 17 . The set {r_(G) : G a connected graph} is dense in

[0, 11 .

Proof . Let k > 2, n and 1= 11 > 1 2 > . . . > lk > 0 be integers



k
such that 2 11 + 2k = n . Then H(n, k, 1) will denote the graph contain-

s= 1
ing a complete bipartite graph Kk k with disjoint stars of 1 1 , 12 , . . . , lk
edges respectively attached to the vertices in one part of the Kk k . Thus

k
H(n, k, n has n vertices and 0 + Z 11 = n + k(k - 2) edges .

i= 1

Assume F- (tK 2 , H(n, k, 1)) . Select vertices {v 1 , v2 , . . . , v t_ 1 }
such that v i has maximal degree d i in F- {v1, v 2 , . . . , vi_ 1 } .
Since

	

F - {v 1 , . . . , v t_ 1 } > H(n, k, 1),

	

d i > 1 + k

	

and

	

I E(F) I >
>(t-1) (1 + k) + n + k(k - 1) .

Consider the graph G which contains a Kk+ t- 1,k+ t- 1 with t - 1

disjoint stars of l edges and k disjoint stars of 1 1 , 12 , . . . , lk edges
respectively attached to the vertices in one part of the Kk+ t- 1,k+ t- 1
The graph G has

and

k
(k+ t- 1) 2 + (t- 1)1+

	

11 =
i= 1

=n+(t-1)1+(k+t-1)2-2k

edges. Also if S < V(G) with I S I = t - 1, it is easy to see that G - S >

H(n, k, 1) . Therefore G (tK2 , H(n, k, 1)) and r(tK2 , H(n, k, 1))

<n+(t-I)l+(k+t-1)2-2k*

For n and 1 large (relative to k and t),

r(tK2 , H(n, k, 1))

	

n + tl

	

l
+

1
t 1 E(H(n, k, 1))1 < tn < n

	

t

r(tK2 , H(n, k, 1))

	

n+(t- 1)1

	

1	 1
t1E(H(n,k,1))1 > (t+ 1)n

	

n

	

t+ 1

Thus n1 - t+1 1 < ;_ (H(n, k, 1)) < n1 + t1 . This completes the proof . I

The graphs appearing in Theorem 17 are sparse graphs . The following
result shows that sparse graphs are the only possible graphs that could be
used in the proof of the previous theorem .
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Theorem 18 . Let {Gn : n > 2} be a family of graphs with I V(Gn )1 =
= n . If

then

n-

1 1 1

[3]

I E(Gn ) I
lim	nn-•

lim r- (Gn ) = o-
n-

Proof. Since r(nK2 , Kn ) < 3n - 2,
r 23n 2 )

lim r_ (Gn ) < lim
r(nK2 , Gn )

	

l
< lim

n--

	

n->_ nIE(Gn)I

	

n-- nIE(Gn )I

9 lim
2 n -O IE(Gn)I

= 0 .

A constant c such that I E(Gn ) I < cn does not imply that
lim r_ (Gn ) > 0 . For example for paths and cycles the value of the limit

is 0. It appears that Gn needs to be sparse and have large A(Gn ) for the
limit to be > 0 .

Question . If {Gn : n > 1 } is a family of graphs with I V(G n ) I = n
and A(Gn ) < c, is

hm r_ (Gn ) = 0?
n -•

REFERENCES

J . B e c k , On size Ramsey numbers of path, Trees and Circuits 1,
J. Graph Theory, 7 (1983) .

[2] J .A . Bondy - U .S .R . Murty,

	

Graph theory with applica-
tions, American Elsevier Publ . Co ., 1976 .

S .A . Burr, Generalized Ramsey theory for graphs - a survey,
Graphs and Combinatorics, Lecture Notes in Math ., 406, Springer
(1974), 52-75 .



[4] S .A . Burr - P . Erdős - R .J . Faudree - C .C .
Rousseau - R .H . Schelp, Ramsey minimal graphs for
multiple copies, Nederl. Akad. Wetensch. Proc. Ser. A, 81 (1978),
187-195 .

[5] P . E r d ő s, On the combinatorial problems which I would most
like to see solved, Combinatorics, 1 (1981), 25-42 .

[6] P . Erdős - R .J . Faudree - C .C . Rousseau - R .H .
S c h e 1 p, The size Ramsey number, Periodica Mathematics Hun-
garica, 9 (1978), 145--161 .

[7] R .J . Faudree - R .H . Schelp - J . Sheehan,

	

Ramsey
numbers for matchings, Discrete Math ., 32 (1980), 105-123 .

[8] F . Harary, Graph theory, Addison Wesley, Reading, Mass . 1969 .

P . Erdős

Math. Inst ., Hung . Acad. of Sci ., Budapest, Reáltanoda u. 13-15, 1053 Hungary .

Hungary .

R . Faudree

Dept . of Math . Sci ., Memphis State Univ ., Memphis, Tenn. USA .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

