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I. INTRODUCTION

Suppose G={G,,G,,..., G, } is acollection of graphs*, all having
the same number of edges. By a U-decomposition of G we mean a set of

.
partitions of the edge set E(G;) of the G, say E(G)) = Z; E:’f’ such that
;:

for each j, all the E:‘.,:‘ (1 <i< k), are isomorphic as graphs. Define the
function U(G) to be the least possible value of r any U-decomposition
of G can have. Finally, let Uk (n) denote the largest possible value U(G)
can assume where G ranges over all sets of k graphs each having »n ver-
tices and the same number of edges.

In previous work [3], [4], it was shown that
2 3
Uz(n) =3 n+ o(n) and Uk(n) =3n + o(n)

for any fixed k= 3.

*In general, we follow the terminology of [1].
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In this paper we consider the family, denoted by G(n,e), of all
graphs on n vertices and e edges. Let U(n, e) denote U(G(n, ¢)), and
let U(n) denote the maximum value of U(n, e) over all values of e. Itis
easily seen that U, (n) < U(n). We will prove that

Utn) = % w06,

In particular,

Un,e)=o(n) if e>>n (e. §= o(1)).

II. PRELIMINARIES

Before we study U-decompositions of G(n, e), we will state some
auxiliary facts on unavoidable graphs, which were first investigated by two
of the authors in [2]. A graph contained in every graph on n vertices and
e edges is called an (n, e)-unavoidable graph. Let fin,e) denote the
largest integer m with the property that there exists an (n, e)-unavoidable
graph on m edges. It was proved in [2] that

() fine=1 if e<|3];

(i) fin,e)=2 if |5] <e<n;

4
(iii) fin,e) = [%]2+0(%) if n<e<n3;

o iz
(iv) ¢, -———-——-B——Pilo L <fln,e)<c, —g_h;lo L
log[z] — loge log[z] —loge
2 n 1+d
for dn <e<[2]—n 2
where ¢, and c¢, are appropriate constants where d, and d, areany
constants satisfying 0<d, < %, 0<d, < 1. In particular,
(v) fin,e)=(1+o0(1))V2e for §=o(1).
The unavoidable graphs in (i), (ii) and (iii) are disjoint unions of stars.

==



In (iv) and (v) the unvoidable graphs involved are disjoint unions of com-
plete bipartite graphs.

Let S,. denote a star with i edges and let ,r'Si denote the vertex
disjoint union of j copies of ;. We need the following useful facts.

Lemma 1. Suppose G has n vertices and e edges, and has
maximum degree d. Forany two integers t and r, if we have

r—1

3 n+ (t—1d+ t2r?

e =

then G contains rSr.

Proof. Suppose k is the largest integer such that kS, is embedded
in G and suppose k<t Let X denote theimage of k centers of S,’s.
Let Y denote the image of kr leaves. Because of the maximality of k&,
the induced subgraph of § on Z= V(G)— X — Y does not contain any
vertex with degree r or more. At most k verticesin X U Y are adjacent
to at least kr vertices in Z. The total number of edges in G is then
bounded above by

[(kzl)r]+ (n—(k_l_zl)r)(r_ 1)+ kd + kzrz <

r—1
2

< n+(t—1)d+ t%r2.

This is a contradiction and Lemma 1 is proved. 8

Lemma 2. Suppose G has n verticesand e edges with

4
on3)=e=mn+s (n>s=0).

Then G has the following properties:

e
(i) If s>£, G contains [Q%J (edge-disjoint) copies of

2
: n—s—m ; e
mS, . After removing [-————2 J copies of mSz, the remaining graph

G' has maximum degree s+ m?%. G' contains [% - % - mZJ copies of
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(m+ 1)S,. After removing l% = %— m2] copies of (m+ 1)S, from

G' the remaining graph G" has maximum degree at most -g— + 2m?2.

G" contains [% — mzj copies of (m+ 1)S,. After removing these

(m+ 1)S, from G" the remaining graph has maximum degree 4(m + 1)2
and has at most 20(m + 1)3 edges.

Gi) If s<Z, G contains —mzj copies of mS,. After re-

l n
4
moving l% —m?| copies of mS,, the remaining graph G' contains
[% —s—m ] copies of mS,. After removing [321- —s—m?| copiesof

h

mS], the remaining graph G_" contains s — m? copies of (m+ l)Sl.
After removing s —m? copies of (m + 1)S,, the remaining graph has
maximum degree 4(m + 1) and 20(m + 1)? edges.

Proof. The proof proceeds by using Lemma 1 iteratively. We first
prove (i) by proving the following stronger statement.

2
], the

remaining graph G; contains mS, and G; has maximum degree
<n-—2i+ 2.

By removing i copies of mS, from G, z<[ s—m

It is clearly true for i=1 by Lemma 1 (we may assume m =1 in
(i)). Suppose it is true for j<i. We note that

|EG)I>e—2im>5 + (m—i)(n—2i+ 4) + 4m?.

Thus by Lemma 1, G, contains mS, We now embed mS, into G; such
that centers are mapped into vertn,es with highest degrees if possﬂ)le If

there are more than m vertices with degree n — 2i + 3 or more, the total
number of edgesin G, , isthenatleast (n — 2i+ 3)(m+ 1) — [m;- 1 .

Since G, , has e — 2(i— 1)m edges, we then have

e~ 2i-m>m-2+Hm+ - ("3 "),
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. . m+ 1
ie. s>n—2i+3— ) ]

This yields a contradiction. The rest of (1) can be proved by using
Lemma 1 repeatedly. (ii) can be proved in a similar fashion. §

Lemma 3. Suppose G has n vertices and e edges with e =
4

=mn+s=o0n3) and m>c for some constant c¢. G contains

an_ cm  copies of [%T—JS After removing 4Tn_ cm copies of

¢ 51

, the remaining graph has at most cm 3

171s

5 edges.

[Z1
Proof. It can again be proved by induction that after removing 2i

copies of [%J S the remaining graph has degree at most n — % 1

.._.
ra|m
S

III. ESTIMATING U(n)

We are now ready to tackle the problem of determining U(n). In
[4] it is proved that U3(n)> % n—Vn-1. Thus, U(n)= U3(n)>

> % n—¥n — 1. We will first prove the following:

Theorem 1. Un,e)< an if e>%.

Proof. We consider all graphs on n vertices and e, edges. We will
remove an (n, e)-unavoidable graph from each graph of edges currently
remaining in each of the graphs. We consider the following cases.

.

2- n _
Case 1. n E<.¢3€[2], where €= 10

In this case, we remove a common subgraph having at least é Ve

edges. Thus, if e, denotes the number of edges remaining in each graph
after i repetitions have been performed then

1
€ii1 @ei—; I/e_
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i 32
It can then be proved by induction that e;< [Ve_ = -‘—] since

0 2€
21 .
1 <e—¢ Ve < (Ve —5) -1 (Vg —5) <
[+ 1,2
< (Veo —5)

We apply this process as longas e;> n 2-¢ g0 that at most 2en sub-
graphs are removed from each graph.
4
Case 2. n3 <e<n?-¢,

In this range, the unavoidable graph has at least ¢, Ve edges (see [2]).
Let e; denote the number of edges remaining in each graph after i sub-
graphs are removed. We have

éei—cll/e—i.

It can be proved by induction that

€iv1

1-< iy 2
e, < (n 2 _ 2
i cl

ES
ra|m

1
We apply this process as long as e, > n 3 5o that at most ¢, n

1 sub-

graphs are removed.

Case 3. -g<e€n3

In this step, we repeatedly remove unavoidable graphs with
ev2
Cli— e)[;] edges. Then

€..2
1€ei_(§‘] .

It can be proved by induction that

5.l
2 i

Hence, to reach eég requires the removal of at most en subgraphs.

- 176 —



n n
Case 4. 26<.=3< "
We now use Lemma 3 by choosing ¢ = [%1 After removing at

most 3en graphs, at most c? edges are left. We then remove one edge
at a time.

Since eq >>n, then e > g and ¢? < en. Therefore we require at

most an = —]-gﬂ steps in the U-decomposition of G(n, e,). Theorem 1

is proved. i
Theorem 2. U(n,cn?)<nlogn forsome constant c.

Proof. The proof is similar to that in Theorem 1 except for taking €

1 .
to be 100 log n in the proof of Theorem 1. 1

Theorem 3. U(n) < % n+ O(1).

Proof. We consider graphs on n vertices and e edges. From The-
orem 1 we only have to consider the case that e < 151. We now use
Lemma 2. Let ¢ be equal to 225 and e = mn + r. We consider the fol-
lowing cases.

Case 1. s>%‘

Each G in G(n,e) can be decomposed into [ﬁ—_—;—:—-—cj copies
of mS,, [% - % - cl copies of (m+ 1)S, and lg — c] copies of
(m + l)Sl. After removing these star-forests, only 4c¢? edges are left.
Thus we have

Uln, e}é[ |+[———— ]+[2 J+402€

3n 2
< ) + 4¢-.
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n
Case 2. s< 5

Each G in G(n,e) can be decomposed into [% = r:J copies of

mS,. [%—s—cl copies of mS, and s—c copies of (m+ 1)S,.

After removing these star-forests, only 4c¢? edges are left. Thus we have

U(n, e) < l%—CJ"I‘ [%—s—cl+s—c'+4czé%+4{-2.

Therefore U(n) < 37:1 + 4¢2  and the proof of Theorem 3 is com-

pleted. 1

IV. CONCLUDING REMARKS

Let ¢, denote some appropriate constants. From Theorem 2 we know
that U(n,c,n H< c,n log n. If we insist that only unavoidable graphs can

¢
be used in the U-decomposition, then logsn subgraphs are required since

an (n,c, n?)-unavoidable graph can have at most c,n log n edges. Is it true
that Uln, clnz) =cgn log n? Can we do better by using graphs other
than unavoidable graphs in finding minimal U-decompositions of G(n, €)?

In this paper we actually prove that

3 — 3
Zn—!‘n--1<U{n)<zn+cﬁ.

There is still room for improvement.

For Uz(n), it can be shown in a similar manner that

2 1 2
§n~—§<U2(n)<-jn+ Cq-

It would be of interest to get the exact value for Uz(n) (and U(n), for
that matter).
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