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I . INTRODUCTION

Suppose G = {GI,

	

G21 . . . , G k } is a collection of graphs*, all having

the same number of edges . By a U-decomposition of G we mean a set of
r

partitions of the edge set E(G j ) of the Gt , say E(G,) _ Z Eti , such that
i=1

for each j, all the Eii (1 < i < k), are isomorphic as graphs . Define the
function U(G) to be the least possible value of r any U-decomposition

of G can have. Finally, let Uk (n) denote the largest possible value U(G)
can assume where G ranges over all sets of k graphs each having n ver-

tices and the same number of edges .

In previous work [3], [4], it was shown that

U z (n) = 3 n + o(n) and Uk (n) = 4 n + o(n)

for any fixed k > 3 .

*In general, we follow the terminology of [ 1 I .



In this paper we consider the family, denoted by G(n, e), of all
graphs on n vertices and e edges. Let U(n, e) denote U(G(n, e)), and
let U(n) denote the maximum value of U(n, e) over all values of e . It is
easily seen that Uk (n) < U(n) . We will prove that

U(n) = 4 n + O(1) .

In particular,

U(n, e) = o(n) if e >> n

	

(i.e., n = 0(1)) .

II . PRELIMINARIES

Before we study U-de compositions of G(n, e), we will state some
auxiliary facts on unavoidable graphs, which were first investigated by two
of the authors in [2] . A graph contained in every graph on n vertices and
e edges is called an (n, e)-unavoidable graph . Let f(n, e) denote the
largest integer m with the property that there exists an (n, e)-unavoidable
graph on m edges . It was proved in [2] that

(i) f(n, e) = 1 if e < [ n
J

;
2

(ü) f(n, e) = 2 if [2] < e < n ;
4

(iii) f(n,e)=
(~)2

+O(n) if n<e<n 3 ;

(iv) c	logn 	< An, e) < c	 V-e logn

1 log ( 2) - log e

	

2
log ( 2) - log e

for d 1 n 2 <e< [n, n 1+d2

where c l and c2 are appropriate constants where dl and d2 are any

constants satisfying 0 < dl < 2, 0 < d2 < 1 . In particular,

(v) f(n, e) > (1 + 0(1)) 2e

	

for
n

= 0(1) .

The unavoidable graphs in (i), (ü) and (iii) are disjoint unions of stars .
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In (iv) and (v) the unvoidable graphs involved are disjoint unions of com-
plete bipartite graphs .

Let St denote a star with i edges and let jSi denote the vertex
disjoint union of 1 copies of Si . We need the following useful facts .

Lemma 1 . Suppose G has n vertices and e edges, and has
maximum degree d . For any two integers t and r, if we have

e > r 2 I n + (t - 1)d + t 2 r2

then G contains tSr .

Proof. Suppose k is the largest integer such that kSr is embedded
in G and suppose k < t . Let X denote the image of k centers of Si 's .
Let Y denote the image of kr leaves. Because of the maximality of k,
the induced subgraph of S on Z = V(G) - X - Y does not contain any
vertex with degree r or more. At most k vertices in X U Y are adjacent
to at least kr vertices in Z. The total number of edges in G is then
bounded above by

«k +2 1)r) + (n- (k+I)r)(r- 1) + kd + k 2r 2 <

< r2I n + (t -0d + t 2r 2 .

This is a contradiction and Lemma 1 is proved . 1

Lemma 2 . Suppose G has n vertices and e edges with
4

o(n 3 )=e=mn+s (n>s>0) .

Then G has the following properties :

I
(i) If s > 2, G contains Ln - s2 m

2
(edge-disjoint) copies of

ms2 . After removing I
n - s	

2
	 -m2 ) copies of mS2, the remaining graph

G' has maximum degree s + m 2 . G' contains s - n - m 2 ] copies of



(m + 1)S 2 . After removing l 2 - 4 - m 2 copies of (m + 1)S2 from

G' the remaining graph G" has maximum degree at most 2 + 2m 2 .

G" contains [2 - M 2] copies of (m + 1)S I . After removing these

(m + 1)S l from G" the remaining graph has maximum degree 4(m + 1) 2
and has at most 20(m + 1) 3 edges.

I

GO If s < 2' G contains [
4 - m 2 ] copies of mS2 . After re-

moving [4 - m 2 ] copies of mS 2 , the remaining graph G' contains

2 - s - m 2 copies of mS l . After removing l2 - s - m 2 copies of

mSl , the remaining graph G" contains s - m 2 copies of (m + 1)S1 .
After removing s - m 2 copies of (m + 1)S, , the remaining graph has
maximum degree 4(m+1) and 20(m+1) 2 edges.

Proof. The proof proceeds by using Lemma 1 iteratively . We first
prove (i) by proving the following stronger statement .

By removing i copies of mS2 from G, i < r n	- s2 m
2

	

the

remaining graph Gl contains mS2 and Gt has maximum degree
<n-2i+ 2.

It is clearly true for i = 1 by Lemma 1 (we may assume m > 1 in
(i)) . Suppose it is true for j < i . We note that

1 E(G i ) 1 > e - 2im > 2
+ (m - i)(n - 2i + 4) + 4M 2 .

Thus by Lemma 1, Gi contains mS2 We now embed mS2 into G t such
that centers are mapped into vertices with highest degrees if possible . If
there are more than m vertices with degree n - 2i + 3 or more, the total

number of edges in Gj_ 1 is then at least (n - 2i + 3) (m + 1) - i m + 1
t 2

Since Gt_ 1 has e - 2(i - 1)m edges, we then have

e-2(i-1)m>(n-2i+3)(m+1)_(m+1)2



i .e . s>n-2i+ 3-(M
+1 1

l2

This yields a contradiction. The rest of (1) can be proved by using
Lemma 1 repeatedly . (ü) can be proved in a similar fashion . 1

Lemma 3 . Suppose G has n vertices and e edges with e =
4

= mn + s = o(n 3 ) and m > c for some constant c . G contains
4n _ cm copies of [M] S

	

After removing 4n - cm copies ofc

	

2

	

[2 1'

	

c

[2 S[ 1 , the remaining graph has at most cm 3 edges.
2

Proof. It can again be proved by induction that after removing 2i

copies of [2 I S c the remaining graph has degree at most n - 2 . 1
[21

III . ESTIMATING U(n)

We are now ready to tackle the problem of determining U(n) . In

[41 it is proved that U3 (n) > 4 n - C - 1 . Thus, U(n) > U3 (n) >

> 4 n - V n - 1 . We will first prove the following :

Theorem 1 . U(n, e) < an if e > lOn
a

Proof. We consider all graphs on n vertices and eo edges. We will
remove an (n, e)-unavoidable graph from each graph of edges currently
remaining in each of the graphs . We consider the following cases .

Case 1 . n 2 - E < e < ( 2n ), where e = 10'

In this case, we remove a common subgraph having at least 1

edges. Thus, if e j denotes the number of edges remaining in each graph
after i repetitions have been performed then

e i+ 1 < e i -
I C.



It can then be proved by induction that e j < (V -
ZE

)2
since

e,+1`ej-e

	

<(

	

2- e ~

	

- 2e~

~eo-_ i	
2e

	 + 1 2
` ~

We apply this process as long as e t > n2- e so that at most 2en sub-
graphs are removed from each graph .

4

Case 2 . n 3 <e<n 2-E .

In this range, the unavoidable graph has at least c l Ce edges (see [2]) .
Let e i denote the number of edges remaining in each graph after i sub-
graphs are removed . We have

et+ i < e j - cl C.
It can be proved by induction that

1 - 2

	

2i 2
ei < (n

	

- c 1

4

	

1- e

We apply this process as long as e l > n 3 so that at most c 1 n

	

2 sub-
graphs are removed .

4

Case 3 . n<e<n 3 .e

In this step, we repeatedly remove unavoidable graphs with
2

0 - 0 (e

	

edges . Then

e i+ 1 < ei n

It can be proved by induction that

Hence, to reach e < n requires the removal of at most en subgraphs.
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Case 4 . ZE <e<
n .

We now use Lemma 3 by choosing c = ZE' . After removing at

most 3en graphs, at most c 2 edges are left . We then remove one edge
at a time .

Since eo >> n, then e > n and c 2 < en . Therefore we require at

most an = lOn steps in the U-decomposition of G(n, eo ) . Theorem 1
is proved . 1

Theorem 2. U(n, cn 2 ) < n log n for some constant c .

Proof. The proof is similar to that in Theorem I except for taking e
to be I OO log n in the proof of Theorem 1 . 1

Theorem 3 . U(n) < 4 n + O(1) .

Proof. We consider graphs on n vertices and e edges . From The-
orem 1 we only have to consider the case that e < 15n . We now use
Lemma 2. Let c be equal to 225 and e = mn + r . We consider the fol-
lowing cases .

Case 1 . s > 2 .

Each G in G(n, e) can be decomposed into l n 2 cl copies

Of MS 2 , [-f - 4 - c] copies of (m + 1)S2 and [
2 - c ] copies of

(m + 1)S1 . After removing these star-forests, only 4c 2 edges are left .
Thus we have

U(n, e) < 1n-~-c1 + 14-4-c~+ [2-c ] +4c 2 <

< 4 + 4c 2 .



Case 2 . s < 2 .

Each G in Qn, e) can be decomposed into l4 - c] copies of

MS2 , [2 - s - c] copies of mSl and s - c copies of (m + 1)S 1 .

After removing these star-forests, only 4c2 edges are left. Thus we have

pleted . 1

U(n,e)<L4-c]+[2-s-c]+s-c'+4c'-< 4

	

2-+4c .

Therefore U(n) < 4n + 4c 2 and the proof of Theorem 3 is com-

IV . CONCLUDING REMARKS

Let c i denote some appropriate constants . From Theorem 2 we know
that U(n, c l n 2 ) < c l n log n . If we insist that only unavoidable graphs can

c
be used in the U-decomposition, then log n subgraphs are required since

an (n, c l n 2 )-unavoidable graph can have at most c4 n log n edges. Is it true
that U(n, c l n 2 ) = c5 n log n? Can we do better by using graphs other
than unavoidable graphs in finding minimal U-de compositions of G(n, e)?

In this paper we actually prove that

4n-yn-1<U(n)<4n+c6 .

There is still room for improvement .

For U2 (n), it can be shown in a similar manner that

3n-3< U2(n)<3n+c 7 .

It would be of interest to get the exact value for U2 (n) (and U(n), for
that matter) .
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