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Extremal Problems in Number Theory,
Combinatorics And Geometry

During my long life I wrote many papers on these subjects [1] . There
are many fascinating and difficult unsolved problems in all three of these
topics. I have to organize the problems in some order . This is not an easy
t l sk and anyway not one of my strong points .

In number theory I will mainly discuss questions related to van der
NVaerden's theorem on long arithmetic progressions and problems in
additive number theory .

In geometry the questions I want to discuss are either metrical prob-
lems, e.g. number of distinct distances which must occur between points
in a metric space . The metric space usually will be our familiar E, . I will
also discuss incidence problems of points in E2 . These problems have
a purely combinatorial interpretation too, but the results in E, are com-
pletely different than in the finite geometries .

In combinatorias I will discuss Sperner, Ramsey and Turán type
problems and will try to emphasize their applications to number theory
and geometry .

Since I must, after all, remain myself, I can not entirely refrain from
stating some old and new problems which, in my opinion, perhaps have
been undeservedly neglected .

I hope the reader will forgive a very old man for some personal and
historical reminiscences but to save space I will try to write only facts
which I did not mention elsewhere .

l. Number theory

First I discuss problems in number theory. Here some of the most striking
and significant questions are those connected with the results of van der
Waerden and Szemerédi .
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Van der AVaerden proved more than 50 years ago that if we partition
the integers into two classes, at least one of them contains an arbitrarily
large arithmetic progression. Many beautiful and important extensions
and modifications are known, e .g. the Hales-Jewett theorem and Hind-
man's theorem but we have no space to discuss these here. A very nice
book on this subject has been published recently by Graham, Rothschild
and Spencer [2] . (This book contains a very extensive list of references
and the references which I suppress here can be found there .) The finite
form of van der Waerden's theorem is

Let f(n) be the smallest integer for which if we divide the integers
not exceeding f(n) into two classes, then at least one of them contains
an arithmetic progression of n terms . Van der Waerden's original proof
gives an explicit upper bound for f(n) but his bound increases very fast :
in fact as fast as the well know i Ackerman function (which increases so
fast that it is not primitive recursive) . The best lower bound due to Ber-
lekamp, Lovász and myself increases only exponentially, like a power
of 2 . The first task would be to prove (or disprove) that f (n)lln tends to
infinity but that f (n) tends to infinity more slowly than Ackerman's
function .

Another equally important task would be to find a sharpening of
Szemerédi's theorem. : Denote by rk (n) the smallest integer Q for which
every sequence a l < . . . < a e < n contains an arithmetic progression of lc
terms. Turán and I conjectured 50 years ago that for every k, rk (n) = o(n) .
This conjecture was proved for k = 3 by K. F. Roth, then later by Sze-
merédi for k = 4 and finally by Szemerédi for every k . A few years ago
Fürstenberg proved Szemerédi's theorem by methods of ergodic theory .
This proof does not give an explicit upper bound for rk (n) . Fürstenberg
and Katznelson proved the n-dimensional generalization of Szemerédi's
theorem for which there is so far no other proof . It is not yet possible to
tell the potentialities and possible limitations of this new method [3] .

K. F. Roth and F. Behrend proved that

92

	

< r3(n) <

	

C2n

	

( 1 )Cc l d log n

	

loglogn

No useful upper estimation for rk(n) is known for k > 3 . Szemerédi and I
observed that it is not even known whether rk(n)/rk+i(n)-->0 . It would
be very desirable to improve the upper and lower bounds in (1) and to
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obtain some useful upper bounds forr rJit) . In particular, is it true that

it
rk(it) < (logn),

	

(2)

for every k and l if it >

	

b)2 I offered a reward of $ 3,000 for a proof
or disproof of (2) . (2), if true, would of course imply my old conjecture :

IfYI = oo, then for every k there are Ic a's forming an arithmetic pro-
ai

gression . This in turn would imply that there are arbitrarily long arith-
metic progressions in the primes . Recently 18 primes in an arithmetic
progression were found by Pritchard [33] . It seems certain that a much
stronger result holds for primes : For every k there are k consecutive primes
forming arithmetic progression . But this problem certainly cannot be
attacked by any of our present-day methods, and is in fact beyond any
methods likely to be at our disposal in the near or distant future . Sehin-
zel's well-known hypothesis H would imply it . Van der Corput, Ester-
mann and Tchudakoff independently deduced by Vinogradov's method
that the number of even numbers 2n < x which are not the sums of i ;wo
primes in many ways is less than x](logx) d for every d if x > x, (d) . This
was later improved by Montgomery and Vaughan to x1- C . (In fact by
Goldbach's conjecture all even numbers but 2 are sums of two primes .)
These results immediately imply that there are infinitely many triples
of primes in an arithmetic progression . It is not yet known whether there
are infinitely many quadruples of primes in an arithmetic progression .

An oldd conjecture of mine (in fact one of my first conjectures, which
perhaps did not receive as much attention as it deserved), can be stated
as follows : Let {f(n)j be an arbitrary sequence with f(n) _ ±1. Then
for every c > 0 there are an m and a d such that

m.
1 ' f(kd) !

> e .

	

(3)
k==1

Note that I permit fewer arithmetic progressions here than in van der
Waerden's theorem but I also ask for much less. A weaker variant of (3)
states that if f (n) _ ±1 and f(it) is multiplicative, then

lim 1
11

71-00 k=1
f(k)1 _ M . (4)

Tchudakoff [4] stated independently in another context a more general
conjecture. Here I just would like to call attention to a large class of
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problems called problems on irregularities of distributions or discrepancy
problems . The first results in this subject were found by van der Corput
and Aardenne-Ehrenfest and later by IS . F. Roth and W . Schmidt, also
by Spencer and myself . Recently very striking results were obtained
by J. Beck [32]. Very recently these problems were discussed by V. T . Sós
in a more general setting. Her paper [30] will appear soon. Here I restrict
myself to problems related to van der AVaerden's theorem. Denote by
f (n ; 1,) the smallest integer for which if we divide the integers not exceed-
ing f(n ; l) into two classes, then there is an arithmetic progression of n
terms which contains at least n/2 +1 terms in one of the classes . f (n ; n/2)
is our old f (n) . I easily proved by the probability method that for 1 > an

f( ,n ; 1 ) > (1+C- )n •

	

(5)

For small values of a, (5) is perhaps not very far from being best possibler
It would be very interesting and useful to obtain good upper and love .
bounds for f (n ; 1) . It would be especially interesting if one could deter-
mine the dependence of f(n ; 1) on 1. The trouble is that there are no non-
trivial upper bounds known for f(n ; 1), not even if 1 is bounded . As far
as I know the only result of this kind is due to J. Spencer who determined
f(2rz ; 1), i .e . he determined the smallest integer f(2n ; 1) for which one
cannot divide the integers 1, 2, . . ., f(2n ; 1) into two classes so that
every arithmetic progression of 2n terms contains precisely n terms from
each class [5] .

2. Combinatories and additive number theory

Now I discuss problems in combinatorial additive number theory . For
a fuller history and discussion of such problems I refer the reader to the
excellent book [G] by Halberstam and Roth . Perhaps my oldest conjecture
(more than 50 years old) is the following : Denote by A a sequence 1 < a,

< . . . < a k < n of integers . Assume that all the sums Z ej a i (e, = 0 or 1)

are distinct . Is it true that Ic = loge/log2 ,C for some absolute constant
C? The powers of 2 show that C > 1 . L. liloser raised this problem inde-
pendently. Moser and I proved that

k <
logn + loglogia

+0(1) .
log2

	

2log2
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Conway and Guy [7] showed that C > 2. They found 24 integers not
exceeding 222 for which all the subset sums are different . It has been con-
jectured that their construction is perhaps optimal and that C = 3 .

Now I discuss some problems of Sidon . Sidon called a finite or infinite
sequence A a B(r) sequence if the number of representations of every
integer n as the sum of k or fewer a's is at most r . Let us first assume k = 2,
r = l, i .e. we asstune that the sums az -i aj are all distinct . First we con-
sider infinite B 2 sequences (for r = 1 a B(i ) sequence will be denoted
by Bk) . Sidon asked : Determine the slowest possible growth of a B2 se-
quence. The greedy algorithm immediately gives that there is a B2 sequence
for which ak < elc 3 . On the other hand I proved that for every B2 sequence

limsup 9 ak	> 1 .

	

(6)
~.-.~ k-(logk)

I have been able to improve (6) . Further I proved that there is a B2 se-
quence for which

lim infk'2 > 1 .

	

( 7)

Kriickeberg replaced z in (6) by I ÍV2 and I conjectured that 1/1 2 can.
further be improved to 1 which, if true, would be best possible . I could
prove (7) if I could prove that if a l < a 2 < . . . < a l is a B, sequence, then
it can be embedded into a B 2 sequence a,< . . . < a, < a i+ , < . . . < ak
with ak = (1+0(1))k2 . Perhaps the following stronger result holds
Every B2 sequence can be embedded into a perfect difference set . Rényi
and I proved by probabilistic methods that to every e > 0 there is an
r = r(s) for which there is a B(r) sequence satisfying a.- < k2+8 for
I would expect that in fact there is a B 2 sequence satisfying ak < k 2 +e,
but the proof of this is nowhere in sight . In fact ak < ek 3 remained unim-
proved for nearly 50 years. Recently Ajtai, Kom16s and Szemerédi [8]
proved by a novel and very ingenious combinatorial method that there
is a B2 sequence for which

ek3
ak < log k

This new method was recently applied by Komlós, Pintz and Szemerédi
to Heilbronn's problem [9] .
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Denote by fk (x) the largest integer for which there is a Bk sequence
h<wing fk (x) terms not exceeding x . Turán and I proved that

(l+o(1))x112 <f2(x) < x112+ Cx114 (8)

Lindstrom proved f2 (x) < x112+x114 ;-1 which at present is the best upper
bound for f2 (x) .

The lower bound of (8) was also proved by Chowla . Turán and I con-
jectured that

fa (x) = x112 -{-0(1) .

	

(9)

(9), if true, is probably very difficult . Bose and Chowla proved that
for every k

A(x) > (I +0(1))x11k .

Bose observed that our method with Turán fails to give fk(x) < (1 +0 (1)) x11k

and in fact this problem is still open . In fact I could never prove that if A
is infinite B k sequence (k > 2), then

limsnpa i/lk = oc .

Sidon asked me more than 50 years ago : Denote by f (n) the number
of solutions of n = aí + a? . Is there a basis of order 2 (i .e . every integer
is the sum of two a's) for which f(n) = o(W), for every e > 0? By prob-
abilistic methods I proved that there is a basis of order 2 for which

c,,logn < f(n) < e,logn

which is very much stronger than Sidon's conjecture. Turán and I further
conjectured that for every basis of order 2 we have

lim f(n) = oo .

	

(10)
n_a

Perhaps (10) already follows if we assume only that a,, < ck2 holds
for some c and every k .

Is there a basis of order 2 for which

f(n) /loge--A?

	

(11)

Probably (11) will not be quite easy, since (unless I overlook an ob-
vious idea) the probability method does not seem to help with (11) .
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A Newman and I conjectured that there is a B2z> sequence which is
not the union of a finite number of B 2 sequences. Three years ago I found
a very simple proof of this conjecture [10] . Nesetril and Rödl proved
the related conjecture for Bzr) sequences. In fact I proved that there
is a 7"2) sequence having n 3 terms no subsequence of which having more
than 20 terms is a B 2 sequence. To see this consider the B(2 ) sequence

4, +4 , , 1<u<n, n<v<n+n2 .

This i s a B(z ) sequence of n 3 terms and no subsequence having more than
2n2 terms can be a B 2 sequence. To see this consider a complete bipartite
graph of n black and n 2 white vertices. The black vertices correspond
to the numbers 4' and the white vertices to 4". 4' +4' corresponds to the
edge joining 4'u and 4v . A simple graph theoretic argument shows that
every subgraph of 2n 2 edges contains a C4 1 i .e. a rectangle . This shows
that the subsequence is not a B 2 sequence. Observe that n 2 = (n 3)2/á .

I cannot decide if the exponent s is best possible. Perhaps it could be
improved to " but I doubt it [11] . V. T . Sós and I considered B2(r) sequen-
ces, i.e. sequences al , . . ., a,, . . ., where the number of solutions of m
= a, - a; is at most r. Of course, for r = 1 we obtain our familiar B2
sequences. We could not decide whether there is a B2(r) sequence which
is not the union of a finite number of B2 sequences. It is easy to construct
a B2 sequence for which every integer has a unique representation ai - aj .
On the other hand it is easy to see that if air < íl7"' 1 then the number of
solutions of aj - ai = t cannot be bounded. We plan to write a paper
at a later date on these and other problems on B2(r) sequences .

To complete this chapter I state two unsolved problems : Let g)(n)-->0
and 1-<-a,< aa2< . . . <a,, < n be the largest set of integers for which

the number of distinct integers of the form ai -{-aj is < (1-á-99(n)) (a) .

I can prove that x > (1 + o (1))
2

31i2 n'/ 2 , and hope that for some constant

e > 0, x < (1- s) (2n) 1 /2 . This, if true, would imply that a harmonious

graph of n vertices must have fewer than (1-77) (2) edges [12] for some

constant 77 > 0 .
Silverman and I asked : Let h(n) be the largest integer for which there

is a sequence 0 < a l < . . . < ah(n) -<-4 so that none of the sums ai + a;
is a square. How large is h(n)2 This harmless looking question leads to
surprising complications [13] .
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3. Geometrical problems, global results

Nest I discuss geometrical problems. Let x,, . . ., xn be distinct points
in E,. . Denote by d(xi , xj ) the distance between xi and xj . Let t denote
the number of distinct distances and let a i > a 2 > . . . > a, denote the

a
multiplicities of the distances (

	

ai _ (2 )) . We will mainly study the

maximum possible value of a, and the minimal value of t . We will study
the problems both globally and locally, where "locally" means that we
study tree distribution of "distances from one point x,." . AVe will study
these problems both if the points are in general position and also if they
are restricted in various ways, e .g. they form a convex set or no three
are on a line . It will turn out that all these problems lead to various inter-
esting and difficult questions and we are far from their final solutions .
Many of them lead to interesting combinatorial extremal problems . G. Pur-
dy and I hope to finish a book on these geometrical problems before this
decade is over. yG e have written several joint papers on this subject .

V. T . Sós and I tried to obtain conditions (other than the trivial faz
i=1

(2 )) which would permit us to embed the points in Ek . This question

is nontrivial even for k = 1 and we have obtained only preliminary results
(in many cases with the help of various colleagues) . We hope to return to
these problems elsewhere . I was told of the following attractive conjecture
of Specker. It is easy to see that for every choice of the multiplicities
a l , . . ., a, the points can be embedded into Ek for some k < n-1. Specker
conjectured that k = n -1 is needed only for the regular simplex, i.e .,

if a l = (2) . I have never looked seriously at this nice conjecture but I

am told that it does not seem to be trivial. V. T . Sós and I raised the
following question : Is there an f(k) so that if the n points are in Ek and
the minimum multiplicity a, > n then n < f (k) .

Now let us return to our subject . First of all I wish to remark that
both on the metrical and on the incidence problems important progress
has been made in the last 2 years by J. Beck, J . Spencer, F . Chung, E . Sze-
merédi and W . Trotter. I have to apologize that I mainly restrict myself
to my own problems (not because I consider them more important but
because I know more about them). I just want to remark that very re-
cently P. Ungár [31] completely solved a problem of Scott by proving
that n points in E2 determine at least n-1 distinct directions (sharpen-
ing an earlier result of Burnet and Purdy) .
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Denote by fk (n) the largest possible value of a r and 9k (n) the smallest
possible value of t . Probably k = 2 is the most interesting and difficult
case. For k = 1 everything is trivial : f, (n) = g, (n) = n -1 . For k > 2
interesting problems remain, but to save space I will only refer to the
literature .

I observed in 1945 that
nl+c/loglogn < f2 (n) < e,0 2

	

(12)

and conjectured that the lower bound in (12) is best possible or at least
not far from being best possible . The lower bound is given by the triangu-
lar or square lattice and perhaps sonic sort of lattice gives the true
lower bound. V. T . Sós and I conjectured that the n points which give
f2 (n) must contain an equilateral triangle or a square or at least a set
of 4 points which determine at most 2 (or perhaps 3) distinct distances .
Further we asked : Is it true that f2 (n) - a2__"0 as n--> oo °? Is it true that
the configurations which maximize ar are the same which minimize t ?
The answer is almost certainly no . Join two points if their distance is 1 .
Assume that the distance 1 occurs f2(n) times. We could get no useful
properties of this graph . Of course, it must be connected. It is easy to see
that this graph cannot contain a .K(2, 3) and this was the way I originally
proved f2 (n) < cn'l2 . With a little trouble we could enumerate all the
forbidden subgraphs having fewer than k vertices, as long as .k is not
too large . Once I hoped that the exclusion of finitely many of these forbid-
den graphs will give f2 (n) < n l+" . But now I rather believe that for
n > n, (7c) there is a graph of n vertices and cn 3 /2 edges not containing any
of the forbidden graphs having < k vertices .

Szemerédi proved 10 years ago that f2 (n) = o(n 3/2 ) . Two years ago
Beck and Spencer proved f2 (n) < yt3/3 for some e > 0. This was improved
by Fan Chung, Szemerédi, Trotter and Spencer to f2 (n) < n413 . Unfortunately
their method does not seem to give f2 (n) < n 1+8 . I also observed in 1946 that

92 (n) > J/n -1-1. This was improved by L. Moser to 92 (n) > cn 2 J3 and
last year Fan Chung proved g2 (n) > en"' . This has also been improved to
92 (n) > cn3/a .

4. Distance distribution, local results

I conjectured that if x,, x . f . . ., 'xn e E 2 and one denotes by ti ( n) the
number of different distances from xi then

maxt i (n) > on 1(log n) 112 .

i



60

	

Plenary Addresses : P. Erdös

Beek proved ma,Xti (n) > cns/' and this was also improved to maxti (n)
i

	

ti
>n'," . In fact I conjectured that

Perhaps (13) is a bit too optimistic but as far as I know no counterexample
is known .

I conjectured that for any n points x, f . . ., xn in the plane there is an
xi so that the number of points equidistant from xi is a(n s ) and perhaps
it is less than ne/loglogn . The lattice points again show that (if true) this
conjecture is best possible . It is trivial that this result holds with en 1

l
2

instead of ne and recently Beck proved it with o(n1/2 ) . Denote by a i (n)
the largest number of points equidistant from xi . The most optimistic
conjecture is that

Szemerédi conjectured that (15) remains true if we assume only that
no three of the points are on a line, but his proof gives only 92(Y'2'4)

It
3 (where Y denotes the above property) . L. Moser and I conjectured

that

n
Y ti(n) > en 2f(logn) 112 .
i=1

i-1

Again, perhaps (14) is a bit too optimistic .

5 . Distance distributions with conditions

Below we shall assume some additional properties 9 of the points x l , . . ., x, z ,
and denote the corresponding functions by fk (-&V, n), gk (19, n), n) .
Let W denote that x1f . . ., xn form a convex set . I conjectured and Altman
proved that

ai (n) C nl } choglogn .

92(C, n) _ [2]

	

(15)

f2(C, U+1) = 5n
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but we could not even prove f2 (C, n) < en . I also conjectured that for
a convex set

n
ma,xt i (C, n) > ~

2

	

(16)
i

but (16) is still open . Perhaps (16) remains true if we assume only that
no three of the xi's are on a line : maxti (P, n) >, [n /2] . I further conjectured

i
that in the convex case there is always an xi so that no three of the other
vertices are equidistant from it . This was disproved by Danzer but perhaps
remains true if 3 is replaced by 4 . Here again convexity could be replaced
by the condition Y .

Let 21* denote that no three points are on a line, no four on a circle .
Is it then true that

g, (Y*, n)/n-aoo?

I could not even exclude 92(T*, n) > c)z 2 , but perhaps here I overlook
an obvious argument. I could not exclude the possibility that g2 (Y* , n)
= n-1 and ai = i, 1 < i < n-1 . I thought that this is impossible for
n- 5, but colleagues found not quite trivial examples for n = 5 and
n = 6.

Let r denote that every set of 4 points determines at least 5 distinct
distances. Is it then true that g2 (., n) > cn 2 ? Is the chromatic number
of the hypergra-ph formed by the quadruples determining > 5 distances
bounded? If the points are on a line, this chromatic number is 2 .

I could not prove g2(., n) > en' even if we assume that every set
of 5 points determine at least 9 distinct distances .

Below we delete 9 from our notation. Very likely, if our set contains
no isosceles triple (i .e ., if every set of three points determines three distinct
distances) then g2(n)/n->-oo .

Assume finally that the points are on a line and that every set of 4
points determines at least 4 distinct distances . Then gl ( n) /n--> oo but
gl (n) can be less than n1+ 8 . The number of these problems could clearly
be continued but it is high time to stop .

6. Incidence problems

Now I discuss incidence problems . Sylvester conjectured and Gallai proved
that if n points are given in E lf not all on a line, then there is always
a line which goes through exactly two of the points . The finite geometries
show that special properties of the plane (or Ek) must be used here . Motzkin
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conjectured that for n > n o there are at least [n/2] such lines . He fur-
ther observed that, if true, this conjecture is best possible for .infinitely
many n. Hansen recently proved this conjecture, sharpening a previous
result of ACT. Moser and L . 11I. Kelly. Hansen's proof has not yet been
published .

Croft, Purdy and I conjectured that if x	xn is any set of n points
in E27 then the number of lines which contain more than l points is less
than cn 2 /l 3. The lattice points in the plane show that, if true, this con-
jecture is best possible. Szemerédi and Trotter recently proved this con-
jecture. Thus, in particular, there are fewer than cn l l2 lines which contain
more than n'/ 2 points . The finite geometries again show that special
properties of the plane have to be used .

A few weeks later Beek independently proved our conjecture by a dif-
ferent method but in a slightly weaker form . The strong form of our
conjecture was needed to prove another conjecture of mine. Denote by
L	Lm the lines determined by our points . By a well-known result
of de Bruijn and myself m > n. Denote by IL2 1 the number of points
on Li , 1111 > 1121 > • • • > ILmi • I conjectured that the number of distinct
sets of cardinalities {IL,I, . . ., IL.1} is between

e,Inl/2
land Oc2012 The lower

bound is easy and Szemerédi and Trotter proved the upperr bound . I h< .-e
a purely combinatorial conjecture . Let ISI = n and let A 2 S, 1 < i < m.
be a partially balanced block design of S, i .e. every pair {xi , x;} be con-
tained in one and only one of the A's . I conjectured that the number
of distinct sets of cardinalities in {JA l l, . . ., IA.I} is between

n,l,t1/2 and
n c

2 n1/2 . The upper bound is easy but the lower bound is still open . Rödl
recently informed me that the lower bound is also easy .

About 100 years ago Sylvester asked himself the following problem .
Assume that no four of the xi's are on a line. Determine or estimate the

largest number of triples of points which are on a line . (fn is a trivial

upper bound and Sylvester proved that n2/6 - cn is possible. The best
possible value of e is not yet known . Thus here the difference between the
plane and block designs is not so pronounced . A few years ago Burr,
Grünbaum and Sloane [14] wrote a comprehensive paper on this subject .
They gave a plausible conjecture for the exact maximum . Their paper
contains extensive references . Some of their proofs are simplified in
a forthcoming ppper of Füredi and Palásthy .

Surprisingly, an old conjecture of mine has so far been intractable .
Assume k > 4 and that no k-{--I of our points are on a line. Let l k (n) be
the maximum number of 7o-tuples which are on a line . Then lk (n) = o (W ) .
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B. Grünbaum proved that lk (n)

	

is possible and perhaps this
result is best possible .

Dirac conjectured that if x,, . . ., x7L are n points not all on a line and
we join every two of them, then there is always an x i so that at least
n/2-c distinct lines go through xi . If true, then apart from the value
of c this is easily seen to be best possible . Szemerédi and Trotter and a few
weeks later Beck proved this conjecture with c l n instead of n/2 . Finally
Beck proved the following old conjecture of mine . Let there be given n
points, at most n-k on a line. Then these points determine at least ckn
distinct lines . Perhaps the correct value of c is , in any case. Beck gets
a very small value of c . Many very interesting questions have completely
been omitted, e.g. Borsuk's conjecture [l5] . Some more geometric prob-
lems will be mentioned in the last chapter on combinatorial problems,
where combinatorial theorems directly imply geometric or number-theo-
retic results .

7 . Combinatorial problems

In this final chapter I discuss combinatorial problems. Many mathema-
ticians, including myself, wrote several survey papers on this subject [16]
and therefore I will try to keep this chapter short . Also recently appeared
-in excellent book of Bollobás [17] and several very interesting papers
of Simonovits will soon appear . Thus, apart from a few favourite problems,
I will mention only results having applications in number theory or ge-
ometry. Perhaps the first significant result in this subject is the following
theorem of Sperner [18] : Let 181 = n, Ai e S, 1 < i < Tn be a family
of subsets of S no one of which contains the other, then

maxT,, =
([ ,n/2] )

.

	

( 17)

Sperner's theorem was forgotten for a long time, perhaps even by its
discoverer. When I first met Sperner in Hamburg more than 20 years
ago, I asked him about his result . He first thought that I asked him about
his much better known lemma in dimension theory, and it turned out
that he all but forgot about (17) . (17) in fact was used a great deal in the
theory of additive arithmetical functions . As far as I know, the first
use of (17) was due to Behrend and myself . Behrend and I proved (Beh-
rend [19] a few months earlier) that if 1 < a , < . . . < a.< x is a sequence
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of integers in which no one divides the other, then

n
1

	

clogx
a2

	

(loglogx) 1l 2
.

C=1

Pillai and both of us observed that (18) is best possible, apart from the
value of c. Later Sárközy, Szemerédi and I [20] determined the best v .,due
of c in (18). It seems likely that there is no simple characterization of the
extremal sequences .

Now I discuss some extremal problems on graphs and hypergraphs .
As stated, many papers and the book of Bollobás have appeared recently
on this subject, thus I will be very sketchy. Let G (') be an r-uniform
hypergraph (i .e . the basic elements of G ( ") -are its vertices and r-tuples) .
For r = 2 we obtain the ordinary graphs [21] . G(n, e) will denote a graph
(9 uniform hypergraph) of n vertices and e edges (r-tuples) . Let f(n ; G (' ) )

be the smallest integer so that every G (7a ; f(n ; G(r) )) (i .e . every r-gr .ph
of it vertices and fjn ; G (') ( n)) edges (i .e . r-tuples)) contains GO as a sub-
graph. If r = 2 and G(2) is a complete graph of l vertices .K(l), Turán de-
termined more than 40 years ago f (n ; K(l)) for every l . He also asked
for the determination of f(n ; G) for more general graphs . Thus started
an interesting and fruitful new chapter in graph theory . In particular he
asked for the determination of f (n ; K 0 r) ( l)) where KN(l) is the complete
r-graph of l vertices . This problem is probably very difficult . It is easy
to see that

lim f(n ; K(')(l)) =
cr,,r

7E-->00

always exists . e2 ,, = 1-1 /(l-1), but for no l > r > 2 is the value of cr ,1
known. Turán had some plausible conjectures . One possible reason for
the difficulty of this problem is that (while Turán proved the uniqueness
of his extremal graphs for r = 2 and every l) AV. G. Brown, and in more
general form Kostochka, proved that for r > 2 there are many different
extremal graphs [22] . Now, for r - 2 I state some of our favourite con-
jectmmes with Simonovits . It is well known that

Pit ; Q _ (2-1-0(1)) `/1 3/2 .

	

( 19)

Try to characterize the (bipartite) graphs for which

f(It ; G) < C12 312 .

	

{ 20)
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(One can easily see that if f(n, G) = 0(n2 ), then G is bipartite .) Our con-
jecture (perhaps more modestly it should be called a guess) is that (20)
holds if any only if G is bipartite and has no subgraph each vertex of
which has degree (or valency) greater than 2 . Unfortunately we could
neither prove the necessity nor the sufficiency of this attractive, illu ni-
nating (but perhaps misleading) conjecture . A weaker conjecture, having
a better chance of being true, states : Let G satisfy (20) . Define G' by adjoin-
ing a new vertex to G and join it to two vertices of G of different colour .
Then G' also satisfies (20) . Further, we conjectured that if G is bipartite,
then there is some rational a, 1 < a < 2, for which

limf(n ; G) In' = c, 0<0< 00 .

	

(21)

Further, for every rational a e [1, 2) there is a G for which (21) holds [23] .
It is well known that (21) is false for r > 2, but perhaps for every G(r)

limf(2n ; G( " ) ) If(n ; GO) = c(G')

	

(22)

exists and differs from 0 and oo .
Nearly 50 years ago I investigated the following extremal problem

in number theory : Let 1 < a l < a2 < . . . < a7, < x. Assume that all the
products aiaj are distinct. Put f(x) =maxa, : estimate f(x) as accur ;1ely
as possible. I proved that there are positive constants c 2 > cl > 0 such
that [23]

n (x) T Cl x3/4 I(log x) 3/2 < f
(X)
< n (x) -i' 02 x3/4 (logx)3/2

	

(23)

(where n(x) is the number of primes < x) . The proof of (23) was based on
the inequality

C3n312 < f(n ; C4) < C41L3J2 .

	

(24 )

(24) was proved at that time by E. Klein and me .
Another number theoretic application of graph theory is as follows :
Denote by K( ") (t, . . ., t) the r-graph of rt vertices Ai) . . . x;') , 1 < j < t

having tr edges {x21>, x22>,
-7

x(z)} . I proved (for t = 2 this was proved
earlier in a sharper form by Kövári and T. Sós and Turán) that

f (n, K' (t, . . ., t)) = 0 (25)

I deduced from (25) the following result : Let 1 < b l < b2 < . . . be an
infinite sequence of integers. Denote by g (n) the number of solutions



66

	

Plenary Addresses : P . Erdős

of 9z = bi bj . Assume that g (n) > 0 for all n. Then

limsupg(n) _ 00 .

	

(26)
71-00

The additive analog of (26) is an old problem of Turán and mine, and,
as stated in Chapter 1, is still open [24] .

I just state one more theorem of Simonovits and mine which has
direct consequences to some of the problems discussed in Chapter 2 .
We proved that (for n > n o )

f (n ; K(r, r, 1)) =
C41

-E -2- +i

and (27) implies that for n - 0(mod8)

(27)

2
f4 (n) = 4 + 2 } 1 .

	

(28)

The simplicity of (28) is in curious contrast to the difficulty of (10) [25] .
Now I have to say a few words on Ramsey's theorem . Very much

work has been done on this subject and to save space I only state one
or two of my favourite problems and refer to the literature . (The list
of references is, of course, far from complete [26] .) Let G, , . . ., Gk be k
graphs, and let r (G I , . . ., Gk ) be the smallest integer n for which if one colours
the edges of the complete graph K(n) by lc colours arbitrarily, then for
some i, 1 < i < k the i-th colour contains Gi as a subgraph.

It is surprisingly difficult to get good upper or lower bounds for these
functions, e .g. it is not yet known whether the limit of r (K(m) ; K(m))'I'
exists. It is known that it is between 2' 12 and 4. The sharpest known
inequality for r(K(3), K(m)) states

z

(logm)- < r((K(3), K(m)) < logm

	

(29)

The proof of (29) uses probabilistic methods . Presumably

cm''- '
r(K(r), K(m)) >

(logm) 'r

	

(30)

for some constant a,., but (30) resisted so far all attempts for r > 3 . It
seems very likely that

r(K(m), C4) < m2-s

	

(31)
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holds, but it is not even known that (C 3 is a triangle, C3 = K(3))

r(K(m), Q /r(K(m), C3)-->0 .

	

(32)

Szemerédi recently observed that

9 - Proceedings . . .

2

r (K (m), 04) <
cm

	

(33)
(logm) 2

(33), in view of (31), only just fails to prove (32) . Ajtai, Komlós and Sze-
merédi [8] in fact proved the following lemma, which immediately gives
(33), and was crucial to the proof of (7) :

Trivially, every G(n ; kn) has an independent set of size > n/2k. Now,
if one assumes that our G(n ; kn) has no triangles, then the largest inde-
pendent set has size > (cnlogk)/k (which, apart from the value of the
constant, is best possible). In fact, the result remains true even if we
assume only that the number of triangles is abnormally small . Several
unsolved problems remain, e .g. if we assume only that our G (n; kn) con-
tains no K (r), can we ensure an independent set of size much larger than
n/2k. The results in this case are not yet in their final form [27] .

I just mention one application of Ramsey's theorem . 50 years ago
E. Klein asked : Is there an f(n) such that if xl , . . ., xf( ,,,) is a set of f(n)
points in the plane, no three on a line, then one can always find a subset
of n points forming the vertices of a convex n-gon . Szekeres deduced this
from Ramsey's theorem . He also conjectured that f(n) = 2'-'+l. Later
we proved

2n_1 i 1 < f(n) < /2n-41 .
t n-2

The first unsettled case is whether f(6) = 17 or not .
To finish the paper I want to state a conjecture of mine which would

have some geometric applications : Is it true that there is an n = n (s)
so that if 8n < k < (-'J - s) n and 181 = n, A, = S, 1 < i < T,, is a family
of subsets of S so that for every 1 < i t < i 2 < Tn

J A il n Ai2 1

	

k,

then T,, < (2 - s) n . Peter Frankl just proved this conjecture .
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