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It is shown that the logarithm to the base 2 of the number of maximal intersecting families on
m elements is asymptotically equal to (",`_,) where n=[zm] .

1. Introduction

For a natural number m, let m =11,2, . . ., m} . An intersecting family on m is a
set A of sets such that U A g m and any two members of A have non-empty
intersection . We let J_ be the set of all maximal intersecting families on m . We
are concerned with estimating JJ . J .

In Section 2 we obtain a lower bound by elementary counting methods . In
Section 3 we obtain an upper bound using a result of Kleitman and Markowsky
on the number of monotone Boolean functions .

Notice that if in the definition of intersecting families, the requirement that any
two members of A have non-empty intersection is raised to any three members,
the problem becomes trivial . Indeed, by [1, Remark 7 .5] any maximal intersecting
family would be an ultrafilter ; that is it would consist of all subsets of m
containing some singleton .

2. A lower bound and statistical remarks

We observe that an intersecting family A on m is maximal if and only if for
every A -- m, either A E A or m \ A EA. Observe also that if sat is an intersecting

family on m, A E A, and A B -- m, then B c A .

2.1. Definition . A subset 93 of P(m) is a free choice family on m if and only if
whenever 19 93, 16 U {m \ B : B E 93 \''e} is an intersecting family .
We denote by [A ] k the set of k-element subsets of A .
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2.2 . Lemma. Let n = [2m] and let 93 _ {A E [m]" : 1 E A} . Then 93 is a free choice

family on m with largest possible cardinality .

Proof. Trivially any two members of A have non-empty intersection. Distinct

members of {m \ B ; B E 93} must meet because of their size. Likewise, if B, C E 93

and B n (m \ C) then B = C. Thus 93 is a free choice family on m with

cardinality (n-,) .
By Theorem 1 of [1], if T is an intersecting family on m, each A06 has

JAI --n, and whenever A and B are distinct members of `e neither A c B nor

B g A, then J1eJ=(n-i) . Given a free choice family on m, let (e=
{Ac-9: JAI _- n} U {m \ A : A E g and JA J > n} . Then le satisfies the conditions

above, so 16 (and hence 2) has at most C-,) elements . 0

Lemma 2.2 yields immediately a lower bound of 2(m 1 ~ for 1 .0,,,1 . As we shall see

this is an asymptotically correct value in the exponent . However we do manage to

raise the lower bound somewhat by considering free choices which remain given a

particular choice from 93 .

2.3. Theorem. Let n = [Im] .
(a) If m = 2 n, then 1 .0,,,1>
(b) If m = 2n + 1, then 1 .0m á %2(

m
>+~__

2)/2

Proof. Let 93 _ {A E [m]" : 1 E A} . Given °wg O3, let 1e(á) _ 9 U {m \ B
B E 03 \ } (so that ~( ) is the choice induced by 3F) . If °;g A and m = 2n, let

9(3F)={AE[m]"+' : for all BEB\A 0} .
If Ow--93 and m =2n+1, let

2(33F) _ {A E [m]"+l : {l, 2} c A and for all B E le( SOF), B \ A 7L 0} .

For any SIT --93, let d(19) _ 12(8)1 . We claim that

(*) If 9s-: A and W c 2(31T), then 16(°x) U 16 U { m \ A : A c!@(91) \ 16} is an in-

tersecting family .

To see (*) note that 9(35') was defined so that whenever B E W(9) and
A E 9(314;), both B fl A and B n (m \ A) are non-empty . Also if A, B E 9(9) and
A B, then B nA and B n (m \A) are non-empty by virtue of their sizes . (If one

had B n (m \A) _ 0 one would have B = A) . Consequently we need only show

that if A, B c 2(9) and A # B, then (m \ A) n (m \ B) # 0 . If m = 2n + 1, then

{1, 2} c_A n B and hence JA U BI < 2n so we can assume m = 2n . Suppose

(m \ A)n (m \ B) _ O . Then A U B = m so JA n B J = 2. Pick x, y E m such that
A n B = {x, y} . Then either {x} U (A \ B) or {y} U (B \ A) is in W(9) and we may
assume the former. Then since {x} U (A \ B) c A we have A ~ g(SIX), a contradic-

tion .
Since (*) holds, we have
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Let G = {( A) : - 93 and A E 2(_,q)} . We count G in two ways . On the one
hand Given A E [m]"" (with 11,21c A if m =2n + 1) and
'F-A, we have A E9(.°á) if and only if no subset of A is in (e( IF) . Assume now
m = 2n and AE[m]n+'. There are n+1 n-element subsets of A and (n-1)
elements of so { c 03: A E !20( )}j = 2 ( '- --' Since I[M]n+11 = ("m1) = U-1) we
have

IGI_
\n m1/ 2(^-'> -"- i

Now assume m = 2n + 1 and A E [m]"+ ' with {1, 2} c A. Any subset B of A
which is in 1e(3F) must in fact be in 9' and hence must have 1 E B. There are n
such n-elements subsets so 113; -_A:

	

Since I{A E [m ]""
{1, 2} c All _ (n-1) we have

J GJ -
(m 2

2(° )-"
\n-1

Let

	

(Thus d is the mean value of the d( )'s .) We

have then

I`~ I

	

~ 2d(°.f~

	

~ 2d =2(m;)+ d
L.+

	

L.+m
kc~t

	

°.fc58

Inserting the value for d obtained by our double counting of G we have the
desired result . (]

We now restrict our attention to the simpler case when m = 2n and discuss the
distribution of {d(g) :

	

g O3}. We obtained above the value ("m,)/2" + ' for the

mean by counting twice the set {(3; A) : Jw 93 and A E 2( )}, we can also

compute the variance by counting twice the set

{( A, B) : c 93, A E 2(3w), and B E 9(9)} .

(In this computation we consider separately pairs (A, B) where A = B, JA nB I _
n, and 3 -- JA n B I , n -1. As we saw earlier if J A nB I = 2, then for no 3F A do
we have A E 9( .° ) and B E

	

This computation yields the result (for n , 3)

(d(° )- d)2= m l2(„=tr"-'(1+(n2-n-4)2---2)
n -1

so that the variance is ("m l)/2"" • (1 +0(1)) .

3. An upper bound

Let Y_ be the set of antichains in 91(m) . (A set sig~ 91(m) is an anti-chain
provided that whenever A, B E A with A B one has A = B) . It was shown in [3],
improving an earlier result [2], that there is a constant c such that 19-1<
2 °+a'°° 'm' (m) where n=[zm]. We show in this section that J,,
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3.1. Definition . Define a function g on .0„, by g(4) _ {A gm-1: A = B nm -1
for some B c A and there does not exist C E sat such that c n m -1-, A} .

3.2. Lemma. Let A E .0,,, and let A g m -1 .
(a) A U{m} E A if and only if there exists B E g(A) such that B A .
(b) A E sd if and only if there exists B E g(A) such that B A and there does not

exist C c g (A) such that c n A= 0 .

Proof . (a) Assume A U Im} E si . Pick D c A such that D - A U {m} and
ID nm -1j is minimal among all such members of A. Let B = D n m -1 . Then
B c g(A) and B -- A .
Now assume we have B E g(A) such that B -- A . Pick D c A such that

Dnm-1=B. Then D-AU{m} so AU{mjc4.
(b) Assume A c sat . Then A U {m} c A so by (a) we have some B E g(A) such

that B cA. Suppose we have C E g(sl) such that c nA = 0 . Pick D E 4 such that
Dn m -1= C. Then D nA= 0, a contradiction .
Finally assume we have some B c g(A) such that B cA and have no C c g(i)

such that c nA = 0 . By (a) we have A U {m} E 4 . Suppose that A 0 s l so that
m \ A E 4 . Again by (a) pick C E g (sat) such that C m \ A . Then c nA = 0, a
contradiction . D

3.3. Theorem. The function g is one-to-one and takes ,0,,, to ,IP rn_ 1 .

Proof. By Lemma 3 .2, A is completely determined by g(4) so g is one-to-one .
Let sie .0m . To see that g(si)EY,_ 1 suppose instead we have B, Ccg(A) with
C B. Pick D, F E sB such that Dn m -1= B and E n m -1= C. Then
Enm-1 B so Bog(A) . D

3.4. Corollary . Let n =L2m]. There is a constant c such that :
(a) If m = 2n, then

I`~ I , 2(1+clogm/m)(~ - i)m

(b) If m = 2n + 1, then

L-0m I C 2("' bgm/m )( m „~)

Proof. By Theorem 3.3,

	

so the theorem of Kleitman and Mar-
kowsky cited above applies . D

3.5. Corollary . log e ~„ is asymptotically equal to (" n') where n = [Zm] .

Proof. Theorem 2.3 and Corollary 3.4. D
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