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1t is whown that the logarithm 1o the base 2 of the number of moximal intersecting families on
m clements is asymptotically equal 1o (778 where n = [im]

1. lntroduction

For a nutural number m, let m ={1,2,....m}. An intersecting family on m is a
set o of sets such that [J oS m and any two members of s have non-empty
intersection. We let #, be the set of all maximal intersecting families on m, We
are concerned with estimating |#,,|.

In Section 2 we obtain a lower bound by elementary counting methods. In
Section 3 we obtain an upper bound using a result of Kleitman and Markowsky
on the number of monotone Boolean functions.

Notice that if in the definition of imersecting families, the requirement that any
two members of A have non-empty intersection 8 raised to any three members,
the problem becomes trivinl. Indeed, by [1, Remark 7.5] any maximal intersecting
family would be an ultrafilter; that is it would consist of all subsets of m
comaining some singleton,

2. A lower bound and statistical remarks

We observe that an intersecting family o on m s maximal if and only if for
every A & m, either A€ or m'\ A 5. Observe also that if & is an intersecting
family on m, A=, and A= BEm, then Be o

2.1. Definition. A subset @ of #(m) is a free choice family on m if and only if
whenever €@, ¥U{m '\ B: Be@®'\ €] is an imersecting family.
We denote by [AT the set of k-clement subsets of A.
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2.2. Lemma. Let n=[im] and let ®={A c[m]"; 1€ A} Then & is a free choice
family on m with largest possible cardinality.

Proof. Trivially any two members of 3@ have non-empty intersection. Distinct
members of im '\ B: B =3} must meet because of their size. Likewise, if B, Ce®
and BNim\C)=0. then B=C. Thus @ is a free choice family on m with
cardinality (7).

By Theorem 1 of [1], if € is an intersecting family on m, each A €% has
|Al=n, and whenever A and B are distinct members of € neither A =B nor
Bc A, then |€|=(7-}). Given a free choice family 9 on m, let €=
[Ae@: |[Al=nlu{m\A: Ae® and |A|>n}. Then € satisfies the conditions
ahove, so € (and hence @) has at most (7/) elements. [

Lemma 2.2 yields immediately a lower bound of 21 for |#,|. As we shall see
this is an asymptotically correct value in the exponent. However we do manage to
raise the lower bound somewhat by considering free choices which remain given a
particular choice from 9.

2.3, Theorem. Let n=[m].
(a) If m =2n, then |#,,|=2G-(rtIaz
(b} If m=2n+1, then |#,|=207r 02

Proof. Let B={Ac[m]": 1eA}. Given Fc&B, let ¥(F)=FU{m\B:
He®\ F} (so that €(F) is the choice induced by F). If F= @ and m=2n, let

HF) ={Ac[m]""": for all Be€(F), B\ A+{.
If Fc®and m=2n+1, let

@ F)={Ac[m]*': {1,2}c A and for all Be€(F), B\ A+
For any F =&, let d(F)=|2(F)|. We claim that

(#) If F=B and G=D(F), then €(F)UF U{m\A: AcHF}\G} is an in-
tersecting family.

To see (#) note that (F) was defined so that whenever Be%(F) and
A=5(F), both BN A and BNim' A) are non-empty. Also if A, B=3(F) and
A+ B, then BNA and BMim' A) are non-empty by virtue of their sizes. (If one
had BNim' A)= one would have B = A). Consequently we need only show
that if A, Be®(F) and A+ B, then (m " A)N{m \B)#@®. If m=2n+1, then
1,2lcANB and hence |AUB|=2n so we can assume m =2n Suppose
(m'\ANim \B)=® Then AUB=m so |ANB|=2. Pick x, yem such that
ANB={x, v}. Then either {x}U{A\ B} or {y}U(B\A) is in €(F) and we may
assume the former. Then since {x}U{A Y\ B)= A we have A¢@(F), a contradic-
tion.

Since (*) holds, we have |#, | =Y scn 24%"
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Let G={(F A): FcB and A =B F)}. We count G in two ways. On the one
hand |G|=Ygoad(F). Given Ac[m]*"" (with {1,2}=A if m=2n+1) and
F=aB, we have A eB®(F) if and only if no subset of A is in €(F). Assume now
m=2n and Ae[m]*™'. There are n+1 n-element subsets of A and (™7})
clements of @ so {Fc@: Ac@(F))=277"""" Since [m]"*|=(,") = (") we

have
|G| =( i ) WD
n—1
Now assume m=2n+1 and Ac[m]""" with {1, 2} A. Any subset B of A
which is in €(F) must in fact be in F and hence must have 1€ B, There are n
such n-elements subsets so [{Fe@: Ae@F)=2000" Since {Ae[m]""":
11,28 Al =22 we have

= m—E)_ retn
Gl (n—l : ’
Let d = (g d(F))/|P(HB)). (Thus d is the mean value of the d(F)'s) We

have then

(= Y S F T = geng,
Fca Fo@

Inserting the value for d obtained by our double counting of G we have the
desired result. O

We now restrict our attention to the simpler case when m = 2n and discuss the
distribution of {d(F): F<®). We obtained above the value (,",)/2*"" for the
mean by counting twice the set {(F A): Fc@ and AeB(F)}, we can also
compute the variance by counting twice the set

{(F A B): FcR AcHF), and BeD(F)}

(In this computation we consider separately pairs (A, B) where A=B, |[ANB|=
n and 3=|ANB|=n-1. As we saw earlier il |A N B| =2, then for no F= & do
we have A e H(F) and B e F).) This computation yields the result (for n=3)

Y (d(F)-dy= (n'“ l)zn D1+ (P —n =427 )
Foa =

so that the variance is (" )/2"" - (1+o(1)).

3. An wpper bound

Let &, be the set of antichains in @(m). (A set 8= P(m) is an anti-chain
provided that whenever A, Be s with A = B one has A = B). It was shown in [3],
improving an earlier result [2], that there is a constant ¢ such that |#,]<
guvere=A2) where n=[im]. We show in this section that |#,|=1%,..|



f4 P. Erdive, N. Hindman

3.1. Definition. Define a function ¢ on &, by gledl=lAcm-1: A=BMm-1
for some B e.of and there does not exist Ce of such that CNim=1g A}

3.2 Lemma. Let #c#, and let A=m—1.

(a) AU{m}esd if and only if there exists B € g(od) such that B A,

(b) A =.d if and only if there exists B & g(of) such that B= A and there does not
exist Ce glad) such that CNA=.

Proof. (a) Assume AU{mlesd Pick Des such that DeAU{m} and
|[DMim—1] is minimal among all such members of o, Let B=DMNm—1. Then
Begla) and B A,

Now assume we have Begl(a) such that B2 A Pick Desd such that
Dim=1=8B. Then D= A U{m} 30 A U{m}e o,

(b) Assume Aeal Then AU{m}esd so by (a) we have some B e g(a) such
that B = A. Suppose we have C & giaf) such that CM A =§. Pick D € o such that
DNm—=1=C. Then DN A =0, a contradiction.

Finally assume we have some B < g{s) such that B A and have no Ce g(s)
such that CNA=§. By (a) we have AU{m}ed. Suppose that A¢ .o so that
m' A s, Again by (a) pick Ce glsf) such that Ccm\A. Then CriA=%, a
contradiction. [

3.3, Theorem. The function g is one-to-one and takes #,, to &, .

Proof. By Lemma 3.2, & is completely determined by glef) 0 ¢ is one-to-one.
Let &e¥,,. To see that glale 5, suppose instead we have B, Ce glaf) with
Cc B Pick D, Fesd such that DNm-1=B and ENm-1=C. Then
Enm=1<B so Béglay). O

3.4. Corollary. Let n =[2m]. There is a constani ¢ such that:
(a) If m =2n, then

-
(b) If m=2n+1, then

=7 I+ hmmdmo 7ol

ll‘? E‘Ej” +e bom ()
m = .

Proof. By Theorem 3.3, |, /=%, 1| so the theorem of Kleitman and Mar-
kowsky cited above applies. O

3.5. Corollary. log. |#,,| is asymptotically equal to (", ") where n=[3m].

Proof. Theorem 2.3 and Corollary 3.4, [0
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