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ABSTRACT

In this paper we shall consider ordinary graphs, that
is, graphs without loops and multiple edges . Given a
graph L, ex(n , L) will denote the maximum number of
edges a graph G" of order n can have without containing
any L . Determining ex(n,L), or at least finding good
bounds on it will be called

TURÁN TYPE EXTREMAL PROBLEM. Assume that a graph G"
has E > ex(n , L) edges. Then it must contain some copies of L . Such a
graph will be called supersaturated, or L-supersaturated . L-
supersaturated graphs mostly contain not only one, but very many
copies of L . The problem discussed here (and called "the problem of
L-supersaturated graphs") is

Determine the minimum number of copies of L a graph G" with
E>ex(n,L) edges must contain .

The main results of this paper are two "recursion theorems"
motivated by the case when L is the graph determined by the vertices
and edges of a cube .

Notation
Below we shall consider ordinary graphs, that is, graphs without

loops and multiple edges . G,H, . . . ,S and G",H", . . . , S" will denote
graphs and the upper indices will always denote the number of vertices .
Also, we shall use v(G), e(G) and X(G) to indicate the number of ver-
tices, edges, and the chromatic number, respectively . Kp is the com-
plete graph on p vertices, Cp is the cycle of length p, K,, , ,, denotes the
complete bipartite graph with p and q vertices in its color-classes .
G (A , B) denotes the bipartite subgraph of G induced by A and B,
(A n B = 0) .
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Below c l , . . . , cj , . . . will always denote positive constants,
independent of n, but they may depend on the graphs in consideration
and they may be different in different ports of the paper .

1 . Introduction
In this paper we shall consider problems on supersaturated

graphs . These type of problems are strongly related to extremal graph
problems of Turán type .

Turán type extremal graph problems . Let b be a given family of
(so called forbidden) graphs. Determine the maximum number of
edges a graph G" can have without containing any L E H, as a sub-
graph .

The maximum will be denoted by ex(n, b ), the family of graphs
attaining this maximum by EX(n, b ) . These graphs will be called
extremal . If p+1 denotes the minimum chromatic number in G", then,
by a theorem of Erdős and Simonovits [3],

ex(n, lL )= 1- p ~2)+o(n2)

	

(1)

An extremal graph problem will be called degenerate if p=1, that is, if
there is a bipartite graph among the forbidden ones . By (1), the prob-
lem is degenerate iff ex(n, b )=o(n) . (By [8], if L E IL is bipartite
and c=2/v(L), then ex(n, b )=O(n2-`) .) In this paper we restrict our
consideration to this degenerate case .

Let G" have more than ex(n, L ) edges. Then it will be called
supersaturated and obviously, it contains at least one forbidden sub-
graph. It is surprising that G" contains in such cases not only one but
very many forbidden subgraphs .
THE PROBLEM OF SUPERSATURATED GRAPHS . Given a graph
G" with E>ex(n, IL ) edges, at least how many subgraphs of G" are in
b? This minimum will be denoted by f(n, L ,E) .

First we mention a general theorem on supersaturated graphs .
THEOREM A. (Erdős-Simonovits, [5] .) Given a family IL of forbid-
den graphs, each of which has v vertices . For every c>0 there exists a
c'>0 such that if

e(G")>ex(n, IL)+cn2 ,

	

(2)

then G" contains at least c'n ' forbidden L E b .
Obviously, this result is sharp, since G" has only O(n') subgraphs

of order v. The following problem seems much more difficult :
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PROBLEM OF WEAKLY SUPERSATURATED GRAPHS. Let L
be a family of forbidden graphs of order v . What is the minimum
number of forbidden subgraphs in a graph G" with

e(G")=ex(n,L)+k
edges if k=o(n)7
REMARK 1 . The above definitions, Theorem A and problems carry
over to the case of h-uniform hypergraphs without any difficulty .
There, a problem is degenerate if ex(n,il)=o(n h ) .

As we mentioned, the problem of weakly supersaturated graphs is
much more difficult than the case k=cn2 . The problem of "very
weakly supersaturated" graphs seems even more intractable . Thus, for
example, we can easily handle the problem of C 4-supersaturated
graphs, but see no hope to prove the following
CONJECTURE 1. If a (G") = ez(n , C4) + 1, then G" contains at least

+o(%/n-) copies of C4 .
(If true, then this conjecture is sharp .)
Below we shall consider only the case, when L ={L}, (and use

the simpler notation ex(n,L) and f(n,L,E)) . In extremal graph prob-
lems and in many other similar situations we find that the extremal con-
figurations tend to behave either in a very regular pattern, or in a very
chaotic way: they have almost random structure . We feel that in case
of bipartite L the graphs G" with a given number E of edges and having
roughly the minimum number of copies of L tend to look like random
graphs . This is the background of the conjectures formulated below,
and motivates the results of this paper and of some other ones [5], [6] .
To formulate the main conjecture, let us count first the expected
number of L's in a random graph G", where the ed es are chosen

n
independently, at random, and with probability E/ 2 , so that the
expected number of edges be E I) .

(n
Let a=e(L), v=v(L) . The complete graph K" contains aL • v

copies of L and each occurs in our random graph with probability
e

n
E/ i2

	

Hence the expected number of occurrences of L in G" is
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1

e

aL . (
v)

• E/[2 ^ cL .
nEe

	 v . (3)

CONJECTURE 2. Given a bipartite graph L with v=v(L) and e = e (L )
and a c > 0, then there exists a c'= c' (c) > 0 such that if

E=e(G")z(l+c) •ex(n,L),

	

(4)
e

then G" contains at least c' . nE _ v copies of L .

One can easily show that if we use another random graph model,
where the graphs G" of E edges are chosen with the same probability,
then (3) still holds . This shows that Conjecture 2 is sharp if true . The
main goal of this paper is to prove Conjecture 2 in various cases . One
of the main difficulties is that in most degenerate extremal graph prob-
lems, even if we have satisfactory upper bounds on ex(n,L), we are
unable to prove good lower bounds . Therefore we formulate a weaker
form of the conjecture .
CONJECTURE 2 * . Assume that for a given forbidden L
ex(n,L)=0(n2-a) . Then there exist an őcsa and two constant c and
c'>0 such that if E = e(G") > cn2- ", then G" contains (for e = e (L) and

e
v=v(L)) at least c' • nEe-v copies of L .

We cannot prove the assertion oft Conjecture 2 * even under the

stronger assumption that E=e(G")> tog n

2. Main Results
PROPOSITION 1 . If T is a tree, then Conjecture 2 holds with L=T .

In case, when L is an even cycle, Conjecture 2 * with őc=1-
1

was proved by Simonovits, [12] . More precisely, a theorem of Erdós,
(unpublished, see [1] or [2]) asserts that

ex(n,C2k)=0(n1+7/k)

	

(5)

In [12] it is proved that there exist a ck> 0 and a ck'> 0 such that
if

E = e (G")> ckn t+ Lk,

	

(6)
k

then Gn contains at least ck' (E copies of C am . This is sharp by
In



Remark 2, and proves Conjecture 2` . (For k=2,3, and 5 we know
that (5) is sharp . Hence (6) proves Conjecture 2 for C4,C6 and Cl() .)

If we wish to prove general degenerate extremal theorems, or
corresponding results on supersaturated extremal graphs, one way to
do this is to look for recursion theorems . A recursion theorem is a
result asserting that

(a) if we have an upper bound on ex(n,L) and construct a new
graph L' from L in some given way, then we obtain an
upper bound on ex(n,L') in a simple way, in terms of
ex(n,L) and some other parameters of L' ;

(b) or, correspondingly, we can obtain lower bounds on
f(n,L',E) in terms of f(n,L,E) .

In [10] we have proved the following recursion theorem :
DEFI=ON 1 . Given a bipartite graph L and a fixed two-coloring of
it by blue and red, Lt denotes the graph obtained by fixing a K, ,t
(which is vertex-disjoint from L and is colored by blue and red) and
then joining all the red vertices of Ki,t to all the blue vertices of L and
all the blue ones of Kt, t to all the red ones of L, (see Figure 1) .

1

Then

L
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Figure 1 .

THEOREM B. [4] . Let L be a bipartite graph with a fixed 2-
coloring . Let ex(n,L)=0(n2and define 0=0, by

1

	

1

	

(7)a

L2

1
1
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ex(n,L,)=0(n2-R) .

	

(8)

This theorem was needed primarily to prove the Cube theorem :
Turán asked that if L denotes one of the five graphs corresponding to
the five regular polyhedra, can one determine ex(n,L)7 For
tetrahedron (K4) the answer is given by Turán's theorem, [13,14], for
octahedron by us, for dodecahedron and icosahedron by Simonovits,
see the survey [11], or [10] . The cube problem seems to be the most
difficult . We [4] have proved :
THEOREM C. If Q denotes the graph determined by the vertices and
edges of the cube and Q" is the graph obtained by joining two opposite
vertices of the cube by an edge, (see Figure 2), then

ex (n, Q)<ex(n,Q*)=0(n&5) .

	

(9)

Q=C6

í
Q" _ (C 6 ) 1

Figure 2.

(One can see in Figure 2 that if L=C6 , then L 1 =Q' . Hence the
cube theorem immediately follows from ex(n,C6)=0(n 413 ) and
Theorem B .)

Here we shall prove
THEOREM 1 . Let L be a bipartite graph with a fixed 2-coloring and
ex(n,L)=0(n2- a) for some a E (0,1) . If 0 is defined by (7), and

Q=C6

Q" _ ( C6 ) 1
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Conjecture 2 * holds for L, then it also holds for L, : there exists a con-
stant C>0 such that if e(G")=E>Cn2-0, then G" contains at least

e'
CL t •

n
E._ v , copies of L,, where e'=e(L,), v'=v(L,) .

THEOREM 2. Let L be a bipartite graph with a fixed 2-coloring in
red and blue and L * be the graph obtained from L by taking two new
vertices, x and y and joining x to all the blue vertices of L and y to all
the red ones (but not joining x to y) . If ex(n,L)=0(n2-01 ) with some
a E (0,1) and R is defined by (7), and Conjecture 2 * holds for L, then it
also holds for L * in the sense that there exists a constant C>0 such that
	 E°rif E=e(G")>Cn2-

S
then G" contains at least CL

. n2e ,_ v , copies of L * ,

where e'=e(L*)=e(L)+v(L) and v'=v(L*)=v(L)+2 .
These theorems immediately imply the following

THEOREM 3 . There exist three constant CQ , c, c * > 0 such that if
E = e(G") > C -015 , then G" contains at least cE121n 16 copies of Q and
at least c * • E 1q/n 18 copies of Q * .

REMARK . None of the theorems above imply the other, since e' is
different in them . Hence Theorem 1 yields (generally) more copies of
a smaller sample graph .

Using Proposition 1 and the above theorems we obtain
THEOREM 4 . If L is a bipartite graph and x,y are two vertices of L
such that L-{x,y} is a tree, then (ex(n,L)=O(J ), and there exist
two constants C and c * such that if E = e (G") > Cn312, then G" contains

at least c * • nEe copies of L, where a=e(L) and v=v(L) .

Theorem 4 has many applications . Thus e.g . if Q' is the graph
obtained from the cube graph Q by deleting one edge, then Q' can be
obtained from a path p6 by the operation described in Theorem 2.

Thus Theorem 2 can be applied with a=1, R=
2

, yielding that if

e(G")>cQ - •n 312 , then G" contains at least c' •
E6

copies of Q' . There
n

are many other cases, where Theorem 4 immediately yields the sharp
result .

3, Proofs
The main tool of the proof of the Cube Theorem (Theorem C) is

counting C 4's in G" . Here we need a result sharper than that of [4] .
We shall count C 4's in bipartite graphs where the sizes of the color-
classes are m and h=n-m . Since our method works for Kp,q as well,
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first we shall prove
LEMMA 1 . Given p and q, there exist two constant c and c'>O such
that if G% K, , h , and E=e(G n)>c •m -h 1-11P, then G n contains at least

EPQcf .
m(4-1)P .h(P-1)4

	

(10)

copies of K,,,4-
(Lemma 1 implies that Conjecture 2 * holds for KP,4 with

&= -, since for any L it is sufficient to prove Conjecture 2` for the case
of bipartite Gn . )

n
PROOF. We shall use a convexity argument for which we extend k
to all the teals by

rkj-i0

lx(x-1) . . .(x-k+1)
ki

	

if z ~>_ k-1

if z <k -1

X
One can easily show that k is convex in

	

+-), and in (0,+c0)

k! > lk) ki
+O(xk2

k!
+O(1).

	

(11)

Let M and H be the color-classes of K,n h :2Gn . We shall call
(x, {y 1, . . . y4}) a cap if each yj is joined to x E M . Let us count them . If
S is their number and d l , . . . , d,n are the degrees in M, then

S= r1,
di

(q )zm q q4 1 -0(m)~c 2 qQ 1 ,

	

( 12)
,S„

	

J

	

m

	

mq-1

we have used Jensen's Inequality and that Elm-- . (The case
h=0(1) is trivial!)



Y,

4-CAP

Y 3
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YZ

P

Yq

(5) COPIES oP K4,5 ON U

Figure 3

(DU) (h~ YDV eSP
P J1I ~ 9

	

zc3 • h4P-p
	 -o(h)

l9J

EpQ	zc4
m (9-i)n .h(n-1)Q .
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Let DU denote the number of caps on a fixed U={y l , . . . , yq} . Then
JDU =S and the number of Kp qCG" is exactly

h
(Here again we replaced

q
by cs • h4 , which is permitted unless

h !s q -1 . However, h = O (1) have been excluded . )
LEMMA 2. Let G(M,H) be a bipartite graph with the colour-classes
M and H, where IM I =m? I H I =h . Assume that L is a bipartite graph
which satisfies Conjecture 2' with a given ez>0 .

	

If
E=e(G(M,H))zcó•m •h

l-a
then G(M,H) contains at least

c •
he-,~•me-1 copies of L, where a=e(L), v=v(L) .
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PROOF. We partition M into the subsets U 1 , • • • , U (m1hj , each of
which is of size -=h . Let F; denote the number of edges joining U ; and
H . On average, G(Ui,H) has zcó•h

2-a edges, hence at least half of

the edges belong to G(U;,H)'s with FI~-_c6 . 1 h2- " : we may apply the

assumption to them, they contain at least c7 • (F,)`/h2e-v copies of L .
Thus we get at least

	Fi
_C8,

(Eh)e m	1 _	 E`	c~

	

h2e-v
		
-m

	

h h2e-v
	 -c8. he-v+l, me-1

copies of L .
REMARK. This estimate is asymmetric . A symmetric weakening is
that, under the assumptions of the lemma, G(M,H) contains at least

Ee

	

(13)C8* (hm)` -v+1 • (h+m)v-2

copies of L .
PROOF OF THEOREM 1 . (A) The operation A,:L-»L, is such that

A,(Ar-1(L))=A,(L) •
A similar identity holds for the exponents : denote the 0 obtained from
(7) by R,(a) . Then

~1(Rr-1(a))=~r(a) •
Using this, the reader can easily check that if Theorem 1 is proved for
t=1, then a trivial induction on t proves Theorem 1 for every t . Hence
it is enough to prove Theorem 1 for t=1

(B) Take a graph G" with E edges and partition its vertex set into
two parts M and H so that the bipartite graph G(M,H) - defined by
the edges of G" joining M to H - has the maximum number of edges
for all possible partitions . Let d(x) denote the degree in G", d'(x) the

degree in G(M,H) . Then one can easily see that d'(x)2--
2
d(x) for

every vertex x .
In the argument below, the vertices of high valency are disturbing,

therefore we apply below a two-step regularization procedure to
G(M,H) . We define the constants r;=2`-2/i` for i=4,5, . . . and r3=0 .
Let IM I= m and IH I= h and



Clearly, for at least one i 5 JAi

	

i . We fix an A"CAi with

A"~ _ 2i ~ . The bipartite graph G(A", H) has at least 4 edges.

(This means that the degrees in the first class of G(A",H) are already
roughly the same and still, G(A *, H) has almost (?) the original number
of edges . Next, we partition H into the subsets

Bj =fyEH: rj _ 1 . 4Eh ~d"(y)<r~- 4Eh } j=4,5, . . .

	

(15)

where d"(y) denotes the degree of y in G(A",H) . As in the previous
case, we can fix a j ~-_5 such that I Bj ~ z h , then a B"C:BÍ of (h~ I ver-

tices . Now the graph G(A",B") has E"~E
16í2j2

edges. (This means

that the degrees in B " are now roughly the same and at most r • • E
4í2h

At the same time, we have lost the "almost regularity" in A" . How-

ever, we still have that the degrees in A" are at most ri-
E

. )
m

(C) Now we shall count the number of C 4's in G"=G(A",B") .
Let N(x,y) denote the number of paths P4 joining an xEA" to a y EB" .
If (x,y) is an edge, then N(x,y) is just the number of C 4's containing
(x, y) . Hence, by Lemma 1, applied with p=q=2, we get

(E *)4
~N(x,y)'c

(
l

a •
	 * .

b
:)2

	

(16)

C4's, if JA"J =a" and JB"J =b" . Of course, to get (16) we need that if
e.g . a"2--b", then e(G") ;~-_c-a" • . Observe that 0!5% in all our
applications, hence E?c3n can be assumed with a "very large" c3,

which (since a"=(
2i j ,

b (
2-

I and E"z16E 2 ) implies that
Í

e(G")>_c2-a" •

	

. (The reader is reminded at this point that the con-
stants c i are not necessarily the same in different proofs . )

Let now d"fix) denote the degree of x in G" . The edge (x,y)
where xEA",yEB , will be called of type A if d"(x)zd"(y) . Other-
wise, it will be called of type B . By symmetry, we may assume that
(16) holds also for the edges of type A . Assume first (which is not
always true) that we can apply Lemma 2 to each of these (at most E")
edges. Each (x,y) defines a subgraph GX,YC;G" spanned by all the
neighbours of x in G" but y, and by all the neighbours of y but x . (See

CUBE-SUPERSATURATED GRAPES 213

A i=fxEM: r t_ 1 • msd'(x)<ri • m}, i=4,5, . . . (14)
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Figure 4 . ) If GX Y contains an L, then G * contains a corresponding L1 .
Thus we obtain at least

	IV(x,y)`	
C4 •	 N(x,y)e	

lt
E

e-1

	

E e-v+1

2 mJ

	

l2J h

(17)

copies of L 1 containing (x,y) . (Here, we used only the weaker bounds

d"(x)s2` m and d*(y)s2j h.)

N(X)

Figure 4

Since, by Jensen's Inequality,

7,N(x,y)e-có • (aEb))2)e .E*=c6 (a,b,)2e .

	

(18)

and since a _ (
2` 1, b* = r

h
, we obtain - by adding up the contribu-

tion (17) for each edge of type A - at least



	N(x,y)`
~~4 d•(x)e-l,d•(y,)e-v+1

(E•)3e+1
zc~

m2e •h2e

CUBE-SUPERSATURATED GRAPHS
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1

	

t ie • 2je

(E

)e-1 (E)e-v+1'2'('-')-2j('-v+')
m

	

h

copies of L 1 CG • . Since E•z 16Ej2 , (19) yields at least

	 Ee+v+1	2í+jcg •
m'+ '- h" + ' - ' p(iJ)

	

(20)

copies of L 1 , where P(i,j) is some polynomial in i and j . Clearly,
2i+ j

-- if either i--- or j--- . Hence we may assume that i and j are
bóundled, which means that the last factor may be ignored. Since
c'=e+v+1 and v'=v+2, and since m' + '•he-v+ attains its maximum
(for rn+h=n) if m=cgn, (20) yields at least

	 E"
cy

_

n2e'-v'

copies of L1, each obtained 0(l) times. This would complete our
proof . Unfortunately, we do not know if Lemma 2 is applicable to
each GX,y, .

(D) One can easily check that (16) guarantees that "on average"
Lemma 2 is appl~ab3e to GX ~, . More precisely, the average of N(x,y)

is at least c1 • (, ; 2 . We may fix the constant C of Theorem 1 so
a -b

large that if E ( e(G•~>Cn2-S, then either d•(x)2--d•(y) and
•

( (E~)2 2--C • • d•(x) •d•(y,)1-a,

	

(21)

or d•(x)<d•(y) and

	(atEb ))2 ~C •, d•(x)1-a •d•(y) •

	

(21 * )

Indeed,E•2--E
16í2j2

and d•(x)<_2' •
m

, d•(y)~2 í • ~ , from which a

short calculation (using also (7)í) yields (Zl) . Now we take only those
edges of G • which satisfy
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N(x,y);~--

	

» 7,N(x,y) •

Let us call them "good" edges . Clearly (16) holds for these edges too,

if c l is replaced by 2c l . Hence we may assume that if we take only

the "good" edges of type A, (16) still holds, with
4

c1 instead of c1 .

Let E* denote the number of these edges . Trivially, (18) and (19)
remain valid if we use (as above) E * - and not E ** - in our formulas,
except that the summation is taken only for the E * good edges of type
A . Indeed,

~N(x,y) ez c6[ (QEb
)2' El*

I c E"zc6.(a*b*)2e

	

#

J

	

(18 )

In (19) we used only (18), thus it remains valid and the last part of the
proof carries over without any change . Thus Theorem 1 is proved .
PROOF OF THEOREM 2. This proof is very similar to that of
Theorem 1 . We start exactly as above : choose a bipartite G(M,H) in
G" and then apply the "two-step regularization", that is, find
G*=G(A',B*), as above . N(x,y) again denotes the number of paths
P4 joining an x EA * to a y EB' . However, here we shall count the P 4 's
in G instead of counting C4's and will use the summation for all the
pairs, not only for the joined ones, to establish a formula correspond-
ing to (16). First we assert that

7,N(x,y) cl'
	 (E	

')+

	

(16')
a b

Indeed, E N (x, y) counts the number of P 4'S in G * . If E * 4a' , then
the number of P 3's (=K1,2 's) with the middle vertex in A * is at least

*2
c2 (E . (Here we use Lemma 1 in a sharper form : we use also that

a
we can guarantee that the first class of Kp 9 is in the second class of
K," ,h as a matter of fact, we have proved this! Of course, counting
the K1 Q 's in G * is just "counting the caps" in the proof of lemma 1 .)

*2
Anyway, we have at least c2 •	 (E 	P3's in G* with the middle

a
vertex in A * . The degrees in B * are between ri_ 1 * 1.2h and

rJ ih '
and therefore they are bounded from below by c3

b'
(= the average

degree in G * in B') . Hence we may extend each P3 in at least 2c3 • b'
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*3
ways . Thus we have at least c4 • (E ; 4-walks in G * , and least

3

	

ab
c5 • (E) of them are paths P 4 if E*/b* is sufficiently large (which can

a b
be assumed here) .

From here on, the proof is roughly the same as in the previous
case. Instead of (18) we get (summing for all the a *b* pairs (x,y))

F,N(x,y)e~có • ((aEb	)2
)e

.
a* b*=c6 • (a*b*)2e-i

	

( 18')

Thus the number of L * 's in G * is at least

	 N(x,y)e		
(19')Xc7' d*(x)e-l,d*(y)e-v+1

	(E*3e

	

1

	

2ie • 2je

zc8 (mh)2e-1

	

E
e-1

E
e-V+1 • 2i(e-1) .2j(e-v+i) .

(mi h

Since E *z 16E J2	, (19') gives at least

Ee+v	 2i+j

c9' me he+v-2 p(i,Í)

	

20

copies of L * in G * , where P(i,j) is again a polynomial. Again, the
last term in (20') tends to -, hence it can be deleted: G* contains at
least

E,c+v

	

Ec'
C10* mchc+v-2 _clpff me'-v'+2-he'-2

copies of L * (since v'= v + 2, e'= e + v) . Here the minimum is achieved
(under the condition that m+h=n) if m=c 11•n , h=c 12•n , with
c11+c12>0 . This would complete our proof .

As in the proof of Theorem 1, we still have a technical problem :
"Can we apply Lemma 2 to the graphs Gx },? Do the graphs GX ), have
sufficiently many edges?" However, from (16') we get that GX, ~, has,

3
on average, cl •

(a
*
•b

*
)2

edges. This is exactly the same as in the pre-

vious proof. Therefore the last part of that proof, namely (D), can be
repeated without any significant change . (The insignificant changes
are that the summation is taken for a b * terms instead of E terms.)
This completes the proof .
REMARK. The fact that the average number of edges in GX,y is the
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same in both proofs is surprising at first sight but becomes evident (?)
if we remember that most parts of our proofs aim at proving that our
graph behaves (from certain point of view) as a random graph . In a
random graph e(G,,y ) is "independent" of whether (x,y) is an edge of
G ` or not .

We can prove Conjecture 2* in several other special cases, but
shall not discuss them here .

The proof of Theorem 2 (or of Theorem 1) yields a proof of the
Cube theorem as well. However, this is not radically different from
the original one . Perhaps one interesting difference is that here we
used a slightly weaker regularization method .

On the other hand, there are some instances where, in proving
Conjecture 2', we obtain new (and often simpler) proofs of existing
extremal graph theorems .
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